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ABSTRACT. We interpret the equivariant cohomology H¢,; (Fa,C) of a partial flag variety
Fx parametrizing subspaces 0 = Fy C F} C --- C Fiy = C", dim F;/F;_1 = \;, as the Bethe
algebra B (Vi) of the gly-weight subspace Vi of a gly[t]-module VF.

1. INTRODUCTION

A Bethe algebra of a quantum integrable model is a commutative algebra of linear op-
erators (Hamiltonians) acting on the space of states of the model. An interesting problem
is to describe the Bethe algebra as the algebra of functions on a suitable scheme. Such a
description can be considered as an instance of the geometric Langlands correspondence, see
IMTV2], [MTV3|. The gl Gaudin model is an example of a quantum integrable model [G1],
[G2]. The Bethe algebra B of the gl Gaudin model is a commutative subalgebra of the cur-
rent algebra U(gly[t]). The algebra B depends on the parameters K = (K;,..., Ky) € CV.
Having a gly[t]-module M, one obtains the commutative subalgebra BX (M) C End(M)
as the image of BX. The geometric interpretation of the algebra BX(M) as the algebra
of functions on a scheme leads to interesting objects. For example, the Bethe algebra
BE=0((@m_ La,(25))3") of the subspace of singular vectors of the gly-weight A of the ten-
sor product of finite dimensional evaluation modules ®”_, La_(z;) is interpreted as the space
of functions on the intersection of suitable Schubert cycles in a Grassmannian variety, see
[IMTV2]. This interpretation gives a relation between representation theory and Schubert
calculus useful in both directions.

One of the most interesting gl [t]-modules is the vector space V = V" @ Clz, ..., z,] of
V@ valued polynomials in 21, ..., z,, where V = C¥ is the standard vector representation
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of gly. The Lie algebra gly[t] naturally acts on V as well as the symmetric group S,,, which
permutes the factors of V®" and variables zq,. .., z, simultaneously. We denote by V* and
V™~ the S,-invariant and antiinvariant subspaces of V), respectively. The actions of gl[t]
and S,, on V commute, so V¥ and V™ are gly/[t]-submodules of V. The Bethe algebra BX
preserves the gly-weight decompositions V* = @ V3 and V= = @& V5, A = (A1,...,A\y) €
Z5,,|A| = n. The Bethe algebra B* (Vy) was described in [MTV3] as the algebra of functions
on a suitable space of quasiexponentials {efi%(ur + Xjud—t ... 4 ) i =1,... N}
In this paper we give a similar description for BX (V5 ) and study the limit of the algebras
BE(VY), BE(Vy) as all coordinates of the vector K tend to infinity so that K;/K; 11 — oo
for all <. We show that in this limit both Bethe algebras B>(Vy), B=(Vy) can be identified
with the algebra of the equivariant cohomology H¢; (Fa,C) of the partial flag variety Fx
parametrizing subspaces
O:F()CFlC"‘CFN:Cn,

dim F;/F;_y = X;. This identification was motivated for us by the considerations in [RV],
[RSV] where the equivariant cohomology of the partial flag varieties were used to construct
certain conformal blocks in V™.

Our identification of the Bethe algebra with the algebra of multiplication operators of
the equivariant cohomology H¢,; (Fa,C) can be considered as a degeneration of the recent
description in [O] of the equivariant quantum cohomology of the partial flag varieties as the
Bethe algebra of a suitable Yangian model associated with V®", cf. [BMO].

In Section 2 we introduce the Bethe algebra. Section 3 contains the main results — The-
orems 3.3, 3.4. Theorems 3.3 identifies the algebra of equivariant cohomology H¢; (Fa,C)
and the Bethe algebras B> (Vy), B=(Vy ). Theorem 3.4 says that the Shapovalov pairing of
Vi and Vy is nondegenerate. In Section 4 we show that the isomorphisms of Theorem 3.3
are limiting cases of a geometric Langlands correspondence. In Section 5 we explain how
the Bethe algebras B>(Vy), B>(Vy ) are related to the quantum equivariant cohomology
QHegr, xc+ (T*Fx) of the cotangent bundle T*Fy of the flag variety Fx. Appendix contains
the topological description of gly[t]-actions on ©xH;, (Fa, C).

