COHOMOLOGY OF A FLAG VARIETY AS A BETHE ALGEBRA

R. RIMÁNYI ${ }^{\star, 1}$, V.SCHECHTMAN ${ }^{\dagger}$, V. TARASOV ${ }^{\diamond}$, A. VARCHENKO ${ }^{\star, 2}$
*Department of Mathematics, University of North Carolina at Chapel Hill Chapel Hill, NC 27599-3250, USA
${ }^{\dagger}$ Insititut de Mathématiques de Toulouse, 118 Route de Narbonne, Univesité Paul Sabatier, 31062 Toulouse, France
${ }^{\bullet}$ Department of Mathematical Sciences, Indiana University-Purdue University Indianapolis 402 North Blackford St, Indianapolis, IN 46202-3216, USA
${ }^{\bullet}$ St. Petersburg Branch of Steklov Mathematical Institute Fontanka 27, St. Petersburg, 191023, Russia

To the memory of V.I. Arnold

Abstract

We interpret the equivariant cohomology $H_{G L_{n}}^{*}\left(\mathcal{F}_{\boldsymbol{\lambda}}, \mathbb{C}\right)$ of a partial flag variety $\mathcal{F}_{\boldsymbol{\lambda}}$ parametrizing subspaces $0=F_{0} \subset F_{1} \subset \cdots \subset F_{N}=\mathbb{C}^{n}$, $\operatorname{dim} F_{i} / F_{i-1}=\lambda_{i}$, as the Bethe algebra $\mathcal{B}^{\infty}\left(\mathcal{V}_{\lambda}^{ \pm}\right)$of the $\mathfrak{g l}_{N}$-weight subspace $\mathcal{V}_{\lambda}^{ \pm}$of a $\mathfrak{g l}_{N}[t]$-module $\mathcal{V}^{ \pm}$.

1. Introduction

A Bethe algebra of a quantum integrable model is a commutative algebra of linear operators (Hamiltonians) acting on the space of states of the model. An interesting problem is to describe the Bethe algebra as the algebra of functions on a suitable scheme. Such a description can be considered as an instance of the geometric Langlands correspondence, see [MTV2], [MTV3]. The $\mathfrak{g l}_{N}$ Gaudin model is an example of a quantum integrable model [G1], [G2]. The Bethe algebra \mathcal{B}^{K} of the $\mathfrak{g l}_{N}$ Gaudin model is a commutative subalgebra of the current algebra $U\left(\mathfrak{g l}_{N}[t]\right)$. The algebra \mathcal{B}^{K} depends on the parameters $K=\left(K_{1}, \ldots, K_{N}\right) \in \mathbb{C}^{N}$. Having a $\mathfrak{g l}_{N}[t]$-module M, one obtains the commutative subalgebra $\mathcal{B}^{K}(M) \subset \operatorname{End}(M)$ as the image of \mathcal{B}^{K}. The geometric interpretation of the algebra $\mathcal{B}^{K}(M)$ as the algebra of functions on a scheme leads to interesting objects. For example, the Bethe algebra $\mathcal{B}^{K=0}\left(\left(\otimes_{s=1}^{n} L_{\boldsymbol{\Lambda}_{s}}\left(z_{s}\right)\right)_{\lambda}^{\text {sing }}\right)$ of the subspace of singular vectors of the $\mathfrak{g l}_{N}$-weight $\boldsymbol{\lambda}$ of the tensor product of finite dimensional evaluation modules $\otimes_{s=1}^{n} L_{\boldsymbol{\Lambda}_{s}}\left(z_{s}\right)$ is interpreted as the space of functions on the intersection of suitable Schubert cycles in a Grassmannian variety, see [MTV2]. This interpretation gives a relation between representation theory and Schubert calculus useful in both directions.

One of the most interesting $\mathfrak{g l}_{N}[t]$-modules is the vector space $\mathcal{V}=V^{\otimes n} \otimes \mathbb{C}\left[z_{1}, \ldots, z_{n}\right]$ of $V^{\otimes n}$-valued polynomials in z_{1}, \ldots, z_{n}, where $V=\mathbb{C}^{N}$ is the standard vector representation

[^0]of $\mathfrak{g l} l_{N}$. The Lie algebra $\mathfrak{g l}_{N}[t]$ naturally acts on \mathcal{V} as well as the symmetric group S_{n}, which permutes the factors of $V^{\otimes n}$ and variables z_{1}, \ldots, z_{n} simultaneously. We denote by \mathcal{V}^{+}and \mathcal{V}^{-}the S_{n}-invariant and antiinvariant subspaces of \mathcal{V}, respectively. The actions of $\mathfrak{g l}_{N}[t]$ and S_{n} on \mathcal{V} commute, so \mathcal{V}^{+}and \mathcal{V}^{-}are $\mathfrak{g l}_{N}[t]$-submodules of \mathcal{V}. The Bethe algebra \mathcal{B}^{K} preserves the $\mathfrak{g l}_{N}$-weight decompositions $\mathcal{V}^{+}=\oplus_{\boldsymbol{\lambda}} \mathcal{V}_{\boldsymbol{\lambda}}^{+}$and $\mathcal{V}^{-}=\oplus_{\boldsymbol{\lambda}} \mathcal{V}_{\boldsymbol{\lambda}}^{-}, \boldsymbol{\lambda}=\left(\lambda_{1}, \ldots, \lambda_{N}\right) \in$ $\mathbb{Z}_{\geqslant 0}^{N},|\boldsymbol{\lambda}|=n$. The Bethe algebra $\mathcal{B}^{K}\left(\mathcal{V}_{\boldsymbol{\lambda}}^{+}\right)$was described in [MTV3] as the algebra of functions on a suitable space of quasiexponentials $\left\{e^{K_{i} u}\left(u^{\lambda_{i}}+\Sigma_{i 1} u^{\lambda_{i}-1}+\cdots+\Sigma_{i \lambda_{i}}\right), i=1, \ldots, N\right\}$. In this paper we give a similar description for $\mathcal{B}^{K}\left(\mathcal{V}_{\lambda}^{-}\right)$and study the limit of the algebras $\mathcal{B}^{K}\left(\mathcal{V}_{\lambda}^{+}\right), \mathcal{B}^{K}\left(\mathcal{V}_{\lambda}^{-}\right)$as all coordinates of the vector K tend to infinity so that $K_{i} / K_{i+1} \rightarrow \infty$ for all i. We show that in this limit both Bethe algebras $\mathcal{B}^{\infty}\left(\mathcal{V}_{\lambda}^{+}\right), \mathcal{B}^{\infty}\left(\mathcal{V}_{\lambda}^{-}\right)$can be identified with the algebra of the equivariant cohomology $H_{G L_{n}}^{*}\left(\mathcal{F}_{\boldsymbol{\lambda}}, \mathbb{C}\right)$ of the partial flag variety $\mathcal{F}_{\boldsymbol{\lambda}}$ parametrizing subspaces
$$
0=F_{0} \subset F_{1} \subset \cdots \subset F_{N}=\mathbb{C}^{n}
$$
$\operatorname{dim} F_{i} / F_{i-1}=\lambda_{i}$. This identification was motivated for us by the considerations in [RV], [RSV] where the equivariant cohomology of the partial flag varieties were used to construct certain conformal blocks in $V^{\otimes n}$.

Our identification of the Bethe algebra with the algebra of multiplication operators of the equivariant cohomology $H_{G L_{n}}^{*}\left(\mathcal{F}_{\boldsymbol{\lambda}}, \mathbb{C}\right)$ can be considered as a degeneration of the recent description in $[\mathrm{O}]$ of the equivariant quantum cohomology of the partial flag varieties as the Bethe algebra of a suitable Yangian model associated with $V^{\otimes n}$, cf. [BMO].

In Section 2 we introduce the Bethe algebra. Section 3 contains the main results - Theorems 3.3, 3.4. Theorems 3.3 identifies the algebra of equivariant cohomology $H_{G L_{n}}^{*}\left(\mathcal{F}_{\boldsymbol{\lambda}}, \mathbb{C}\right)$ and the Bethe algebras $\mathcal{B}^{\infty}\left(\mathcal{V}_{\lambda}^{+}\right), \mathcal{B}^{\infty}\left(\mathcal{V}_{\lambda}^{-}\right)$. Theorem 3.4 says that the Shapovalov pairing of $\mathcal{V}_{\lambda}^{+}$and $\mathcal{V}_{\lambda}^{-}$is nondegenerate. In Section 4 we show that the isomorphisms of Theorem 3.3 are limiting cases of a geometric Langlands correspondence. In Section 5 we explain how the Bethe algebras $\mathcal{B}^{\infty}\left(\mathcal{V}_{\lambda}^{+}\right), \mathcal{B}^{\infty}\left(\mathcal{V}_{\lambda}^{-}\right)$are related to the quantum equivariant cohomology $Q H_{G L_{n} \times \mathbb{C}^{*}}\left(T^{*} \mathcal{F}_{\boldsymbol{\lambda}}\right)$ of the cotangent bundle $T^{*} \mathcal{F}_{\boldsymbol{\lambda}}$ of the flag variety $\mathcal{F}_{\boldsymbol{\lambda}}$. Appendix contains the topological description of $\mathfrak{g l}_{N}[t]$-actions on $\oplus_{\boldsymbol{\lambda}} H_{G L_{n}}^{*}\left(\mathcal{F}_{\boldsymbol{\lambda}}, \mathbb{C}\right)$.

We thank S. Loktev and A. Okounkov for useful discussions.

2. Representations of Current algebra $\mathfrak{g l}_{N}[t]$

2.1. Lie algebra $\mathfrak{g l}_{N}$. Let $e_{i j}, i, j=1, \ldots, N$, be the standard generators of the Lie algebra $\mathfrak{g l}_{N}$ satisfying the relations $\left[e_{i j}, e_{s k}\right]=\delta_{j s} e_{i k}-\delta_{i k} e_{s j}$. We denote by $\mathfrak{h} \subset \mathfrak{g l}_{N}$ the subalgebra generated by $e_{i i}, i=1, \ldots, N$. For a Lie algebra \mathfrak{g}, we denote by $U(\mathfrak{g})$ the universal enveloping algebra of \mathfrak{g}.

A vector v of a $\mathfrak{g l}_{N}$-module M has weight $\boldsymbol{\lambda}=\left(\lambda_{1}, \ldots, \lambda_{N}\right) \in \mathbb{C}^{N}$ if $e_{i i} v=\lambda_{i} v$ for $i=1, \ldots, N$. We denote by $M_{\boldsymbol{\lambda}} \subset M$ the weight subspace of weight $\boldsymbol{\lambda}$.

