Publications
- A. Gyenge, R. Rimanyi: Fixed point counts and motivic invariants of bow varieties of affine type A, with an Appendix “Modularity” by G. Harcos
- R. Rimanyi: Thom polynomials. A primer
- T. M. Botta, A. Foster, R. Rimanyi: Geometric Bruhat order on (0,1)-matrices
- T. M. Botta, R. Rimanyi: Bow varieties: stable envelopes and their 3d mirror symmetry
- R. Rimanyi, L. Rozansky: New quiver-like varieties and Lie superalgebras, Commun. Math. Phys. 400, 341-–370 (2023). https://doi.org/10.1007/s00220-022-04608-2 journal link
- R. Rimanyi, Y. Shou: Bow varieties—geometry, combinatorics, characteristic classes, to appear in Comm. in Analysis and Geometry, 2022
- R. Rimanyi, A. Szenes: Residues, Grothendieck polynomials, and K-theoretic Thom polynomials, International Mathematics Research Notices, Vol. 2023, Issue 23, December 2023, Pages 20039–20075, https://doi.org/10.1093/imrn/rnac345
- R. Rimanyi, A. Varchenko: The F_p-Selberg integral of type A_n, Letters in Mathematical Physics. 111. (2021) 10.1007/s11005-021-01417-x.
- R. Rimanyi, A. Varchenko: The F_p-Selberg integral, Arnold Math J. 8, 39–60 (2022). https://doi.org/10.1007/s40598-021-00191-x
- R. Rimanyi, A. Weber: Elliptic classes on Langlands dual flag varieties, Comm. in Contemp. Math., Vol. 24, No. 1 (2022) 2150014, DOI: 10.1142/S0219199721500140
- R. Rimanyi: ħ-deformed Schubert calculus in equivariant cohomology, K theory, and elliptic cohomology, in
Singularities and Their Interaction with Geometry and Low Dimensional Topology. In Honor of András Némethi. Eds. J. Fernández de Bobadilla, T. Laszlo, A. Stipsicz. Birkhauser, 2021- S. Kumar, R. Rimanyi, A. Weber: Elliptic classes of Schubert varieties, Mathematische Annalen, 378(1), 703-728, 2020, DOI 10.1007/s00208-020-02043-z
- S. Promtapan, R. Rimanyi: Characteristic classes of symmetric and skew-symmetric degeneracy loci, in “Facets of Algebraic Geometry. A Collection in Honor of William Fulton’s 80th Birthday”, eds. P. Aluffi, D. Anderson, M. Hering, M. Mustata, S. Payne. Cambridge Univ. Press LMS Lecture Note Series 472, 2022, Vol 2., pp 254-283
- R. Rimanyi, A. Smirnov, A. Varchenko, Z. Zhou: Three dimensional mirror self-symmetry of the cotangent bundle of the full flag variety, SIGMA 15 (2019), 093, 22 pages, DOI 10.3842/SIGMA.2019.093
- R. Rimanyi, A. Weber: Elliptic classes of Schubert varieties via Bott-Samelson resolution, J. of Topology, Vol. 13, Issue 3, September 2020, 1139-1182, DOI 10.1112/topo.12152
- R. Rimanyi, A. Smirnov, A. Varchenko, Z. Zhou: Three-dimensional mirror symmetry and elliptic stable envelopes, International Mathematics Research Notices, Volume 2022, Issue 13, July 2022, Pages 10016–10094, https://doi.org/10.1093/imrn/rnaa389
- L. M. Feher, R. Rimanyi, A. Weber: Characteristic classes of orbit stratifications, the axiomatic approach. In “Schubert Calculus and Its Applications in Combinatorics and Representation Theory, Guangzhou, China, November 2017” (eds. J. Hu, C. Li, L. C. Mihalcea), Springer Proceedings in Mathematics & Statistics Vol. 332, 2020, pp 223–249
- R. Rimanyi: Motivic characteristic classes in cohomological Hall algebras, Adv. Math., Volume 360, 22 January 2020, 106888, DOI 10.1016/j.aim.2019.106888
- L. Feher, R. Rimanyi, A. Weber: Motivic Chern classes and K-theoretic stable envelopes, Proc. London Math. Soc. Vol. 122, Issue 1, January 2021, 153-189, online
- R. Rimanyi, V. Tarasov, A. Varchenko: Elliptic and K-theoretic stable envelopes and Newton polytopes, Selecta Math. (2019) 25:16, DOI 10.1007/s00029-019-0451-5
- G. Farkas, R. Rimanyi: Quadric rank loci on moduli of curves and K3 surfaces, Annales scientifiques de l’ÈNS, quatrième série – tome 53 fascicule 4, juillet-août 2020
- L. Feher, R. Rimanyi: Chern-Schwartz-MacPherson classes of degeneracy loci, Geometry and Topology 22 (2018) 3575–3622, DOI 10.2140/gt.2018.22.3575
- G. Felder, R. Rimanyi, A. Varchenko: Elliptic dynamical quantum groups and equivariant elliptic cohomology, SIGMA (Symmetry, Integrability and Geometry: Methods and Applications) 14 (2018), 132, 41 pages, DOI 10.3842/SIGMA.2018.132
- J. Allman, R. Rimanyi: Quantum dilogarithm identities for the square product of A-type Dynkin quivers, Mathematical Research Letters, Vol. 25, No. 4, 1037-1087, 2018, DOI 10.4310/MRL.2018.v25.n4.a1