We thank S. Loktev and A.Okounkov for useful discussions.

2. REPRESENTATIONS OF CURRENT ALGEBRA gly|[t]

2.1. Lie algebra gly. Let ¢;;,%,7 =1,..., N, be the standard generators of the Lie algebra
gly satisfying the relations [e;;, esk] = d;s€i1 — dies;. We denote by h C gl the subalge-
bra generated by e;, i = 1,..., N. For a Lie algebra g, we denote by U(g) the universal
enveloping algebra of g.

A vector v of a gly-module M has weight A = (A;,...,\y) € CV if ezv = A\ for
1=1,...,N. We denote by My C M the weight subspace of weight A.

Let V = CV be the standard vector representation of gl with basis vy, ..., vy such that
e;jur = O, for all 4, 7, k. A tensor power V®™ of the vector representation has a basis given
by the vectors v, ® - -- @ v;,, where i; € {1,...,N}.

Every sequence (iy,...,,) defines a decomposition I = (Iy,...,Iy) of {1,...,n} into
disjoint subsets Iy,...,In: I; = {k | iy = j}. We denote the basis vector v;, ® --- ®@ v;, by
vr.
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Let

ver= P (VI

XezZd, [X|=n

be the weight decomposition. Denote Zy the set of all indices I with |I;| = A;, j=1,...N.
The vectors {v;, I € I,}, form a basis of (V®"),. The dimension of (V®"), equals the

. . . !
multinomial coefficient dy := M,"—)W,

Let S be the bilinear form on V®" such that the basis {v;} is orthonormal. We call S the
Shapovalov form.

2.2. Current algebra gly[t]. Let gly[t] = gly ® C[t] be the Lie algebra of gly-valued
polynomials with pointwise commutator. We identify gly with the subalgebra gl ® 1 of
constant polynomials in gly[t]. Hence, any gly[t]-module has the canonical structure of a
gly-module.

The Lie algebra gly[t] has a basis e;; ® t", 4,5 = 1,..., N, r € Zx, such that

[eij @17, g, @ P] = b5 @1 — Gipeg; @ LTP.

It is convenient to collect elements of gly[t] in generating series of a variable u. For g € gly;,

set g(u) = 22 Zo(g @7 )um"t,
The subalgebra 3x[t] C gly[t] with basis S, e @ 7, 1 € Zy, is central.

2.3. The gly[t]-modules V*. Let S, be the permutation group on n elements. For an S,,-
module M we denote by M (resp. M ™) the subspace of S,,-invariants (resp. antiinvariants).
The group S, acts on C[z] := Clz1, ..., z,] by permuting the variables. Denote by o4(z),
s =1,...,n, the sth elementary symmetric polynomial in zy, ..., z,.
Let V be the vector space of polynomials in variables z with coefficients in V®™:

VY = V¥ ®cClz].

The symmetric group S, acts on V by permuting the factors of V®" and the variables z
simultaneously,

0(v1®-~~®vn®p(z1,...,zn)) = V-1, @ @ Vg-1), D DP(Zoy;---120,); T ESp.

We are interested in the subspaces V*,V~ C V of S,-invariants and antiinvariants.

The space V is a gly[t]-module,

gt (11 ®- - ®v, ®p(z) = Zm®---®gvs®-"®vn®3§p(fz)-
s=1

The image of the subalgebra U(3n[t]) C U(gly[t]) in End(V) is the algebra of operators of
multiplication by elements of C[z]*. The gly[t]-action on V commutes with the S,-action.
Hence, V* and V~ are gly[t]-submodules of V. The subspaces V' and V~ are free C[z]"-
modules of rank N™.

Consider the gly-weight decompositions

+ _ + - _ -
V= @Aezgo,m:nvm Vo= @AGZ§0,|A|=nVA-
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For any A, the subspaces V5, and V5 are free C[z]"-modules of rank d.

Denote by %V’ the vector space of all V®"-valued rational functions of the form %x,
€V, D=[]¢jcn(2 — 2). The Shapovalov form induces a C[z]"-bilinear map

S._:V'® %V — Clz]*.

The gly[t]-module structures on V* and 5V~ are contravariantly related through the Shapo-
valov form,

1 1
S—i—— ((eij ® tr)xa 5 y) = S+— (.T, (6]'1' ® tr)ﬁ y) for all i)ja z,y.