Let $V=\mathbb{C}^{N}$ be the standard vector representation of $\mathfrak{g l}_{N}$ with basis v_{1}, \ldots, v_{N} such that $e_{i j} v_{k}=\delta_{j k} v_{i}$ for all i, j, k. A tensor power $V^{\otimes n}$ of the vector representation has a basis given by the vectors $v_{i_{1}} \otimes \cdots \otimes v_{i_{n}}$, where $i_{j} \in\{1, \ldots, N\}$.

Every sequence $\left(i_{1}, \ldots, i_{n}\right)$ defines a decomposition $I=\left(I_{1}, \ldots, I_{N}\right)$ of $\{1, \ldots, n\}$ into disjoint subsets $I_{1}, \ldots, I_{N}: I_{j}=\left\{k \mid i_{k}=j\right\}$. We denote the basis vector $v_{i_{1}} \otimes \cdots \otimes v_{i_{n}}$ by v_{I}.

Let

$$
V^{\otimes n}=\bigoplus_{\boldsymbol{\lambda} \in \mathbb{Z}_{\geqslant 0}^{N},|\boldsymbol{\lambda}|=n}\left(V^{\otimes n}\right)_{\boldsymbol{\lambda}}
$$

be the weight decomposition．Denote $\mathcal{I}_{\boldsymbol{\lambda}}$ the set of all indices I with $\left|I_{j}\right|=\lambda_{j}, j=1, \ldots N$ ． The vectors $\left\{v_{I}, I \in \mathcal{I}_{\boldsymbol{\lambda}}\right\}$ ，form a basis of $\left(V^{\otimes n}\right)_{\boldsymbol{\lambda}}$ ．The dimension of $\left(V^{\otimes n}\right)_{\boldsymbol{\lambda}}$ equals the multinomial coefficient $d_{\boldsymbol{\lambda}}:=\frac{n!}{\lambda_{1}!\ldots \lambda_{N}!}$ ．

Let \mathcal{S} be the bilinear form on $V^{\otimes n}$ such that the basis $\left\{v_{I}\right\}$ is orthonormal．We call \mathcal{S} the Shapovalov form．

2．2．Current algebra $\mathfrak{g l}_{N}[t]$ ．Let $\mathfrak{g l}_{N}[t]=\mathfrak{g l}_{N} \otimes \mathbb{C}[t]$ be the Lie algebra of $\mathfrak{g l}_{N}$－valued polynomials with pointwise commutator．We identify $\mathfrak{g l}_{N}$ with the subalgebra $\mathfrak{g l}_{N} \otimes 1$ of constant polynomials in $\mathfrak{g l}_{N}[t]$ ．Hence，any $\mathfrak{g l}_{N}[t]$－module has the canonical structure of a $\mathfrak{g l}_{N}$－module．
The Lie algebra $\mathfrak{g l}_{N}[t]$ has a basis $e_{i j} \otimes t^{r}, i, j=1, \ldots, N, r \in \mathbb{Z}_{\geqslant 0}$ ，such that

$$
\left[e_{i j} \otimes t^{r}, e_{s k} \otimes t^{p}\right]=\delta_{j s} e_{i k} \otimes t^{r+p}-\delta_{i k} e_{s j} \otimes t^{r+p}
$$

It is convenient to collect elements of $\mathfrak{g l}_{N}[t]$ in generating series of a variable u ．For $g \in \mathfrak{g l}_{N}$ ， set $g(u)=\sum_{s=0}^{\infty}\left(g \otimes t^{s}\right) u^{-s-1}$ ．

The subalgebra $\mathfrak{z}_{N}[t] \subset \mathfrak{g l}_{N}[t]$ with basis $\sum_{i=1}^{N} e_{i i} \otimes t^{r}, r \in \mathbb{Z}_{\geqslant 0}$ ，is central．
2．3．The $\mathfrak{g l}_{N}[t]$－modules $\mathcal{V}^{ \pm}$．Let S_{n} be the permutation group on n elements．For an $S_{n^{-}}$ module M we denote by M^{+}（resp．M^{-}）the subspace of S_{n}－invariants（resp．antiinvariants）．

The group S_{n} acts on $\mathbb{C}[\boldsymbol{z}]:=\mathbb{C}\left[z_{1}, \ldots, z_{n}\right]$ by permuting the variables．Denote by $\sigma_{s}(\boldsymbol{z})$ ， $s=1, \ldots, n$ ，the s th elementary symmetric polynomial in z_{1}, \ldots, z_{n} ．

Let \mathcal{V} be the vector space of polynomials in variables \boldsymbol{z} with coefficients in $V^{\otimes n}$ ：

$$
\mathcal{V}=V^{\otimes n} \otimes_{\mathbb{C}} \mathbb{C}[\boldsymbol{z}]
$$

The symmetric group S_{n} acts on \mathcal{V} by permuting the factors of $V^{\otimes n}$ and the variables \boldsymbol{z} simultaneously，

$$
\sigma\left(v_{1} \otimes \cdots \otimes v_{n} \otimes p\left(z_{1}, \ldots, z_{n}\right)\right)=v_{\left(\sigma^{-1}\right)_{1}} \otimes \cdots \otimes v_{\left(\sigma^{-1}\right)_{n}} \otimes p\left(z_{\sigma_{1}}, \ldots, z_{\sigma_{n}}\right), \quad \sigma \in S_{n}
$$

We are interested in the subspaces $\mathcal{V}^{+}, \mathcal{V}^{-} \subset \mathcal{V}$ of S_{n}－invariants and antiinvariants．
The space \mathcal{V} is a $\mathfrak{g l}_{N}[t]$－module，

$$
g \otimes t^{r}\left(v_{1} \otimes \cdots \otimes v_{n} \otimes p(\boldsymbol{z})\right)=\sum_{s=1}^{n} v_{1} \otimes \cdots \otimes g v_{s} \otimes \cdots \otimes v_{n} \otimes z_{s}^{r} p(\boldsymbol{z})
$$

The image of the subalgebra $U\left(\mathfrak{z}_{N}[t]\right) \subset U\left(\mathfrak{g l}_{N}[t]\right)$ in $\operatorname{End}(\mathcal{V})$ is the algebra of operators of multiplication by elements of $\mathbb{C}[\boldsymbol{z}]^{+}$．The $\mathfrak{g l}_{N}[t]$－action on \mathcal{V} commutes with the S_{n}－action． Hence， \mathcal{V}^{+}and \mathcal{V}^{-}are $\mathfrak{g l}_{N}[t]$－submodules of \mathcal{V} ．The subspaces \mathcal{V}^{+}and \mathcal{V}^{-}are free $\mathbb{C}[\boldsymbol{z}]^{+}$ modules of rank N^{n} ．

Consider the $\mathfrak{g l}_{N}$－weight decompositions

$$
\mathcal{V}^{+}=\oplus_{\boldsymbol{\lambda} \in \mathbb{Z}_{刃_{0},}^{N},|\boldsymbol{\lambda}|=n} \mathcal{V}_{\boldsymbol{\lambda}}^{+}, \quad \mathcal{V}^{-}=\oplus_{\boldsymbol{\lambda} \in \mathbb{Z}_{刃 丶 0}^{N},|\boldsymbol{\lambda}|=n} \mathcal{V}_{\boldsymbol{\lambda}}^{-}
$$

For any $\boldsymbol{\lambda}$, the subspaces $\mathcal{V}_{\boldsymbol{\lambda}}^{+}$, and $\mathcal{V}_{\boldsymbol{\lambda}}^{-}$are free $\mathbb{C}[\boldsymbol{z}]^{+}$-modules of rank $d_{\boldsymbol{\lambda}}$.
Denote by $\frac{1}{D} \mathcal{V}^{-}$the vector space of all $V^{\otimes n}$-valued rational functions of the form $\frac{1}{D} x$, $x \in \mathcal{V}^{-}, D=\prod_{1 \leqslant i<j \leqslant n}\left(z_{j}-z_{i}\right)$. The Shapovalov form induces a $\mathbb{C}[\boldsymbol{z}]^{+}$-bilinear map

$$
\mathcal{S}_{+-}: \mathcal{V}^{+} \otimes \frac{1}{D} \mathcal{V}^{-} \rightarrow \mathbb{C}[\boldsymbol{z}]^{+}
$$

The $\mathfrak{g l}_{N}[t]$-module structures on \mathcal{V}^{+}and $\frac{1}{D} \mathcal{V}^{-}$are contravariantly related through the Shapovalov form,

$$
\mathcal{S}_{+-}\left(\left(e_{i j} \otimes t^{r}\right) x, \frac{1}{D} y\right)=\mathcal{S}_{+-}\left(x,\left(e_{j i} \otimes t^{r}\right) \frac{1}{D} y\right) \quad \text { for all } i, j, x, y .
$$

2.4. Bethe algebra. Given an $N \times N$ matrix A with possibly noncommuting entries $a_{i j}$, we define its row determinant to be

$$
\operatorname{rdet} A=\sum_{\sigma \in S_{N}}(-1)^{\sigma} a_{1 \sigma(1)} a_{2 \sigma(2)} \ldots a_{N \sigma(N)} .
$$

Let $K=\left(K_{1}, \ldots, K_{N}\right)$ be a sequence of distinct complex numbers. Let ∂ be the operator of differentiation in a variable u. Define the universal differential operator \mathcal{D}^{K} by

$$
\mathcal{D}^{K}=\operatorname{rdet}\left(\begin{array}{cccc}
\partial-K_{1}-e_{11}(u) & -e_{21}(u) & \ldots & -e_{N 1}(u) \\
-e_{12}(u) & \partial-K_{2}-e_{22}(u) & \ldots & -e_{N 2}(u) \\
\ldots & \ldots & \ldots & \ldots \\
-e_{1 N}(u) & -e_{2 N}(u) & \ldots & \partial-K_{N}-e_{N N}(u)
\end{array}\right) .
$$

It is a differential operator in the variable u, whose coefficients are formal power series in u^{-1} with coefficients in $U\left(\mathfrak{g l}_{N}[t]\right)$,

$$
\mathcal{D}^{K}=\partial^{N}+\sum_{i=1}^{N} B_{i}^{K}(u) \partial^{N-i}, \quad B_{i}^{K}(u)=\sum_{j=0}^{\infty} B_{i j}^{K} u^{-j}
$$

and $B_{i j}^{K} \in U\left(\mathfrak{g l}_{N}[t]\right)$ for $i=1, \ldots, N, j \geqslant 0$.
Denote by \mathcal{B}^{K} the unital subalgebra of $U\left(\mathfrak{g l}_{N}[t]\right)$ generated by $B_{i j}^{K}$, with $i=1, \ldots, N$, $j \geqslant 0$. The subalgebra \mathcal{B}^{K} is called the Bethe algebra with parameters K.
Theorem 2.1 ([T], [CT], [MTV1]). The algebra \mathcal{B}^{K} is commutative. The algebra \mathcal{B}^{K} commutes with the subalgebra $U(\mathfrak{h}) \subset U\left(\mathfrak{g l}_{N}[t]\right)$. If $K=0$, then the algebra $\mathcal{B}^{K=0}$ commutes with the subalgebra $U\left(\mathfrak{g l}_{N}\right) \subset U\left(\mathfrak{g l}_{N}[t]\right)$.