- R. Rimanyi, A. Weigandt, A. Yong: Partition Identities and Quiver Representations, Journal of Algebraic Combinatorics 47: pp 129-169 (2018), DOI 10.1007/s10801-017-0771-5
- R. Rimanyi, A. Varchenko: Equivariant Chern-Schwartz-MacPherson classes in partial flag varieties: interpolation and formulae, in Schubert Varieties, Equivariant Cohomology and Characteristic Classes, IMPANGA2015 (eds. J. Buczynski, M. Michalek, E. Postingel), EMS 2018, pp. 225–235
- R. Rimanyi, A. Varchenko: Dynamical Gelfand-Zetlin algebra and equivariant cohomology of Grassmannians, J. Knot Theory Ramifications 25 (2016), no. 12, 1642013, 29 pp., DOI 10.1142/S021821651642013X
- R. Rimanyi, V. Tarasov, A. Varchenko: Trigonometric weight functions as K-theoretic stable envelope maps for the cotangent bundle of a flag variety, J. Geom. Phys. 94 (2015), 81–119, DOI 10.1016/j.geomphys.2015.04.002
- J. Allman, R. Rimanyi: K-theoretic Pieri rule via iterated residues, Séminaire Lotharingien de Combinatoire (2018), Proc. of the 30th Int. Conf. on Formal Power Series and Algebraic Combinatorics, Series and Algebraic Combinatorics (Hanover) 2018, 12pp.
- R. Rimanyi: On the Cohomological Hall Algebra of Dynkin quivers, preprint
- R. Rimanyi: Quiver polynomials in iterated residue form, Journal of Algebraic Combinatorics, Volume 40, Issue 2 (2014), Page 527-542, DOI 10.1007/s10801-013-0497-y
- R. Rimanyi, V. Tarasov, A. Varchenko: Partial flag varieties, stable envelopes and weight functions, Quantum Topol. 6 (2015), no. 2, 333–364
- V. Gorbounov, R. Rimanyi, V. Tarasov, A. Varchenko: Quantum cohomology of a flag variety as a Yangian Bethe algebra, Journal of Geometry and Physics, 74 (2013) 56-86
- R. Rimanyi, V. Tarasov, A. Varchenko: Cohomology classes of conormal bundles of Schubert varieties and Yangian weight functions, Math. Z. 277 (2014), no. 3-4, 1085–1104
- M. Domokos, L. Feher, R. Rimanyi: Equivariant and invariant theory of nets of conics with an application to Thom polynomials, Journal of Singularities, volume 7 (2013), 1-20
- R. Rimanyi, V. Tarasov, A. Varchenko, P. Zinn-Justin: Extended Joseph polynomials, quantized conformal blocks, and a q-Selberg type integral, Journal of Geometry and Physics, 62 (2012), pp. 2188-2207
- R. Rimanyi, V. Schechtman, V. Tarasov, A. Varchenko: Cohomology of a flag variety as a Bethe algebra, Functional Analysis and Its Applications, Vol 45, No. 4, 2011
- R. Rimanyi, V. Schechtman, A. Varchenko: Conformal blocks and equivariant cohomology, Moscow Mathematical Journal, Vol. 11, Number 3, July-September 2011, 1-21
- R. Rimanyi, A. Varchenko: Conformal blocks in the tensor product of vector representations and localization formulas, Ann. Fac. Sci. Toulouse Math (6), Vol. XX, Fasc. 1, Jan 2011, 71-97
- L. M. Feher, A. Nemethi, R. Rimanyi: Equivariant classes of matroid realization spaces, Comment. Math. Helv. 87 (2012), 861-889
- L. M. Feher, R. Rimanyi: Thom series of contact singularities, Annals of Mathematics, Volume 176, no. 3, 1381-1426, November 2012
- R. Marangell, R. Rimanyi: The general quadruple point formula, American Journal of Mathematics, Vol 132, No 4, August 2010, 867-896
- L. Feher, R. Rimanyi: On the structure of Thom polynomials of singularities , Bulletin of the London Mathematical Society 2007 39: 541-549
- L. Feher, A. Nemethi, R. Rimanyi: The degree of the discriminant of irreducible representations, J. Algebraic Geom. 17 (2008) 751-780
- G. Felder, R. Rimanyi, A. Varchenko: Poincare-Birkhoff-Witt expansions of the canonical elliptic differential form, in “Quantum Groups” (eds. P. Etingof, S. Gelaki, S. Shnider), Contemp. Math. 433 (2007), 191-208
- A. S. Buch, R. Rimanyi: A formula for non-equioriented quiver orbits of type A, J. Algebraic Geom. 16 (2007), 531-546
- R. Rimanyi, L. Stevens and A. Varchenko: Combinatorics of rational functions and Poincare-Birkhoff-Witt expansions of the canonical U(n-)-valued differential form, Ann. Comb. 9 (2005), no. 1, 57-74
- L. Feher, R. Rimanyi: Thom polynomial computing strategies. A survey, Adv. Studies in Pure Math. 43, Singularity Theory and Its Applicatuions (Eds: S. Izumiya, G. Ishikawa, H. Tokunaga, I. Shimada, T. Sano), pp. 45-53, Math. Soc. Japan, 2006
- A. S. Buch, L. Feher, R. Rimanyi: Positivity of quiver coefficients through Thom polynomials, Adv. Math. 197 (2005) 306-320
- A. S. Buch, R. Rimanyi: Specializations of Grothendieck polynomials, Comptes Rendus de L’Acad. des Sci., Ser. I 339 (2004), 1-4.