2.4. Bethe algebra. Given an N x N matrix A with possibly noncommuting entries a;;,
we define its row determinant to be

rdet A = Z (=1)° A1o(1)A20(2) - - - ANG(N) -
cESN

Let K = (K,...,Ky) be a sequence of distinct complex numbers. Let 0 be the operator
of differentiation in a variable u. Define the universal differential operator DX by

0— Ki — eq(u) —e91(u) —en1(u)
D= e | TR OT Tl ol
—epn(u) —ean(u) ... 0—Kyx—enn(u)

It is a differential operator in the variable u, whose coefficients are formal power series in
u~! with coefficients in U(gly[t]),

N oo
DX =¥+ 3" BEw) oY, BFw) =Y BEu
i=1 Jj=0

and BJf € U(glylt]) for i=1,...,N, j > 0.
Denote by B the unital subalgebra of U(gly[t]) generated by B/, with i = 1,..., N,
5 > 0. The subalgebra BX is called the Bethe algebra with parameters K.

Theorem 2.1 ([T}, [CT], [MTV1]). The algebra BX is commutative. The algebra BX com-
mutes with the subalgebra U(h) C U(gly[t]). If K =0, then the algebra BX= commutes with
the subalgebra U(gly) C U(gly[t]). O

Each element ij( is a polynomial in K7, ..., Ky. We define B> to be the unital subalgebra
of U(gly[t]) generated by the leading terms of the elements Bg, i1=1,....N, 7>0,as K
tends to infinity so that K;/K;;1 — oo for all i.

Lemma 2.2. The algebra B> is the unital subalgebra generated by the elements e; @7 with
i=1,...,N, j=0.

Proof. We have BE = (-=1)'K;...K; (14 0(1)), and

N
BE = (<1 K,... K, (Zemm @+ 0(1)>

m=t
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for 7 > 0, where o(1) stands for the terms vanishing as K tends to infinity. O

Remark. There are N! asymptotic zones labeled by elements of Sy in which K may tend
to infinity. For ¢ € Sy we may assume that all coordinates of K tend to infinity and
Ky, /K,,,, — oo for all i. It is easy to see that the limiting Bethe algebra B> does not
depend on o.

The algebra B> is commutative and contains U (3x[t]). The algebra B> commutes with

the subalgebra U(h) C Ul(glyl[t]).

As a subalgebra of U(glylt]), the Bethe algebra BX acts on any gly[t]-module M. Since
BE commutes with U(h), it preserves the weight subspaces My. If K = 0, then BE=0
preserves the singular weight subspaces My ™. We will study the action of B> on the weight
subspaces Vy, Vy .

Lemma 2.3. The element S e; @t € U(3n[t]) acts on V as the operator of multiplica-
tion by Y, 2L

If L C M is a BX-invariant subspace, then the image of BX in End(L) will be called the
Bethe algebra of H and denoted by BX(L).

3. EQUIVARIANT COHOMOLOGY OF PARTIAL FLAG VARIETIES

3.1. Partial flag varieties. For A\ € Zgo, |IA| = n, consider the partial flag variety Fy
parametrizing subspaces

OIF()CFlC"'CFN:(Cn

with dim F;/F; 1 =X, i =1,...,N.

Let T" C GL, be the torus of diagonal matrices. The groups 7" C GL,(C) act on
C™ and hence on Fy. The fixed points Fi  of the torus action are the coordinate flags
Fr=(Fyb C - CFy), I = (I1,...,In) € Iy, where F; is the span of the basis vectors
v; € C" with j € I; U--- U [;. The fixed points are in a one-to-one correspondence with the
set Zy and hence with the basis in V.

We consider the G L, (C)-equivariant cohomology

Hy = Hfp (Fa, C).