Each element $B_{i j}^{K}$ is a polynomial in K_{1}, \ldots, K_{N}. We define \mathcal{B}^{∞} to be the unital subalgebra of $U\left(\mathfrak{g l}_{N}[t]\right)$ generated by the leading terms of the elements $B_{i j}^{K}, i=1, \ldots, N, j \geqslant 0$, as K tends to infinity so that $K_{i} / K_{i+1} \rightarrow \infty$ for all i.
Lemma 2.2. The algebra \mathcal{B}^{∞} is the unital subalgebra generated by the elements $e_{i i} \otimes t^{j}$ with $i=1, \ldots, N, \quad j \geqslant 0$.
Proof. We have $B_{i 0}^{K}=(-1)^{i} K_{1} \ldots K_{i}(1+o(1))$, and

$$
B_{i j}^{K}=(-1)^{i} K_{1} \ldots K_{i-1}\left(\sum_{m=i}^{N} e_{m m} \otimes t^{j-1}+o(1)\right)
$$

for $j>0$, where $o(1)$ stands for the terms vanishing as K tends to infinity.
Remark. There are N ! asymptotic zones labeled by elements of S_{N} in which K may tend to infinity. For $\sigma \in S_{N}$ we may assume that all coordinates of K tend to infinity and $K_{\sigma_{i}} / K_{\sigma_{i+1}} \rightarrow \infty$ for all i. It is easy to see that the limiting Bethe algebra \mathcal{B}^{∞} does not depend on σ.

The algebra \mathcal{B}^{∞} is commutative and contains $U\left(\mathfrak{z}_{N}[t]\right)$. The algebra \mathcal{B}^{∞} commutes with the subalgebra $U(\mathfrak{h}) \subset U\left(\mathfrak{g l}_{N}[t]\right)$.

As a subalgebra of $U\left(\mathfrak{g l}_{N}[t]\right)$, the Bethe algebra \mathcal{B}^{K} acts on any $\mathfrak{g l}_{N}[t]$-module M. Since \mathcal{B}^{K} commutes with $U(\mathfrak{h})$, it preserves the weight subspaces M_{λ}. If $K=0$, then $\mathcal{B}^{K=0}$ preserves the singular weight subspaces $M_{\boldsymbol{\lambda}}^{\text {sing }}$. We will study the action of \mathcal{B}^{∞} on the weight subspaces $\mathcal{V}_{\lambda}^{+}, \mathcal{V}_{\lambda}^{-}$.
Lemma 2.3. The element $\sum_{i=1}^{N} e_{i i} \otimes t^{r} \in U\left(\mathfrak{z}_{N}[t]\right)$ acts on \mathcal{V} as the operator of multiplication by $\sum_{s=1}^{n} z_{s}^{r}$.

If $L \subset M$ is a \mathcal{B}^{K}-invariant subspace, then the image of \mathcal{B}^{K} in $\operatorname{End}(L)$ will be called the Bethe algebra of H and denoted by $\mathcal{B}^{K}(L)$.

3. Equivariant cohomology of partial flag varieties

3.1. Partial flag varieties. For $\boldsymbol{\lambda} \in \mathbb{Z}_{\geqslant 0}^{N},|\boldsymbol{\lambda}|=n$, consider the partial flag variety $\mathcal{F}_{\boldsymbol{\lambda}}$ parametrizing subspaces

$$
0=F_{0} \subset F_{1} \subset \cdots \subset F_{N}=\mathbb{C}^{n}
$$

with $\operatorname{dim} F_{i} / F_{i-1}=\lambda_{i}, i=1, \ldots, N$.
Let $T^{n} \subset G L_{n}$ be the torus of diagonal matrices. The groups $T^{n} \subset G L_{n}(\mathbb{C})$ act on \mathbb{C}^{n} and hence on $\mathcal{F}_{\boldsymbol{\lambda}}$. The fixed points $\mathcal{F}_{\lambda}^{T^{n}}$ of the torus action are the coordinate flags $F_{I}=\left(F_{0} \subset \cdots \subset F_{N}\right), I=\left(I_{1}, \ldots, I_{N}\right) \in \mathcal{I}_{\boldsymbol{\lambda}}$, where F_{i} is the span of the basis vectors $v_{j} \in \mathbb{C}^{n}$ with $j \in I_{1} \cup \cdots \cup I_{i}$. The fixed points are in a one-to-one correspondence with the set $\mathcal{I}_{\boldsymbol{\lambda}}$ and hence with the basis in $V_{\boldsymbol{\lambda}}$.

We consider the $G L_{n}(\mathbb{C})$-equivariant cohomology

$$
H_{\boldsymbol{\lambda}}=H_{G L_{n}}^{*}\left(\mathcal{F}_{\boldsymbol{\lambda}}, \mathbb{C}\right)
$$

Denote by $\Gamma_{i}=\left\{\gamma_{i 1}, \ldots, \gamma_{i \lambda_{i}}\right\}$ the set of the Chern roots of the bundle over $\mathcal{F}_{\boldsymbol{\lambda}}$ with fiber F_{i} / F_{i-1}. Denote by $\boldsymbol{z}=\left\{z_{1}, \ldots, z_{n}\right\}$ the Chern roots corresponding to the factors of the torus T^{n}. Then

$$
\begin{equation*}
H_{\boldsymbol{\lambda}}=\mathbb{C}\left[\boldsymbol{z} ; \Gamma_{1} ; \ldots ; \Gamma_{N}\right]^{S_{N} \times S_{\lambda_{1}} \times \cdots \times S_{\lambda_{N}}} /\left\langle\prod_{i=1}^{N} \prod_{j=1}^{\lambda_{i}}\left(1+u \gamma_{i j}\right)=\prod_{i=1}^{n}\left(1+u z_{i}\right)\right\rangle . \tag{3.1}
\end{equation*}
$$

The cohomology H_{λ} is a module over $H_{G L_{n}}^{*}(p t, \mathbb{C})=\mathbb{C}[\boldsymbol{z}]^{+}$.
Let $J_{H} \subset H_{\boldsymbol{\lambda}}$ be the ideal generated by the polynomials $\sigma_{i}(\boldsymbol{z}), i=1, \ldots, n$. Then $H_{\boldsymbol{\lambda}} / J_{H}=H^{*}\left(\mathcal{F}_{\boldsymbol{\lambda}}, \mathbb{C}\right)$.
3.2. Integration over $\mathcal{F}_{\boldsymbol{\lambda}}$. We will need the integration map $\int: H_{\boldsymbol{\lambda}} \rightarrow H_{G L_{n}}^{*}(p t, \mathbb{C})$. The following formula (3.2) gives the integration map in terms of the fixed point set $\mathcal{F}_{\boldsymbol{\lambda}}^{T^{n}}$.

For a subset $A \subset\{1, \ldots, N\}$ denote $\boldsymbol{z}_{A}=\left\{z_{a}, a \in A\right\}$. For $I=\left(I_{1}, \ldots, I_{N}\right) \in \mathcal{I}_{\boldsymbol{\lambda}}$ denote

$$
R\left(\boldsymbol{z}_{I_{1}}\left|\boldsymbol{z}_{I_{2}}\right| \ldots \mid \boldsymbol{z}_{I_{m}}\right)=\prod_{i<j} \prod_{a \in I_{i}, b \in I_{j}}\left(z_{b}-z_{a}\right) .
$$

The Atiyah-Bott equivariant localization theorem $[\mathrm{AB}]$ says that for any $\left[h\left(\boldsymbol{z}, \Gamma_{1}, \ldots, \Gamma_{N}\right)\right] \in$ H_{λ},

$$
\begin{equation*}
\int[h]=\sum_{I \in \mathcal{I}_{\boldsymbol{\lambda}}} \frac{h\left(\boldsymbol{z}, \boldsymbol{z}_{I_{1}}, \ldots, \boldsymbol{z}_{I_{N}}\right)}{R\left(\boldsymbol{z}_{I_{1}}\left|\boldsymbol{z}_{I_{2}}\right| \ldots \mid \boldsymbol{z}_{I_{N}}\right)} . \tag{3.2}
\end{equation*}
$$

Clearly, the right hand side in (3.2) lies in $\mathbb{C}[\boldsymbol{z}]^{+}$. The integration map induces the pairing

$$
(,): H_{\boldsymbol{\lambda}} \otimes H_{\boldsymbol{\lambda}} \rightarrow \mathbb{C}[\boldsymbol{z}]^{+}, \quad[h] \otimes[g] \mapsto \int[h g]
$$

After factorization by the ideal J_{H} we obtain the nondegenerate Poincare pairing

$$
(,): H^{*}\left(\mathcal{F}_{\boldsymbol{\lambda}}, \mathbb{C}\right) \otimes H^{*}\left(\mathcal{F}_{\boldsymbol{\lambda}}, \mathbb{C}\right) \rightarrow \mathbb{C}
$$

3.3. H_{λ} and $\mathcal{V}^{ \pm}$.

Lemma 3.1. The maps

$$
\begin{aligned}
i_{\boldsymbol{\lambda}}^{+}: H_{\boldsymbol{\lambda}} \rightarrow \mathcal{V}_{\boldsymbol{\lambda}}^{+}, \quad\left[h\left(\boldsymbol{z}, \Gamma_{1}, \ldots, \Gamma_{N}\right)\right] \mapsto \sum_{I \in \mathcal{I}_{\boldsymbol{\lambda}}} v_{I} \otimes h\left(\boldsymbol{z}, \boldsymbol{z}_{I_{1}}, \ldots, \boldsymbol{z}_{I_{N}}\right), \\
i_{\boldsymbol{\lambda}}^{-}: H_{\boldsymbol{\lambda}} \rightarrow \frac{1}{D} \mathcal{V}_{\boldsymbol{\lambda}}^{-}, \quad\left[h\left(\boldsymbol{z}, \Gamma_{1}, \ldots, \Gamma_{N}\right)\right] \mapsto \sum_{I \in \mathcal{I}_{\boldsymbol{\lambda}}} v_{I} \otimes \frac{h\left(\boldsymbol{z}, \boldsymbol{z}_{I_{1}}, \ldots, \boldsymbol{z}_{I_{N}}\right)}{R\left(\boldsymbol{z}_{I_{1}}\left|\boldsymbol{z}_{I_{2}}\right| \ldots \mid \boldsymbol{z}_{I_{N}}\right)}
\end{aligned}
$$

are well-defined isomorphisms of $\mathbb{C}[\boldsymbol{z}]^{+}$-modules.
Proof. If h belongs to the ideal of relations in (3.1) then $h\left(z, z_{I_{1}}, \ldots, z_{I_{N}}\right)=0$ for any I, because the $\Gamma_{i}=z_{I_{i}}$ substitution makes the generators of the ideal identities. This proves well-definedness.