- L. Feher, A. Nemethi, R. Rimanyi: Coincident root loci of binary forms, Michigan Math. J., Volume 54, Issue 2, 375-392, 2006
- L. Feher, A. Nemethi, R. Rimanyi: Degeneracy of two and three forms, Canad. Math. Bull. Vol. 48 (4), 2005 pp. 547-560
- G. Berczi, L. Feher, R. Rimanyi: Expressions for resultants coming from the global theory of singularities, Topics in Algebraic and Noncommutative Geometry, Contemporary Mathematics 324, 2003, AMS, (eds. L. McEwan, J.-P. Brasselet, C. Melles, G. Kennedy, K. Lauter)
- L. Feher, R. Rimanyi: Schur and Schubert polynomials as Thom polynomials—cohomology of moduli spaces, Cent. European J. Math. 4 (2003) 418-434
- L. Feher, R. Rimanyi: Classes of degeneracy loci for quivers—the Thom polynomial point of view , Duke Math. J., Volume 114, Number 2, August 2002, 193-213
- L. Feher, R. Rimanyi: Thom polynomials with integer coefficients, Illinois J. Math, Vol. 46, No. 4, Winter 2002, 1145-1158
- L. Feher, R. Rimanyi: Calculation of Thom polynomials and other cohomological obstructions for group actions , in “Real and Complex Singularities (Sao Carlos, 2002)”, Ed. T.Gaffney and M.Ruas, Contemp. Math.,#354, Amer. Math. Soc., Providence, RI, June 2004, pp. 69-93
- R. Rimanyi: Multiple-point formulas — a new point of view, Pacific Journal of Mathematics, Vol. 202, No. 2., 2002, 475-489
- R. Rimanyi: Thom polynomials, symmetries and incidences of singularities, Inv. Math. 143, 499-521 (2001)
- R. Rimanyi: Computation of the Thom polynomial of $\Sigma^{1111}$ via symmetries of singularities, in “Real and Complex Singularities”, Chapman and Hall RNM 412, pp. 110-118, 2000
- R. Rimanyi, A. Szucs: Generalized Pontrjagin-Thom construction for maps with singularities, Topology Vol. 37, No. 6, pp. 1177-1191, 1998
- R. Rimanyi: On right-left symmetries of stable singularities, Math. Z. 242, 347-366 (2002)
- P. Akhmetev, R. Rimanyi, A. Szucs: A Generalization of Banchoff’s triple point theorem, Proc. AMS, Vol 126. No. 3, March 1998, pp. 913-915
- R. Rimanyi: On the orientability of singularity submanifolds, J. Math. Soc. Japan, Vol. 52, No. 1., pp. 91-98, 2000
- R. Rimanyi, A. Szucs: A theorem on removing SIGMA^r singularities, (manuscript, not to be published)
- R. Fenn, R. Rimanyi, C. Rourke: The Braid Permutation Group, Topology, Vol. 36., No. 1., pp. 123–135 (1997)
- R. Rimanyi: The hierarchy of $\Sigma^{2,0}$ germs, Acta Math. Hung. 77 (4) (1997), 311-321
- R. Fenn, G. T. Jin, R. Rimanyi: Laces: A generalization of braids, Osaka J. Math., Vol 38, No 2, (June 2001)
- R. Fenn, G. T. Jin, R. Rimanyi: Laces, In: The 3rd Korea-Japan school of knots and links (Taejon 1994) pp 21-31, Proc. Applied Math. Workshop, 4, KAIST Korea
- R. Rimanyi: The Witten-Reshetikhin-Turaev invariant for 3-manifolds, in `Topics in Knot Theory’, (ed. M. Bozhuyuk), NATO ASI Series, Kluwer, 1993, pp. 319-347
- R. Rimanyi: Ph.D. Thesis (dvi) , (ps.gz), (pdf), (Eötvös University Budapest 1996-97, supervisor: A. Szűcs)
- R. Rimanyi: Thom polynomials. A primer