Denote by I'; = {7i1,..., 7} the set of the Chern roots of the bundle over Fx with fiber
F,/F;_,. Denote by z = {z1,...,2,} the Chern roots corresponding to the factors of the
torus 7". Then

Ai

N n
(3.1)  Hx= C[Z;Fl;---;FN]SNXS“X'“XSXN/<HH L+uyy) = H(1+“Z")>‘

=1 j=1 =1

The cohomology Hy is a module over H¢,;, (pt,C) = Clz]".
Let Jyg C Hy be the ideal generated by the polynomials o;(z), ¢ = 1,...,n. Then
Hyx/Jy = H*(Fx,C).
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3.2. Integration over Fx. We will need the integration map [ : Hx — H¢; (pt,C). The

following formula (3.2) gives the integration map in terms of the fixed point set Fi .
For a subset A C {1,..., N} denote z4 = {2,, a € A}. For [ = (I;,...,Iy) € I denote

R(zplzn|. - |zr) = [ T (2 — 20

i<j a€l;,bel;

The Atiyah-Bott equivariant localization theorem [AB] says that for any [h(z,I'1,...,T'y)] €
H)\v

B h(z,zh,...,Z]N)
(3.2) /[h] - Z R(zplzn|. - |zny)

1€Ty

Clearly, the right hand side in (3.2) lies in C[z]*. The integration map induces the pairing
(): HywHa = Clel*, ol [lhl
After factorization by the ideal Jy we obtain the nondegenerate Poincare pairing
(,) : H(Fx,C)® H*(Fa,C) — C.

3.3. Hy and V*.

Lemma 3.1. The maps

it Hyx =V, [M=zT1. TN = Y o ®h(z, 21, ..., 21,),

1€y
_ 1. Mz, zr,. .., 21y)
iy Hx — —=Vy, hz,Tq,....,I'n)] = v ® : =
A A DA [ ( ! N)] IEZI ! R(211|Z[2| s |ZIN)
A
are well-defined isomorphisms of C[z]*-modules. O

Proof. If h belongs to the ideal of relations in (3.1) then h(z, zp,...,25,) = 0 for any I,
because the I'; = z;, substitution makes the generators of the ideal identities. This proves
well-definedness.

Consider the C[z]"-module C[z]%**5 v of polynomials symmetric in the first \; vari-
ables, the next )\, variables, etc. In Schubert calculus it is known that this module is free of
rank dy, and that it is isomorphic to H under the correspondence

(3.3) p € Clz]* 7w [p(Iy,...,Iy)] € Ha.
An element Y7, 7 vy ® pr(2z) of Vx belongs to Vy, if and only if p;(2) = p(zr,, . . ., z1,) for
a polynomial p € C[z]% >~ This shows that Vi is isomorphic to C[z]%1*+**v  and

that i3 is the composition of this isomorphism with (3.3).
A similar argument shows that 7, is also an isomorphism. 0J

Corollary 3.2. The Shapovalov form and the Poincare pairing are related by the formula

So_(iy[H],i_lg)) = / Mg .
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Let A be a commutative algebra. The algebra A considered as an A-module is called the
regular representation of A. Here is our main result.

Theorem 3.3.

(i) The maps & : ey ® t’”|v§c — Zj‘;l vi; define isomorphisms of the algebras B>(V5)
and Hs, .
ii) The maps &F, il identify the B> (Vi)-module Vi with the regular representation of
(ii) X0 Ix A \
Hy.
iii) The maps &5, iy identify the B>®(Vy )-module Vy with the regular representation of
(iii) PEEON A A
Hy.

The theorem follows from Lemmas 2.2, 2.3 and 3.1.

3.4. Cohomology as gly[t]-modules. Let J be the ideal of C[z]* generated by the ele-
mentary symmetric functions o;(z), ¢ = 1,...,n. Define J* = JV* and J~ = %JV’.
Clearly, J* is a gly[t]-submodule of V* and J~ is a gly[t]-submodule of 5V~. The gly[t]-
module V*/J* is graded and has dimension N™ over C, see [MTV2]. Similarly, 5V~ /J~ is
a graded gly[t]-module of the same dimension.

Theorem 3.4. The Shapovalov form establishes a nondegenerate pairing
1
S, VIt ® EV_/J_ — C.

The theorem follows from Lemmas 3.1, 3.2 and the nondegeneracy of the Poincare pairing.

Corollary 3.5. The gly[t]-modules V*/J* and 5V~ /J~ are contravariantly related through
the Shapovalov form, S, _ ((eij ® "), %y) =85, (:1:, (€j; ® t’")%y) forall i,j,x,y.