Consider the $\mathbb{C}[\boldsymbol{z}]^{+}$-module $\mathbb{C}[\boldsymbol{z}]^{S_{\lambda_{1}} \times \ldots \times S_{\lambda_{N}}}$ of polynomials symmetric in the first λ_{1} variables, the next λ_{2} variables, etc. In Schubert calculus it is known that this module is free of rank $d_{\boldsymbol{\lambda}}$, and that it is isomorphic to $H_{\boldsymbol{\lambda}}$ under the correspondence

$$
\begin{equation*}
p \in \mathbb{C}[\boldsymbol{z}]^{S_{\lambda_{1}} \times \ldots \times S_{\lambda_{N}}} \longleftrightarrow\left[p\left(\Gamma_{1}, \ldots, \Gamma_{N}\right)\right] \in H_{\boldsymbol{\lambda}} \tag{3.3}
\end{equation*}
$$

An element $\sum_{I \in \mathcal{I}_{\boldsymbol{\lambda}}} v_{I} \otimes p_{I}(\boldsymbol{z})$ of $\mathcal{V}_{\boldsymbol{\lambda}}$ belongs to $\mathcal{V}_{\boldsymbol{\lambda}}^{+}$, if and only if $p_{I}(\boldsymbol{z})=p\left(z_{I_{1}}, \ldots, z_{I_{N}}\right)$ for a polynomial $p \in \mathbb{C}[\boldsymbol{z}]^{S_{\lambda_{1}} \times \ldots \times S_{\lambda_{N}}}$. This shows that $\mathcal{V}_{\lambda}^{+}$is isomorphic to $\mathbb{C}[\boldsymbol{z}]^{S_{\lambda_{1}} \times \ldots \times S_{\lambda_{N}}}$, and that i_{λ}^{+}is the composition of this isomorphism with (3.3).

A similar argument shows that i_{λ}^{-}is also an isomorphism.
Corollary 3.2. The Shapovalov form and the Poincare pairing are related by the formula

$$
\mathcal{S}_{+-}\left(i_{+}[h], i_{-}[g]\right)=\int[h][g] .
$$

Let A be a commutative algebra. The algebra A considered as an A-module is called the regular representation of A. Here is our main result.

Theorem 3.3.

(i) The maps $\xi_{\boldsymbol{\lambda}}^{ \pm}:\left.e_{i i} \otimes t^{r}\right|_{\mathcal{V}_{\boldsymbol{\lambda}}^{ \pm}} \mapsto \sum_{j=1}^{\lambda_{i}} \gamma_{i j}^{r}$ define isomorphisms of the algebras $\mathcal{B}^{\infty}\left(\mathcal{V}_{\boldsymbol{\lambda}}^{ \pm}\right)$ and $H_{\boldsymbol{\lambda}}$.
(ii) The maps $\xi_{\boldsymbol{\lambda}}^{+}, i_{\boldsymbol{\lambda}}^{+}$identify the $\mathcal{B}^{\infty}\left(\mathcal{V}_{\boldsymbol{\lambda}}^{+}\right)$-module $\mathcal{V}_{\boldsymbol{\lambda}}^{+}$with the regular representation of H_{λ}.
(iii) The maps $\xi_{\boldsymbol{\lambda}}^{-}, i_{\boldsymbol{\lambda}}^{-}$identify the $\mathcal{B}^{\infty}\left(\mathcal{V}_{\boldsymbol{\lambda}}^{-}\right)$-module $\mathcal{V}_{\boldsymbol{\lambda}}^{-}$with the regular representation of H_{λ}.

The theorem follows from Lemmas 2.2, 2.3 and 3.1.
3.4. Cohomology as $\mathfrak{g l}_{N}[t]$-modules. Let J be the ideal of $\mathbb{C}[\boldsymbol{z}]^{+}$generated by the elementary symmetric functions $\sigma_{i}(\boldsymbol{z}), i=1, \ldots, n$. Define $J^{+}=J \mathcal{V}^{+}$and $J^{-}=\frac{1}{D} J^{-}$. Clearly, J^{+}is a $\mathfrak{g l}_{N}[t]$-submodule of \mathcal{V}^{+}and J^{-}is a $\mathfrak{g l}_{N}[t]$-submodule of $\frac{1}{D} \mathcal{V}^{-}$. The $\mathfrak{g l}_{N}[t]-$ module \mathcal{V}^{+} / J^{+}is graded and has dimension N^{n} over \mathbb{C}, see [MTV2]. Similarly, $\frac{1}{D} \mathcal{V}^{-} / J^{-}$is a graded $\mathfrak{g l}_{N}[t]$-module of the same dimension.

Theorem 3.4. The Shapovalov form establishes a nondegenerate pairing

$$
\mathcal{S}_{+-}: \mathcal{V}^{+} / J^{+} \otimes \frac{1}{D} \mathcal{V}^{-} / J^{-} \rightarrow \mathbb{C}
$$

The theorem follows from Lemmas 3.1, 3.2 and the nondegeneracy of the Poincare pairing.
Corollary 3.5. The $\mathfrak{g l}_{N}[t]$-modules \mathcal{V}^{+} / J^{+}and $\frac{1}{D} \mathcal{V}^{-} / J^{-}$are contravariantly related through the Shapovalov form, $\mathcal{S}_{+-}\left(\left(e_{i j} \otimes t^{r}\right) x, \frac{1}{D} y\right)=\mathcal{S}_{+-}\left(x,\left(e_{j i} \otimes t^{r}\right) \frac{1}{D} y\right)$ for all i, j, x, y.

Let W_{n} be the $\mathfrak{g l}_{N}[t]$-module generated by a vector w_{n} with the defining relations:

$$
\begin{array}{ll}
e_{i i}(u) w_{n}=\delta_{1 i} \frac{n}{u} w_{n}, & i=1, \ldots, N \\
e_{i j}(u) w_{n}=0, & 1 \leqslant i<j \leqslant N \\
\left(e_{j i} \otimes 1\right)^{n \delta_{1 i}+1} w_{n}=0, & 1 \leqslant i<j \leqslant N
\end{array}
$$

As an $\mathfrak{s l}_{N}[t]$-module, the module W_{n} is isomorphic to the Weyl module from [CL], [CP], corresponding to the weight $n \omega_{1}$, where ω_{1} is the first fundamental weight of $\mathfrak{s l}{ }_{N}$.

In [MTV2] an isomorphism of \mathcal{V}^{+} / J^{+}and the Weyl module W_{n} is constructed.
Corollary 3.6. The Shapovalov form \mathcal{S}_{+-}establishes an isomorphism of $\frac{1}{D} \mathcal{V}^{-} / J^{-}$and the contravariantly dual of the Weyl module W_{n}.

Here is an application of this fact. For $\boldsymbol{\lambda} \in \mathbb{Z}_{\geqslant 0}^{N},|\boldsymbol{\lambda}|=n, \lambda_{1} \geqslant \cdots \geqslant \lambda_{N}$, denote

$$
\left(\frac{1}{D} \mathcal{V}^{-} / J^{-}\right)_{\lambda}^{\text {sing }}=\left\{\left.v \in \frac{1}{D} \mathcal{V}^{-} / J^{-} \right\rvert\, e_{i j} v=0 \text { for } i<j, e_{i i} v=\lambda_{i} v \text { for } i=1, \ldots, N\right\}
$$

This is a graded space. Denote by $\left(\left(\frac{1}{D} \mathcal{V}^{-} / J^{-}\right)_{\lambda}^{s i n g}\right)_{k}$ the subspace of all elements of \boldsymbol{z}-degree k. Define the graded character by the formula

$$
\operatorname{ch}\left(\left(\frac{1}{D} \mathcal{V}^{-} / J^{-}\right)_{\lambda}^{\text {sing }}\right)=\sum_{k} q^{k} \operatorname{dim}\left(\left(\frac{1}{D} \mathcal{V}^{-} / J^{-}\right)_{\lambda}^{s i n g}\right)_{k}
$$

Corollary 3.7. We have

$$
\begin{equation*}
\operatorname{ch}\left(\left(\frac{1}{D} \mathcal{V}^{-} / J^{-}\right)_{\lambda}^{s i n g}\right)=\frac{(q)_{n} \prod_{1 \leqslant i<j \leqslant N}\left(1-q^{\lambda_{i}-\lambda_{j}+j-i}\right)}{\prod_{i=1}^{N}(q)_{\lambda_{i}+N-i}} q^{-\sum_{i=1}^{N}(i-1) \lambda_{i}}, \tag{3.4}
\end{equation*}
$$

where $(q)_{a}=\prod_{j=1}^{a}\left(1-q^{j}\right)$.
The corollary follows from Lemma 2.2 in [MTV2] and Corollary 3.6.
The isomorphisms

$$
\begin{equation*}
i^{+}=\bigoplus_{\boldsymbol{\lambda}} i_{\boldsymbol{\lambda}}^{+}: \bigoplus_{\boldsymbol{\lambda}} H_{\boldsymbol{\lambda}} \rightarrow \mathcal{V}^{+}, \quad i^{-}=\bigoplus_{\boldsymbol{\lambda}} i_{\boldsymbol{\lambda}}^{-}: \bigoplus_{\boldsymbol{\lambda}} H_{\boldsymbol{\lambda}} \rightarrow \frac{1}{D} \mathcal{V}^{-} \tag{3.5}
\end{equation*}
$$

induce two graded $\mathfrak{g l}_{N}[t]$-module structures on $\oplus_{\boldsymbol{\lambda}} H_{\boldsymbol{\lambda}}$ denoted by ρ^{+}and ρ^{-}, respectively. These module structures descend to two graded $\mathfrak{g l}_{N}[t]$-module structures on the cohomology with constant coefficients

$$
H(\mathbb{C}):=\bigoplus_{\substack{\boldsymbol{\lambda} \in \mathbb{Z}_{\geqslant 0}^{N},|\boldsymbol{\lambda}|=n}} H^{*}\left(\mathcal{F}_{\boldsymbol{\lambda}}, \mathbb{C}\right)
$$

denoted by the same letters ρ^{+}and ρ^{-}.
Corollary 3.8. The $\mathfrak{g l}_{N}[t]-$ module $H(\mathbb{C})$ with the ρ^{+}-structure is isomorphic to the Weyl module W_{n}. The $\mathfrak{g l}_{N}[t]$-module $H(\mathbb{C})$ with the ρ^{-}-structure is isomorphic to the contravariant dual of the Weyl module W_{n}.

The $\rho^{ \pm}$structures can be defined topologically, see [RSV] and Appendix. The ρ^{-}-structure appears to be more preferable. It was used in [RV], [RSV] to construct conformal blocks in the tensor power $V^{\otimes n}$.

4. Isomorphisms $i_{\lambda}^{ \pm}$AS A GEOMETRIC Langlands CORrespondence

4.1. The $\mathcal{V}_{\boldsymbol{\lambda}}^{+}$case. The following geometric description of the \mathcal{B}^{K}-action on $\mathcal{V}_{\boldsymbol{\lambda}}^{+}$was given in [MTV3] as an example of the geometric Langlands correspondence.

Let $K=\left(K_{1}, \ldots, K_{N}\right)$ be a sequence of distinct complex numbers. Let $\boldsymbol{\lambda} \in \mathbb{Z}_{\geqslant 0}^{N},|\boldsymbol{\lambda}|=n$. Introduce the polynomial algebras

$$
\mathbb{C}[\boldsymbol{\Sigma}]:=\mathbb{C}\left[\Sigma_{i j}, i=1, \ldots, N, j=1, \ldots, \lambda_{i}\right], \quad \mathbb{C}[\boldsymbol{\sigma}]:=\mathbb{C}\left[\sigma_{1}, \ldots, \sigma_{n}\right]
$$

Define

$$
\Sigma_{i}(u)=e^{K_{i} u}\left(u^{\lambda_{i}}+\Sigma_{i 1} u^{\lambda_{i}-1}+\cdots+\Sigma_{i \lambda_{i}}\right), \quad i=1, \ldots, N .
$$

For arbitrary functions $g_{1}(u), \ldots, g_{N}(u)$, introduce the Wronskian determinant by the formula

$$
\operatorname{Wr}\left(g_{1}(u), \ldots, g_{N}(u)\right)=\operatorname{det}\left(\begin{array}{cccc}
g_{1}(u) & g_{1}^{\prime}(u) & \ldots & g_{1}^{(N-1)}(u) \\
g_{2}(u) & g_{2}^{\prime}(u) & \ldots & g_{2}^{(N-1)}(u) \\
\ldots & \ldots & \ldots & \ldots \\
g_{N}(u) & g_{N}^{\prime}(u) & \ldots & g_{N}^{(N-1)}(u)
\end{array}\right) .
$$

We have

$$
\operatorname{Wr}\left(\Sigma_{1}(u), \ldots, \Sigma_{N}(u)\right)=e^{\sum_{i=1}^{N} K_{i} u} \prod_{1 \leqslant i<j \leqslant N}\left(K_{j}-K_{i}\right) \cdot\left(u^{n}+\sum_{s=1}^{n}(-1)^{s} A_{s}^{K}(\boldsymbol{\Sigma}) u^{n-s}\right),
$$

where $A_{1}^{K}(\boldsymbol{\Sigma}), \ldots, A_{n}^{K}(\boldsymbol{\Sigma}) \in \mathbb{C}[\boldsymbol{\Sigma}]$. Define an algebra homomorphism

$$
\mathcal{W}^{K}: \mathbb{C}[\boldsymbol{\sigma}] \rightarrow \mathbb{C}[\boldsymbol{\Sigma}], \quad \sigma_{s} \mapsto A_{s}^{K}(\boldsymbol{\Sigma})
$$

The homomorphism defines a $\mathbb{C}[\boldsymbol{\sigma}]$-module structure on $\mathbb{C}[\boldsymbol{\Sigma}]$.
Define a differential operator \mathcal{D}_{Σ}^{K} by

$$
\mathcal{D}_{\boldsymbol{\Sigma}}^{K}=\frac{1}{\operatorname{Wr}\left(\Sigma_{1}(u), \ldots, \Sigma_{N}(u)\right)} \operatorname{rdet}\left(\begin{array}{cccc}
\Sigma_{1}(u) & \Sigma_{1}^{\prime}(u) & \ldots & \Sigma_{1}^{(N)}(u) \\
\Sigma_{2}(u) & \Sigma_{2}^{\prime}(u) & \ldots & \Sigma_{2}^{(N)}(u) \\
\ldots & \ldots & \ldots & \ldots \\
1 & \partial & \ldots & \partial^{N}
\end{array}\right)
$$

It is a differential operator in the variable u, whose coefficients are formal power series in u^{-1} with coefficients in $\mathbb{C}[\boldsymbol{\Sigma}]$,

$$
\begin{equation*}
\mathcal{D}_{\Sigma}^{K}=\partial^{N}+\sum_{i=1}^{N} F_{i}^{K}(u) \partial^{N-i}, \quad F_{i}^{K}(u)=\sum_{j=0}^{\infty} F_{i j}^{K} u^{-j} \tag{4.1}
\end{equation*}
$$

and $F_{i j}^{K} \in \mathbb{C}[\boldsymbol{\Sigma}], i=1, \ldots, N, j \geqslant 0$.
Theorem 4.1 ([MTV3]). The map

$$
\tau_{\lambda}^{K+}:\left.B_{i j}^{K}\right|_{\nu_{\lambda}^{+}} \mapsto F_{i j}^{K}
$$

defines an isomorphism of the Bethe algebra $\mathcal{B}^{K}\left(\mathcal{V}_{\boldsymbol{\lambda}}^{+}\right)$and the algebra $\mathbb{C}[\boldsymbol{\Sigma}]$. The isomorphism τ_{λ}^{K+} becomes an isomorphism of the $\left.U\left(\mathfrak{z}_{N}[t]\right)\right|_{\nu_{\lambda}^{+}}$module $\mathcal{B}^{K}\left(\mathcal{V}_{\lambda}^{+}\right)$and the $\mathbb{C}[\boldsymbol{\sigma}]$-module $\mathbb{C}[\boldsymbol{\Sigma}]$ if we identify the algebras $\left.U\left(\mathfrak{z}_{N}[t]\right)\right|_{\mathcal{\nu}_{\lambda}^{+}}$and $\mathbb{C}[\boldsymbol{\sigma}]$ by the map. $\sigma_{s}[\boldsymbol{z}] \mapsto \sigma_{s}, s=1, \ldots, n$.

Denote

$$
v^{+}=\sum_{I \in \mathcal{I}_{\lambda}} v_{I} \in \mathcal{V}_{\lambda}^{+} .
$$

Theorem 4.2 ([MTV3]). The map

$$
\mu_{\lambda}^{K+}: B_{i j}^{K} v^{+} \mapsto F_{i j}^{K},
$$

defines a linear isomorphism $\mathcal{V}_{\boldsymbol{\lambda}}^{+} \rightarrow \mathbb{C}[\boldsymbol{\Sigma}]$. The maps $\tau_{\boldsymbol{\lambda}}^{K+}, \mu_{\boldsymbol{\lambda}}^{K+}$ give an isomorphism of the $\mathcal{B}^{K}\left(\mathcal{V}_{\lambda}^{+}\right)$-module $\mathcal{V}_{\lambda}^{+}$and the regular representation of the algebra $\mathbb{C}[\boldsymbol{\Sigma}]$.
4.2. The limit of $\tau_{\boldsymbol{\lambda}}^{K+}$ and $\mu_{\boldsymbol{\lambda}}^{K+}$ as $K \rightarrow \infty$. Let all the coordinates of the vector K tend to infinity so that $K_{i} / K_{i+1} \rightarrow \infty$ for $i=1, \ldots, N-1$. Then the homomorphism \mathcal{W}^{K} has a limit \mathcal{W}^{∞}. Namely, define $A_{s}^{\infty}(\boldsymbol{\Sigma})$ by the formula

$$
\prod_{i=1}^{N}\left(u^{\lambda_{i}}+\Sigma_{i 1} u^{\lambda_{i}-1}+\cdots+\Sigma_{i \lambda_{i}}\right)=u^{n}+\sum_{s=1}^{n}(-1)^{s} A_{s}^{\infty}(\boldsymbol{\Sigma}) u^{n-s}
$$

Then

$$
\begin{equation*}
\mathcal{W}^{\infty}: \mathbb{C}[\boldsymbol{\sigma}] \rightarrow \mathbb{C}[\boldsymbol{\Sigma}], \quad \sigma_{i} \mapsto A_{s}^{\infty}(\boldsymbol{\Sigma}) \tag{4.2}
\end{equation*}
$$

Define algebra isomorphisms

$$
\begin{equation*}
\mathbb{C}[\boldsymbol{\sigma}] \rightarrow \mathbb{C}[\boldsymbol{z}]^{+}, \quad \eta: \mathbb{C}[\boldsymbol{\Sigma}] \rightarrow H_{\boldsymbol{\lambda}} \tag{4.3}
\end{equation*}
$$

by the agreement that the first isomorphism sends σ_{s} to $\sigma_{s}(\boldsymbol{z})$ for all s, and the second one sends $(-1)^{s} \Sigma_{i s}$ to the s th elementary symmetric function of $\gamma_{i 1}, \ldots, \gamma_{i \lambda_{i}}$ for all i, s.
Lemma 4.3. The isomorphisms (4.3) identify the $\mathbb{C}[\boldsymbol{\sigma}]$-module $\mathbb{C}[\boldsymbol{\Sigma}]$ defined by formula (4.2) and the $\mathbb{C}[\boldsymbol{z}]^{+}$-module $H_{\boldsymbol{\lambda}}$.