Let W,, be the gly[t]-module generated by a vector w, with the defining relations:

n
eii(u)wy = 017 — Wy, i=1,...,N,
U
eij(w)w, =0, 1<i<j<N,
(eji®1)n6“+lwn: 0, 1<i<j<N.

As an sly[t]-module, the module W, is isomorphic to the Weyl module from [CL], [CP],
corresponding to the weight nw;, where w; is the first fundamental weight of sly.
In [MTV2] an isomorphism of V*/J* and the Weyl module W, is constructed.

Corollary 3.6. The Shapovalov form S, _ establishes an isomorphism of %V‘/J‘ and the
contravariantly dual of the Weyl module W,,.

Here is an application of this fact. For A € Zgo, Al =n, \y = - = Ay, denote
1 1

(GV IR = e g

V7 /J | eju=0fori<yj, ev=Nv fori=1,... N}.
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This is a graded space. Denote by ((5V~/J7)3"™ ), the subspace of all elements of z-degree
k. Define the graded character by the formula

(( VI Zq dim(( V /T3,

Corollary 3.7. We have

(Q) ng jgN(l _in_/\j-i_j_i) q_zﬁ\;(i—l))\i,

T (@)r v

(3.4) (( VI =

where (q)a = [j_,(1 —¢).
The corollary follows from Lemma 2.2 in [MTV2] and Corollary 3.6.

The isomorphisms

1
(3.5) =@ @ H\N— V", i=@iy: @ H— =V
A A A D

A

induce two graded gly[t]-module structures on @y Hy denoted by pt and p~, respectively.
These module structures descend to two graded gl [t]-module structures on the cohomology
with constant coefficients

HC):= @ H(F0),
Aezy . |A[=n
denoted by the same letters p* and p~.
Corollary 3.8. The gly[t]-module H(C) with the p*-structure is isomorphic to the Weyl

module W,,. The gly[t]-module H(C) with the p~-structure is isomorphic to the contravariant
dual of the Weyl module W,.

The p* structures can be defined topologically, see [RSV] and Appendix. The p~-structure
appears to be more preferable. It was used in [RV], [RSV] to construct conformal blocks in
the tensor power V&,

4. ISOMORPHISMS iy AS A GEOMETRIC LANGLANDS CORRESPONDENCE

4.1. The V5 case. The following geometric description of the BX-action on V5 was given
in [MTV3] as an example of the geometric Langlands correspondence.

Let K = (K7i,..., Ky) be a sequence of distinct complex numbers. Let A € Z, [A| = n.
Introduce the polynomlal algebras

Cl¥ =C[Zyj,i=1,....,N, j=1,...,\], Clo] := Cloy,...,04].
Define
Yi(u) = efiv (ui —I—Eilu’\i_ljt---—l—Zi,\i), i=1,...,N.
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For arbitrary functions g;(u), ..., gny(u), introduce the Wronskian determinant by the for-
mula o
nt) )
/ —
We(gi(u), ., gn(w)) = det | 920 (W) - gy (u)
gN(u) gﬁv(u) gJ(VN—l)(u)
We have

Wr(Zi(u), . Dn(w)) = = T (G = ) - (00 + ) (<) A w ™))

1<i<j<N
where AK(X),..., AK(X) € C[X]. Define an algebra homomorphism
WE: Clo] - C[®], o,— AN(X).
The homomorphism defines a Clo]-module structure on C[X].

Define a differential operator DX by

1 Si(u)  2(u) 2§N§<u>

K _ rdet | Ze(w) Zy(u) S5 ()

D Wr( X (u), ..., Sn(u) det
1 0 oN

It is a differential operator in the variable u, whose coefficients are formal power series in
u~! with coefficients in C[X],

N 00
m DE= 9 13 FR@ O, R = 3RS,
i=1 =0
and Ff e C[X], i=1,...,N, j >0.
Theorem 4.1 ([MTV3]). The map

™' Bl = B

defines an isomorphism of the Bethe algebra BX (V) and the algebra C[X]. The isomorphism
73" becomes an isomorphism of the U(;)N[t])b; -module BX (V) and the Clo]-module C[ X

if we identify the algebras U(gN[t])|VA+ and Clo| by the map .04z] — 05, s=1,...,n.