Let $p_{i}(u)=u^{\lambda_{i}}+\Sigma_{i 1} u^{\lambda_{i}-1}+\cdots+\Sigma_{i \lambda_{i}}$ for all $i=1, \ldots N$. Notice that

$$
\begin{equation*}
\eta\left(p_{i}(u)\right)=\prod_{j=1}^{\lambda_{i}}\left(u-\gamma_{i j}\right), \quad \eta\left(\frac{p_{i}^{\prime}(u)}{p_{i}(u)}\right)=\sum_{r=0}^{\infty} \sum_{j=1}^{\lambda_{i}} \gamma_{i j}^{r} u^{-r-1} . \tag{4.4}
\end{equation*}
$$

Lemma 4.4. We have $F_{i 0}^{K}=(-1)^{i} K_{1} \ldots K_{i}(1+o(1))$, and

$$
\sum_{j=1}^{\infty} F_{i j}^{K} u^{-j}=(-1)^{i} K_{1} \ldots K_{i-1}\left(\sum_{m=i}^{N} \frac{p_{m}^{\prime}(u)}{p_{m}(u)}+o(1)\right)
$$

where o(1) stands for the terms vanishing as K tends to infinity.
Proof. Let $y_{i}(u)=\operatorname{Wr}\left(\Sigma_{i}(u), \ldots \Sigma_{N}(u)\right), \quad i=1, \ldots N$. Then the operator \mathcal{D}_{Σ}^{K} can be factorized:

$$
\begin{equation*}
\mathcal{D}_{\Sigma}^{K}=\left(\partial-\frac{y_{1}^{\prime}(u)}{y_{1}(u)}+\frac{y_{2}^{\prime}(u)}{y_{2}(u)}\right) \ldots\left(\partial-\frac{y_{N-1}^{\prime}(u)}{y_{N-1}(u)}+\frac{y_{N}^{\prime}(u)}{y_{N}(u)}\right)\left(\partial-\frac{y_{N}^{\prime}(u)}{y_{N}(u)}\right) \tag{4.5}
\end{equation*}
$$

Since $y_{i}(u)=(-1)^{(N-i)(N-i-1) / 2} K_{i}^{N-i} \ldots K_{N-1}\left(p_{i}(u) \ldots p_{N}(u)+o(1)\right) e^{\sum_{m=i}^{N} K_{m} u}$ as K tends to infinity, the claim follows from formulae (4.1) and (4.5).

Theorem 4.5.

(i) The map $\eta \circ \tau_{\boldsymbol{\lambda}}^{K+}: \mathcal{B}^{K}\left(\mathcal{V}_{\boldsymbol{\lambda}}^{+}\right) \rightarrow H_{\boldsymbol{\lambda}}$ tends to the isomorphism $\xi_{\boldsymbol{\lambda}}^{+}: \mathcal{B}^{\infty}\left(\mathcal{V}_{\boldsymbol{\lambda}}^{+}\right) \rightarrow H_{\boldsymbol{\lambda}}$, see Theorem 3.3, as K tends to infinity.
(ii) The map $\eta \circ \mu_{\boldsymbol{\lambda}}^{K+}: \mathcal{V}_{\boldsymbol{\lambda}}^{+} \rightarrow H_{\boldsymbol{\lambda}}$ tends to the isomorphism $\left(i_{\boldsymbol{\lambda}}^{+}\right)^{-1}: \mathcal{V}_{\boldsymbol{\lambda}}^{+} \rightarrow H_{\boldsymbol{\lambda}}$, see Lemma 3.1, as K tends to infinity.
Proof. The statement follows from the definitions of the maps, Lemma 4.4, formulae (4.4), and the proof of Lemma 2.2.
4.3. The $\mathcal{V}_{\boldsymbol{\lambda}}^{-}$case. Theorem 3.4 allows us to establish a geometric description of the $\mathcal{B}^{K_{-}}$ action on $\frac{1}{D} \mathcal{V}^{-}$which is analogous to the description of the \mathcal{B}^{K}-action on \mathcal{V}^{+}.
Theorem 4.6. The map

$$
\tau_{\lambda}^{K-}:\left.B_{i j}^{K}\right|_{\frac{1}{D} \nu_{\lambda}^{-}} \mapsto F_{i j}^{K}
$$

defines an isomorphism of the Bethe algebra $\mathcal{B}^{K}\left(\frac{1}{D} \mathcal{V}_{\lambda}^{-}\right)$and the algebra $\mathbb{C}[\boldsymbol{\Sigma}]$. The isomorphism $\tau_{\boldsymbol{\lambda}}^{K-}$ becomes an isomorphism of the $\left.U\left(\mathfrak{z}_{N}[t]\right)\right|_{\frac{1}{D} \nu_{\lambda}^{-}}$module $\mathcal{B}^{K}\left(\frac{1}{D} \mathcal{V}_{\boldsymbol{\lambda}}^{-}\right)$and the $\mathbb{C}[\boldsymbol{\sigma}]-$ module $\mathbb{C}[\boldsymbol{\Sigma}]$ if we identify the algebras $\left.U\left(\mathfrak{z}_{N}[t]\right)\right|_{\frac{1}{D} \nu_{\lambda}^{-}}$and $\mathbb{C}[\boldsymbol{\sigma}]$ by the map $\sigma_{s}[\boldsymbol{z}] \mapsto \sigma_{s}$, $s=1, \ldots, n$.

Denote

$$
v^{-}=\sum_{I \in \mathcal{I}_{\lambda}} v_{I} \otimes \frac{1}{R\left(\boldsymbol{z}_{I_{1}}\left|\boldsymbol{z}_{I_{2}}\right| \ldots \mid \boldsymbol{z}_{I_{N}}\right)} \in \frac{1}{D} \mathcal{V}_{\lambda}^{-}
$$

Theorem 4.7. The map

$$
\mu_{\lambda}^{K-}: B_{i j}^{K} v^{-} \mapsto F_{i j}^{K},
$$

defines a linear isomorphism $\frac{1}{D} \mathcal{V}_{\boldsymbol{\lambda}}^{-} \rightarrow \mathbb{C}[\boldsymbol{\Sigma}]$. The maps $\tau_{\lambda}^{K-}, \mu_{\boldsymbol{\lambda}}^{K-}$ give an isomorphism of the $\mathcal{B}^{K}\left(\frac{1}{D} \mathcal{V}_{\boldsymbol{\lambda}}^{-}\right)$-module $\frac{1}{D} \mathcal{V}_{\boldsymbol{\lambda}}^{-}$and the regular representation of the algebra $\mathbb{C}[\boldsymbol{\Sigma}]$.

The proofs of Theorems 4.6 and 4.7 are basically word by word the same as the proofs of Theorems 4.1 and 4.2 in [MTV3].

It is interesting to note that the element v^{-}becomes a conformal block under certain conditions and satisfies a $K Z$ equation with respect to \boldsymbol{z}, see [V], [RV], [RSV].
4.4. The limit of τ_{λ}^{K-} and $\mu_{\boldsymbol{\lambda}}^{K-}$ as $K \rightarrow \infty$. Let all the coordinates of the vector K tend to infinity so that $K_{i} / K_{i+1} \rightarrow \infty$ for $i=1, \ldots, N-1$.

Theorem 4.8.

(i) The map $\eta \circ \tau_{\boldsymbol{\lambda}}^{K-}: \mathcal{B}^{K}\left(\mathcal{V}_{\boldsymbol{\lambda}}^{-}\right) \rightarrow H_{\boldsymbol{\lambda}}$ tends to the isomorphism $\xi_{\boldsymbol{\lambda}}^{-}: \mathcal{B}^{\infty}\left(\mathcal{V}_{\boldsymbol{\lambda}}^{-}\right) \rightarrow H_{\boldsymbol{\lambda}}$, see Theorem 3.3, as K tends to infinity.
(ii) The map $\eta \circ \mu_{\boldsymbol{\lambda}}^{K-}: \mathcal{V}_{\boldsymbol{\lambda}}^{-} \rightarrow H_{\boldsymbol{\lambda}}$ tends to the isomorphism $\left(i_{\boldsymbol{\lambda}}^{-}\right)^{-1}: \mathcal{V}_{\boldsymbol{\lambda}}^{-} \rightarrow H_{\boldsymbol{\lambda}}$, see Lemma 3.1, as K tends to infinity.

The proof is similar to the proof of Theorem 4.5.
4.5. The $\left(\frac{1}{D} \mathcal{V}^{-}\right)_{\lambda}^{\text {sing }}$ case. Formula (3.4) for the graded character of $\left(\frac{1}{D} \mathcal{V}^{-} / J^{-}\right)_{\lambda}^{\text {sing }}$ is the analog of the formula for the graded character of $\left(\mathcal{V}^{+} / J^{+}\right)_{\lambda}^{\text {sing }}$ in [MTV2]. The latter formula was used in [MTV2] to obtain a geometric description of the $\mathcal{B}^{K=0}$-action on $\left(\mathcal{V}^{+}\right)_{\lambda}^{\text {sing }}$. Using formula (3.4) we can obtain a similar geometric description of the $\mathcal{B}^{K=0}$-action on $\left(\frac{1}{D} \mathcal{V}^{-}\right)_{\lambda}^{\text {sing }}$.