Denote

’U+ = Z vr € V;—
IEI)‘
Theorem 4.2 ([MTV3]). The map
M Bl e
defines a linear isomorphism VY — C[X]. The maps Ti”,pf* give an isomorphism of the
BE(Vi)-module V5 and the regular representation of the algebra C[X].
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4.2. The limit of 75 © and u5 " as K — oo. Let all the coordinates of the vector K tend
to infinity so that K;/K;;; — oo for i = 1,..., N — 1. Then the homomorphism WX has a
limit W*°. Namely, define A°(X') by the formula

N

H (uAi + Eﬂu%—l ot EDW_) =u" 4+ Z (—1)° AX(X)u"".
s=1

=1

Then

(4.2) w=: Cle] — C[X], o — AX(X).
Define algebra isomorphisms

(4.3) Clo] — C[2]7, n:C[X¥] — Hx,

by the agreement that the first isomorphism sends oy to o4(2) for all s, and the second one
sends (—1)*X;s to the sth elementary symmetric function of 7;1,..., v, for all 4, s.

Lemma 4.3. The isomorphisms (4.3) identify the Clo|-module C[X] defined by formula
(4.2) and the C[z]|*-module H.

Let p;(u) = v + Jpur~t+ ...+ 3, forall i =1,... N. Notice that

>

i "(u oo A
(4.4) npw) = [Lu—m), o 2) = >

ey pi(u) 1

r=0 j

Lemma 4.4. We have Fff = (-1)'K;...K; (1+0(1)), and

Z FK - _ _1)2' Ky...K; 4 ( N_ ZZEZ% +0(1)> ;

where o(1) stands for the terms vanishing as K tends to infinity.

Proof. Let y;(u) = Wr(Zy(u),...Xn(u)), ¢ = 1,...N. Then the operator DY can be
factorized:

/

69 2= (o3 B - - ) -2

Since y;(u) = (—1)VOWN==DR2 RN Ky (pi(w) .. pa(u) + o(1)) eXm=iKmu a5 K
tends to infinity, the claim follows from formulae (4.1) and (4.5). O
Theorem 4.5.
(i) The map noryt: BE(V) — Hy tends to the isomorphism & : B*(Vy) — Hay,
see Theorem 3’.3, as K tends to infinity.
(ii) The map nous"™: V¥ — Hy tends to the isomorphism (i{)™' : Vi — Hy, see
Lemma 3.1, as K tends to infinity.

Proof. The statement follows from the definitions of the maps, Lemma 4.4, formulae (4.4),
and the proof of Lemma 2.2. O
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4.3. The V5 case. Theorem 3.4 allows us to establish a geometric description of the B*-
action on %V‘ which is analogous to the description of the BX-action on V7.

Theorem 4.6. The map
defines an isomorphism of the Bethe algebra BX(LVy) and the algebra C[X]. The isomor-

phism 75~ becomes an isomorphism of the U(5N[t])|%V; -module BX(5Vy) and the Clo]-
module C[X] if we identify the algebras U(3n]t])]

1y and Clo] by the map o4[z] — oy,
s=1,...,n.
Denote 1
v o= vy @ c =V, .
2 R(zp|zp|.. . |z1,) ~ D*

Theorem 4.7. The map

K- . pK,— K
iy~ : BijvT o= F

defines a linear isomorphism %VA_ — C[X]. The maps Ti{_,,uf_ give an 1somorphism of

the BX (V5 )-module V5 and the regular representation of the algebra C[X].

The proofs of Theorems 4.6 and 4.7 are basically word by word the same as the proofs of
Theorems 4.1 and 4.2 in [MTV3].

It is interesting to note that the element v~ becomes a conformal block under certain
conditions and satisfies a KZ equation with respect to z, see [V], [RV], [RSV].

4.4. The limit of 7'){( ~ and uf‘ as K — oo. Let all the coordinates of the vector K tend
to infinity so that K;/K;;; —» oo fori=1,...,N — 1.

Theorem 4.8.
(i) The map nory : BX(VY) — Hx tends to the isomorphism &5 : B®(Vy) — Hay,
see Theorem 3.3, as K tends to infinity.
(ii) The map nous : V5 — Hx tends to the isomorphism (ix)™' : V5 — Hx, see
Lemma 3.1, as K tends to infinity.
The proof is similar to the proof of Theorem 4.5.

4.5. The ($V7)3™ case. Formula (3.4) for the graded character of (5V~/J7)3" is the
analog of the formula for the graded character of (V*/J*){™ in [MTV2]. The latter formula
was used in [MTV?2] to obtain a geometric description of the BX=0-action on (V). Using
formula (3.4) we can obtain a similar geometric description of the BX=%-action on (5V7)3"

Let A € Zgo, )\1 = e 2 )\N,l)\| = n. Introduce P = {dl,...,dN}, dz = /\z—i‘N—’L,Z =
1,...,N. Let

EZ(U) = ud" + Z Zijud"_j.
J=1, di—jé¢P

Consider the polynomial algebras

C[Z] = C[Ez],lzl,,N,j E{l,,dl},dl—j¢PL C[O’] = (C[O'l,...,O'n].
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We have

W), Oxw) = [ (4 —d) - (" +Z ),

1<i<j<N
where A;(X),..., A,(¥) € C[¥]. Define an algebra homomorphism
W Cle] — C[X], os — Ag(X).

The homomorphism defines a C[o]-module structure on C[X]. Define a differential operator
Dz by

Yi(u) Xi(u) ... EfN) u
1 So(w) Zw) ... SN (u)
Dy = 2 2 2
A AN O i AT
1 5, oN

It is a differential operator in the variable u, whose coefficients are formal power series in
u~! with coefficients in C[X],

N oo
DZ' = 8N+Z Fl(u) aN_i, E(u) = ZFiju_j7
i=1 j=1

and Fj; e C[X], i=1,...,N, j>1i.

Theorem 4.9. The map

K=0 )
B e = By

defines an isomorphism of the Bethe algebra BKZO((%V )5 sing ) and the algebra C[X]. The
isomorphism Ty becomes an isomorphism of the U(3n|t ])](%V ygime-module BE=0((Lv- )5im9)
and the Clo|-module C[X] if we identify the algebras U(3n]t )‘(%v ygine and Cle] by the map

oslz]| — o5, s=1,...,n.

Fix a vector v~ € (V7)Y of degree SV (1 — i)\ By formula (3.4) such a vector is
unique up to proportionality.

Theorem 4.10. The map
- K=0 —
a2 By vm = Ey,
defines a linear isomorphism (%V*)i\mg — C[X]. The maps Ty, ity give an isomorphism of

the BE=0((5V7)3")-module (5V7)3X" and the regular representation of the algebra C[X].

The proofs of Theorems 4.9 and 4.10 are word by word the same as the proofs of Theo-
rems 5.3 and 5.6 in [MTV2].
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5. RELATIONS WITH QUANTUM COHOMOLOGY

In lectures [O] Okounkov, in particular, considers the equivariant quantum cohomology
QHgr, <o+ (T*Fy) of the cotangent bundle T*F) of a flag variety Fx. More precisely, he
considers the standard equivariant cohomology H¢; - (T*Fx) as a module over the algebra
of quantum multiplication and described this module as the Yangian Bethe algebra of the
XXX model associated with V&,

The algebra H,; ¢ (T*Fx) has n+41 equivariant parameters 21, ..., 2,, u. The parameters
Z1,...,2p correspond to the GL,-action on T*F and u corresponds of the C*-action on
T F)y stretching the cotangent vectors. The operators of quantum multiplication depend on
additional parameters ¢, ..., qy corresponding to quantum deformation.

It is well-known how the Yangian Bethe algebra degenerates into the Gaudin Bethe algebra,
see for example [T], [MTV1]. This degeneration construction gives us the following fact.
Introduce new parameters Ki,..., Ky by the formula ¢; = 1 4+ Ku,i = 1,..., N, and
consider the limit of the algebra of quantum multiplication on H,; c.(T%Fy) as u — 0.
Then this limit is isomorphic to the BX (V5 )-module V. This limit is also isomorphic to
the BX(5Vy )-module V5.