Let $\boldsymbol{\lambda} \in \mathbb{Z}_{\geqslant 0}^{N}, \lambda_{1} \geqslant \cdots \geqslant \lambda_{N},|\boldsymbol{\lambda}|=n$. Introduce $P=\left\{d_{1}, \ldots, d_{N}\right\}, d_{i}=\lambda_{i}+N-i, i=$ $1, \ldots, N$. Let

$$
\Sigma_{i}(u)=u^{d_{i}}+\sum_{j=1, d_{i}-j \notin P} \Sigma_{i j} u^{d_{i}-j}
$$

Consider the polynomial algebras

$$
\mathbb{C}[\boldsymbol{\Sigma}]:=\mathbb{C}\left[\Sigma_{i j}, i=1, \ldots, N, j \in\left\{1, \ldots, d_{i}\right\}, d_{i}-j \notin P\right], \quad \mathbb{C}[\boldsymbol{\sigma}]:=\mathbb{C}\left[\sigma_{1}, \ldots, \sigma_{n}\right] .
$$

We have

$$
\operatorname{Wr}\left(\Sigma_{1}(u), \ldots, \Sigma_{N}(u)\right)=\prod_{1 \leqslant i<j \leqslant N}\left(d_{j}-d_{i}\right) \cdot\left(u^{n}+\sum_{s=1}^{n}(-1)^{s} A_{s}(\boldsymbol{\Sigma}) u^{n-s}\right),
$$

where $A_{1}(\boldsymbol{\Sigma}), \ldots, A_{n}(\boldsymbol{\Sigma}) \in \mathbb{C}[\boldsymbol{\Sigma}]$. Define an algebra homomorphism

$$
\mathcal{W}: \mathbb{C}[\boldsymbol{\sigma}] \rightarrow \mathbb{C}[\boldsymbol{\Sigma}], \quad \sigma_{s} \mapsto A_{s}(\boldsymbol{\Sigma})
$$

The homomorphism defines a $\mathbb{C}[\boldsymbol{\sigma}]$-module structure on $\mathbb{C}[\boldsymbol{\Sigma}]$. Define a differential operator $\mathcal{D}_{\boldsymbol{\Sigma}}$ by

$$
\mathcal{D}_{\boldsymbol{\Sigma}}=\frac{1}{\operatorname{Wr}\left(\Sigma_{1}(u), \ldots, \Sigma_{N}(u)\right)} \operatorname{rdet}\left(\begin{array}{cccc}
\Sigma_{1}(u) & \Sigma_{1}^{\prime}(u) & \ldots & \Sigma_{1}^{(N)}(u) \\
\Sigma_{2}(u) & \Sigma_{2}^{\prime}(u) & \ldots & \Sigma_{2}^{(N)}(u) \\
\ldots & \ldots & \ldots & \ldots \\
1 & \partial & \ldots & \partial^{N}
\end{array}\right)
$$

It is a differential operator in the variable u, whose coefficients are formal power series in u^{-1} with coefficients in $\mathbb{C}[\boldsymbol{\Sigma}]$,

$$
\mathcal{D}_{\boldsymbol{\Sigma}}=\partial^{N}+\sum_{i=1}^{N} F_{i}(u) \partial^{N-i}, \quad F_{i}(u)=\sum_{j=i}^{\infty} F_{i j} u^{-j}
$$

and $F_{i j} \in \mathbb{C}[\boldsymbol{\Sigma}], i=1, \ldots, N, j \geqslant i$.
Theorem 4.9. The map

$$
\tau_{\lambda}^{-}:\left.B_{i j}^{K=0}\right|_{\left(\frac{1}{D} \mathcal{V}^{-}\right)_{\lambda}^{s i n g}} \mapsto F_{i j}
$$

defines an isomorphism of the Bethe algebra $\mathcal{B}^{K=0}\left(\left(\frac{1}{D} \mathcal{V}^{-}\right)_{\boldsymbol{\lambda}}^{\text {sing }}\right)$ and the algebra $\mathbb{C}[\boldsymbol{\Sigma}]$. The isomorphism $\tau_{\boldsymbol{\lambda}}^{-}$becomes an isomorphism of the $\left.U\left(\mathfrak{z}_{N}[t]\right)\right|_{\left(\frac{1}{D} \mathcal{V}^{-}\right)_{\lambda}^{\text {sing }}-\text { module }} \mathcal{B}^{K=0}\left(\left(\frac{1}{D} \mathcal{V}^{-}\right)_{\lambda}^{\text {sing }}\right)$ and the $\mathbb{C}[\boldsymbol{\sigma}]$-module $\mathbb{C}[\boldsymbol{\Sigma}]$ if we identify the algebras $\left.U\left(\mathfrak{z}_{N}[t]\right)\right|_{\left(\frac{1}{D} \mathcal{V}^{-}\right)_{\lambda}^{\text {sing }}}$ and $\mathbb{C}[\boldsymbol{\sigma}]$ by the map $\sigma_{s}[\boldsymbol{z}] \mapsto \sigma_{s}, s=1, \ldots, n$.

Fix a vector $v^{-} \in\left(\frac{1}{D} \mathcal{V}^{-}\right)_{\lambda}^{\text {sing }}$ of degree $\sum_{i=1}^{N}(1-i) \lambda_{i}$. By formula (3.4) such a vector is unique up to proportionality.

Theorem 4.10. The map

$$
\mu_{\boldsymbol{\lambda}}^{-}: B_{i j}^{K=0} v^{-} \mapsto F_{i j},
$$

defines a linear isomorphism $\left(\frac{1}{D} \mathcal{V}^{-}\right)_{\boldsymbol{\lambda}}^{\text {sing }} \rightarrow \mathbb{C}[\boldsymbol{\Sigma}]$. The maps $\tau_{\boldsymbol{\lambda}}^{-}, \mu_{\boldsymbol{\lambda}}^{-}$give an isomorphism of the $\mathcal{B}^{K=0}\left(\left(\frac{1}{D} \mathcal{V}^{-}\right)_{\boldsymbol{\lambda}}^{\text {sing }}\right)$-module $\left(\frac{1}{D} \mathcal{V}^{-}\right)_{\boldsymbol{\lambda}}^{\text {sing }}$ and the regular representation of the algebra $\mathbb{C}[\boldsymbol{\Sigma}]$.

The proofs of Theorems 4.9 and 4.10 are word by word the same as the proofs of Theorems 5.3 and 5.6 in [MTV2].

5. Relations with quantum cohomology

In lectures [O] Okounkov, in particular, considers the equivariant quantum cohomology $Q H_{G L_{n} \times \mathbb{C}^{*}}\left(T^{*} F_{\boldsymbol{\lambda}}\right)$ of the cotangent bundle $T^{*} F_{\boldsymbol{\lambda}}$ of a flag variety $F_{\boldsymbol{\lambda}}$. More precisely, he considers the standard equivariant cohomology $H_{G L_{n} \times \mathbb{C}^{*}}^{*}\left(T^{*} F_{\boldsymbol{\lambda}}\right)$ as a module over the algebra of quantum multiplication and described this module as the Yangian Bethe algebra of the XXX model associated with $V^{\otimes n}$.

The algebra $H_{G L_{n} \times \mathbb{C}^{*}}^{*}\left(T^{*} F_{\boldsymbol{\lambda}}\right)$ has $n+1$ equivariant parameters z_{1}, \ldots, z_{n}, u. The parameters z_{1}, \ldots, z_{n} correspond to the $G L_{n}$-action on $T^{*} F_{\boldsymbol{\lambda}}$ and u corresponds of the \mathbb{C}^{*}-action on $T^{*} F_{\boldsymbol{\lambda}}$ stretching the cotangent vectors. The operators of quantum multiplication depend on additional parameters q_{1}, \ldots, q_{N} corresponding to quantum deformation.

It is well-known how the Yangian Bethe algebra degenerates into the Gaudin Bethe algebra, see for example [T], [MTV1]. This degeneration construction gives us the following fact. Introduce new parameters K_{1}, \ldots, K_{N} by the formula $q_{i}=1+K_{i} u, i=1, \ldots, N$, and consider the limit of the algebra of quantum multiplication on $H_{G L_{n} \times \mathbb{C}^{*}}^{*}\left(T^{*} F_{\boldsymbol{\lambda}}\right)$ as $u \rightarrow 0$. Then this limit is isomorphic to the $\mathcal{B}^{K}\left(\mathcal{V}_{\lambda}^{+}\right)$-module $\mathcal{V}_{\lambda}^{+}$. This limit is also isomorphic to the $\mathcal{B}^{K}\left(\frac{1}{D} \mathcal{V}_{\boldsymbol{\lambda}}^{-}\right)$-module $\frac{1}{D} \mathcal{V}_{\boldsymbol{\lambda}}^{-}$.

Appendix: Topological description of the $\mathfrak{g l}_{N}[t]$-module structure ON THE COHOMOLOGY OF FLAG MANIFOLDS

Given $\boldsymbol{\lambda} \in \mathbb{Z}_{\geqslant 00}^{N}$ define

$$
\begin{aligned}
e_{a, a+1} \boldsymbol{\lambda} & =\left(\lambda_{1}, \ldots, \lambda_{a-1}, \lambda_{a}+1, \lambda_{a+1}-1, \lambda_{a+2}, \ldots, \lambda_{N}\right), \\
e_{a+1, a} \boldsymbol{\lambda} & =\left(\lambda_{1}, \ldots, \lambda_{a-1}, \lambda_{a}-1, \lambda_{a+1}+1, \lambda_{a+2}, \ldots, \lambda_{N}\right), \\
\boldsymbol{\lambda}^{\prime} & =\left(\lambda_{1}, \ldots, \lambda_{a-1}, \lambda_{a}, 1, \lambda_{a+1}-1, \lambda_{a+2}, \ldots, \lambda_{N}\right), \\
\boldsymbol{\lambda}^{\prime \prime} & =\left(\lambda_{1}, \ldots, \lambda_{a-1}, \lambda_{a}-1,1, \lambda_{a+1}, \lambda_{a+2}, \ldots, \lambda_{N}\right) .
\end{aligned}
$$

Let A^{\prime} (resp. B^{\prime}, C^{\prime}) be the rank λ_{a} (resp. rank 1, $\lambda_{a+1}-1$) bundle over $\mathcal{F}_{\boldsymbol{\lambda}^{\prime}}$ whose fiber over the flag $L_{1} \subset \ldots \subset L_{N+1}$ is L_{a} / L_{a-1} (resp. $L_{a+1} / L_{a}, L_{a+2} / L_{a+1}$). Let $A^{\prime \prime}$ (resp. $B^{\prime \prime}, C^{\prime \prime}$) be the rank $\lambda_{a}-1$ (resp. rank $1, \lambda_{a+1}$) bundle over $\mathcal{F}_{\lambda^{\prime \prime}}$ whose fiber over the flag $L_{1} \subset \ldots \subset L_{N+1}$ is $L_{a} / L_{a-1}\left(\right.$ resp. $\left.L_{a+1} / L_{a}, L_{a+2} / L_{a+1}\right)$.

Consider the obvious projections

$$
\mathcal{F}_{\boldsymbol{\lambda}} \stackrel{\pi_{1}^{\prime}}{\longleftarrow} \mathcal{F}_{\boldsymbol{\lambda}^{\prime}} \xrightarrow{\pi_{2}^{\prime}} \mathcal{F}_{e_{a, a+1} \boldsymbol{\lambda}} \quad \text { and } \quad \mathcal{F}_{\boldsymbol{\lambda}} \stackrel{\pi_{1}^{\prime \prime}}{\longleftrightarrow} \mathcal{F}_{\boldsymbol{\lambda}^{\prime \prime}} \xrightarrow{\pi_{2}^{\prime \prime}} \mathcal{F}_{e_{a+1, a} \boldsymbol{\lambda}} .
$$

For an equivariant map f (eg. $f=\pi_{1}^{\prime}$ or $\pi_{1}^{\prime \prime}$) the induced pull-back map on equivariant cohomology will be denoted by f^{*}. For an equivariant fibration f (eg. $f=\pi_{2}^{\prime}$ or $\pi_{2}^{\prime \prime}$) its Gysin map (a.k.a. push-forward map, or integration along the fibers map) will be denoted by f_{*}. The equivariant Euler class of a vector bundle X will be denoted by $e(X)$. The following theorem was announced in [RSV].

Theorem A.1.

(i) The map $\rho^{-}\left(e_{a, a+1} \otimes t^{j}\right): H_{\boldsymbol{\lambda}} \rightarrow H_{e_{a, a+1} \boldsymbol{\lambda}}$

$$
x \mapsto \pi_{2 *}^{\prime}\left(\pi_{1}^{\prime *}(x) \cdot e\left(\operatorname{Hom}\left(B^{\prime}, C^{\prime}\right)\right) \cdot e\left(B^{\prime}\right)^{j}\right)
$$

makes the diagram

commutative.
(ii) The map $\rho^{-}\left(e_{a+1, a} \otimes t^{j}\right): H_{\boldsymbol{\lambda}} \rightarrow H_{e_{a+1, a} \boldsymbol{\lambda}}$

$$
x \mapsto \pi_{2 *}^{\prime \prime}\left(\pi_{1}^{\prime \prime *}(x) \cdot e\left(\operatorname{Hom}\left(A^{\prime \prime}, B^{\prime \prime}\right)\right) \cdot e\left(B^{\prime \prime}\right)^{j}\right)
$$

makes the diagram

commutative.
Proof. We will prove part (i), the proof of part (ii) is similar. Let K be the index in $\mathcal{I}_{e_{a, a+1} \boldsymbol{\lambda}}$ with $K_{1}=\left\{1, \ldots,\left(e_{a, a+1} \boldsymbol{\lambda}\right)_{1}\right\}, K_{2}=\left\{\left(e_{a, a+1} \boldsymbol{\lambda}\right)_{1}+1, \ldots,\left(e_{a, a+1} \boldsymbol{\lambda}\right)_{1}+\left(e_{a, a+1} \boldsymbol{\lambda}\right)_{2}\right\}$, etc.

Consider $x=\left[h\left(\boldsymbol{z}, \Gamma_{1}, \ldots, \Gamma_{N}\right)\right] \in H_{\boldsymbol{\lambda}}$. Its i^{-}-image is

$$
\sum_{I \in \mathcal{I}_{\lambda}} v_{I} \otimes \frac{h\left(\boldsymbol{z}, \boldsymbol{z}_{I_{1}}, \ldots, \boldsymbol{z}_{I_{N}}\right)}{R\left(\boldsymbol{z}_{I_{1}}|\ldots| \boldsymbol{z}_{I_{N}}\right)}
$$

The coefficient of v_{K} of the $e_{a, a+1} \otimes t^{j}$-image of this is

$$
\begin{align*}
& \sum_{i \in K_{a}} \frac{h\left(\boldsymbol{z}, \boldsymbol{z}_{K_{1}}, \ldots, \boldsymbol{z}_{K_{a-1}}, \boldsymbol{z}_{K_{a}-i}, \boldsymbol{z}_{K_{a+1} \cup i}, \boldsymbol{z}_{K_{a+2}}, \ldots, \boldsymbol{z}_{K_{N}}\right) z_{i}^{j}}{R\left(\boldsymbol{z}_{K_{1}}, \ldots, \boldsymbol{z}_{K_{a-1}}, \boldsymbol{z}_{K_{a}-i}, \boldsymbol{z}_{K_{a+1} \cup i}, \boldsymbol{z}_{K_{a+2}}, \ldots, \boldsymbol{z}_{K_{N}}\right)}= \tag{A.1}\\
& =\frac{1}{R\left(\boldsymbol{z}_{K_{1}}|\ldots| \boldsymbol{z}_{K_{N}}\right)} \sum_{i \in K_{a}} \frac{h\left(\boldsymbol{z}, \boldsymbol{z}_{K_{1}}, \ldots, \boldsymbol{z}_{K_{a}-i}, \boldsymbol{z}_{K_{a+1} \cup i}, \ldots, \boldsymbol{z}_{K_{N}}\right) z_{i}^{j} R\left(z_{i} \mid \boldsymbol{z}_{K_{a+1}}\right)}{R\left(\boldsymbol{z}_{K_{a}-i}, z_{i}\right)} .
\end{align*}
$$

On the other hand, the $\rho^{-}\left(e_{a, a+1} \otimes t^{j}\right)$-image of x (using a version of the Atiyah-Bott localization formula for $\pi_{2 *}^{\prime}$) is

$$
\sum_{\delta \in \Delta_{a}} \frac{h\left(\boldsymbol{z}, \Delta_{1}, \ldots, \Delta_{a-1}, \Delta_{a}-\delta, \delta, \Delta_{a+1}, \ldots, \Delta_{N}\right) R\left(\delta \mid \Delta_{a+1}\right) \delta^{j}}{R\left(\Delta_{a}-\delta \mid \delta\right)}
$$

where we denoted the Chern roots of the natural bundles over $\mathcal{F}_{e_{a, a+1} \lambda}$ by $\Delta_{1}, \ldots, \Delta_{N}$. The coefficient of v_{K} of its i^{-}-image is (A.1). Thus the theorem is proved.

The topological interpretation of generators of the ρ^{+}-representation is similar, its proof is left to the reader.

Theorem A.2.

(i) For the map $\rho^{+}\left(e_{a, a+1} \otimes t^{j}\right): H_{\boldsymbol{\lambda}} \rightarrow H_{e_{a, a+1} \boldsymbol{\lambda}}$

$$
x \mapsto \pi_{2 *}^{\prime}\left(\pi_{1}^{\prime *}(x) \cdot e\left(\operatorname{Hom}\left(A^{\prime}, B^{\prime}\right)\right) \cdot e\left(B^{\prime}\right)^{j}\right)
$$

we have $i^{+} \circ \rho^{+}\left(e_{a, a+1} \otimes t^{j}\right)=\left(e_{a, a+1} \otimes t^{j}\right) \circ i^{+}$.
(ii) For the map $\rho^{+}\left(e_{a+1, a} \otimes t^{j}\right): H_{\boldsymbol{\lambda}} \rightarrow H_{e_{a+1, a} \boldsymbol{\lambda}}$

$$
x \mapsto \pi_{2 *}^{\prime \prime}\left(\pi_{1}^{\prime \prime *}(x) \cdot e\left(\operatorname{Hom}\left(B^{\prime \prime}, C^{\prime \prime}\right)\right) \cdot e\left(B^{\prime \prime}\right)^{j}\right)
$$

$$
\text { we have } i^{+} \circ \rho^{+}\left(e_{a+1, a} \otimes t^{j}\right)=\left(e_{a+1, a} \otimes t^{j}\right) \circ i^{+} .
$$

The $\mathfrak{g l}_{N}[t]$-module structures $\rho^{ \pm}$on $\bigoplus_{\boldsymbol{\lambda}} H_{\boldsymbol{\lambda}}$ descend to $\mathfrak{g l}_{N}[t]$-module structures on $H(\mathbb{C})$, also denoted by $\rho^{ \pm}$in Section 3.4. The topological interpretation of the actions of $e_{a, a+1} \otimes t^{j}$ and $e_{a+1, a} \otimes t^{j}$ for these representations is the same as that for $\bigoplus_{\boldsymbol{\lambda}} H_{\boldsymbol{\lambda}}$ given in Theorems A. 1 and A.2.

References

[AB] M.F. Atiyah, R. Bott, The moment map and equivariant cohomology, Topology 23 (1984), 1-28
[BMO] A. Braverman, D. Maulik, A. Okounkov, Quantum cohomology of the Springer resolution, Preprint (2010), 1-35, arXiv:1001.0056
[CL] V. Chari, S.Loktev, Weyl, Fusion and Demazure modules for the current algebra of $\mathfrak{s l}_{r+1}$, Adv. Math. 207 (2006), no. 2, 928-960
[CP] V. Chari, A. Pressley Weyl Modules for Classical and Quantum Affine algebras, Represent. Theory 5 (2001), 191-223 (electronic)
[CT] A. Chervov, D. Talalaev, Quantum spectral curves, quantum integrable systems and the geometric Langlands correspondence, Preprint (2006), 1-54; hep-th/0604128
[G1] M. Gaudin, Diagonalisation d'une classe d'Hamiltoniens de spin, J. Physique 37 (1976), no. 10, 1089-1098
[G2] M. Gaudin, La fonction d'onde de Bethe, Collection du Commissariat à l'Énergie Atomique: Série Scientifique, Masson, Paris, 1983
[MTV1] E. Mukhin, V. Tarasov, A. Varchenko, Bethe Eigenvectors of Higher Transfer Matrices, J. Stat. Mech. (2006), no. 8, P08002, 1-44
[MTV2] E. Mukhin, V. Tarasov, A. Varchenko, Schubert calculus and representations of general linear group, Preprint (2007), 1-32; arXiv:0711.4079
[MTV3] E. Mukhin, V. Tarasov, A. Varchenko, Spaces of quasi-exponentials and representations of $\mathfrak{g l}_{N}$, Preprint (2008), 1-29, arXiv:0801.3120
[O] A. Okounkov, Quantum Groups and Quantum Cohomology, Lectures at the 15th Midrasha Mathematicae on: "Derived categories of algebro-geometric origin and integrable systems", December 19-24, 2010, Jerusalem
[RV] R. Rimányi, A. Varchenko, Conformal blocks in the tensor product of vector representations and localization formulas, Preprint (2009), 1-21, arXiv:0911. 3253
[RSV] R. Rimányi, V. Schechtman, A. Varchenko, Conformal blocks and equivariant cohomology, Preprint (2010), 1-23, arXiv:1007. 3155
[T] D. Talalaev, Quantization of the Gaudin System, Preprint (2004), 1-19; hep-th/0404153
[V] A. Varchenko, A Selberg integral type formula for an $\mathfrak{s l}_{2}$ one-dimensional space of conformal blocks, Mosc. Math. J. 10 (2010), no. 2, 469-475, 480

[^0]: ${ }^{1} E$-mail: rimanyi@email.unc.edu, supported in part by NSA grant CON:H98230-10-1-0171
 ${ }^{\dagger} E$-mail: schechtman@math.ups-tlse.fr
 ${ }^{\diamond} E$-mail: vt@math.iupui.edu, vt@pdmi.ras.ru, supported in part by NSF grant DMS-0901616
 ${ }^{2}$ E-mail: anv@email.unc.edu, supported in part by NSF grant DMS-0555327