APPENDIX: TOPOLOGICAL DESCRIPTION OF THE gly[t]-MODULE STRUCTURE
ON THE COHOMOLOGY OF FLAG MANIFOLDS

Given X € Z%; define
Caati A = (A, Aa, A+ 1L A — 1 Ao, oo, AN),
€a+1aA = (Ao A Aa — L Aais + 1 Aaia, oo AN)
= (M5 A1 Aas L Aan = L Aagas 5 AN),
A= (A, A A — L1 Aaig, Aaag, -, An)
Let A’ (resp. B’,C') be the rank A, (resp. rank 1, A\,41 — 1) bundle over Fy whose fiber
over the flag Ly C ... C Lyy1 i8S Ly/La-1 (vesp. Lgi1/La, Lavo/Lav1). Let A” (resp.

B",C") be the rank A\, — 1 (resp. rank 1, A\,;;) bundle over Fy» whose fiber over the flag
L1 cC...C LN+1 is La/Lafl (resp. La+1/La7 La+2/La+1)-

Consider the obvious projections

7'('/ 7T/
Fr ot Fy -5 F, and  Fr <L Fu 25 7,

a,a+1>\ a+1, a

For an equivariant map f (eg. f = m} or m, ) the induced pull-back map on equivariant
cohomology will be denoted by f*. For an equivariant fibration f (eg. f = m, or m,) its
Gysin map (a.k.a. push-forward map, or integration along the fibers map) will be denoted by
f«. The equivariant Euler class of a vector bundle X will be denoted by e(X). The following
theorem was announced in [RSV].

Theorem A.1l.
(1) The map pi(ea,a-‘rl ® t]) : H)\ - He

a,a+1>\

T — Th, <7r/1*(:v) . e(Hom(B', C')) : G(B/)j)
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makes the diagram
12 (ea,a+1 ®tj)

HA ‘[{6a,¢z+lA
LV, ea,a+1®tj L _
D" X D ea,a«‘flA

commutative.

(i) The map p~(eqi10 @ t7): Hx — H,

a+1,a>\
T T, (W;l*(x) -e(Hom(A”, B")) - e(B”)j>

makes the diagram
P (Cat1,a®t7)

H)\ He

a—&-l,aA
LV_ €a+1,a®tj 14—
D" A D €a+1,aA

commutative.

Proof. We will prove part (i), the proof of part (ii) is similar. Let K be the index in Z,
with Kl = {1, ey <€a7a+1)\)1}, KQ = {(ea’a+1)\)1 + 1, cey (ea,a+1)\)1 -+ (ea’a+1>\)2}, etc.
Consider x = [h(z,I'1,...,T'y)] € Ha. Its i~ -image is

17,,0.—0—1A

h
Z vy ® (zazlla 7zIN) .

IeZy R(Z[1|...|Z[N)

The coefficient of vk of the e 411 ® t/-image of this is

(A1) Z h(z,Zk,s - 2Ky s ZKa—is ZKas1Uis ZKasar - -2 2Ky ) zf _
icK R(ZK17 s 7zKa_1azK,17i> zKa+1Ui7 zKa+27 cee 7ZKN)
a
_ 1 Z M2, 2Ky ey 2Ky 210y - s 2Ky ) 2] R(2i] 210, 1)
R(ZK1| s ’zKN) €K, R<zKa*i7 Zi)

On the other hand, the p~(e4q411 ® #/)-image of = (using a version of the Atiyah-Bott local-
ization formula for 7}, ) is

Z h(z, Al, ce ,Aa_l, Aa — 5, 5, Aa—i—la ey AN)R((”AG_H)(W
R(A, — 4]5) ’

0€A,

where we denoted the Chern roots of the natural bundles over F,, .. x by Ay,...,Ay. The
coefficient of vk of its i~-image is (A.1). Thus the theorem is proved. O

The topological interpretation of generators of the p*-representation is similar, its proof
is left to the reader.
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Theorem A.2.
(i) For the map p*(eqar1 @) : Hx — H,

a,m+1A
T T, <7T/1*<CL’> -e(Hom(4', B)) - e(B’)j>

we have 0 p* (€qars @) = (canss ® 1) 04",

(i) For the map p*(egr1. @) : Hx — H,

a+1,aA
v . (77(a) - efHom(B,C”) - e(B"))
we have 70 pT(eay1a @) = (ear1a @) 0dT.

The gly[t]-module structures p* on @, Hx descend to gly[t]-module structures on H(C),
also denoted by p* in Section 3.4. The topological interpretation of the actions of e, 441 @t/
and e, 41,®1’ for these representations is the same as that for » H given in Theorems A.1

and A.2.
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