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Abstract. We interpret the equivariant cohomology H∗
GLn

(Fλ,C) of a partial flag variety
Fλ parametrizing subspaces 0 = F0 ⊂ F1 ⊂ · · · ⊂ FN = Cn, dim Fi/Fi−1 = λi, as the Bethe
algebra B∞(V±λ ) of the glN -weight subspace V±λ of a glN [t]-module V±.

1. Introduction

A Bethe algebra of a quantum integrable model is a commutative algebra of linear op-
erators (Hamiltonians) acting on the space of states of the model. An interesting problem
is to describe the Bethe algebra as the algebra of functions on a suitable scheme. Such a
description can be considered as an instance of the geometric Langlands correspondence, see
[MTV2], [MTV3]. The glN Gaudin model is an example of a quantum integrable model [G1],
[G2]. The Bethe algebra BK of the glN Gaudin model is a commutative subalgebra of the cur-
rent algebra U(glN [t]). The algebra BK depends on the parameters K = (K1, . . . , KN) ∈ CN .
Having a glN [t]-module M , one obtains the commutative subalgebra BK(M) ⊂ End(M)
as the image of BK . The geometric interpretation of the algebra BK(M) as the algebra
of functions on a scheme leads to interesting objects. For example, the Bethe algebra
BK=0((⊗n

s=1LΛs(zs))
sing
λ ) of the subspace of singular vectors of the glN -weight λ of the ten-

sor product of finite dimensional evaluation modules ⊗n
s=1LΛs(zs) is interpreted as the space

of functions on the intersection of suitable Schubert cycles in a Grassmannian variety, see
[MTV2]. This interpretation gives a relation between representation theory and Schubert
calculus useful in both directions.

One of the most interesting glN [t]-modules is the vector space V = V ⊗n ⊗C[z1, . . . , zn] of
V ⊗n-valued polynomials in z1, . . . , zn, where V = CN is the standard vector representation
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of glN . The Lie algebra glN [t] naturally acts on V as well as the symmetric group Sn, which
permutes the factors of V ⊗n and variables z1, . . . , zn simultaneously. We denote by V+ and
V− the Sn-invariant and antiinvariant subspaces of V , respectively. The actions of glN [t]
and Sn on V commute, so V+ and V− are glN [t]-submodules of V . The Bethe algebra BK

preserves the glN -weight decompositions V+ = ⊕λV+
λ and V− = ⊕λV−λ , λ = (λ1, . . . , λN) ∈

ZN
>0, |λ| = n. The Bethe algebra BK(V+

λ ) was described in [MTV3] as the algebra of functions

on a suitable space of quasiexponentials {eKiu(uλi + Σi1u
λi−1 + · · · + Σiλi

), i = 1, . . . , N}.
In this paper we give a similar description for BK(V−λ ) and study the limit of the algebras
BK(V+

λ ), BK(V−λ ) as all coordinates of the vector K tend to infinity so that Ki/Ki+1 → ∞
for all i. We show that in this limit both Bethe algebras B∞(V+

λ ), B∞(V−λ ) can be identified
with the algebra of the equivariant cohomology H∗

GLn
(Fλ,C) of the partial flag variety Fλ

parametrizing subspaces

0 = F0 ⊂ F1 ⊂ · · · ⊂ FN = Cn,

dim Fi/Fi−1 = λi. This identification was motivated for us by the considerations in [RV],
[RSV] where the equivariant cohomology of the partial flag varieties were used to construct
certain conformal blocks in V ⊗n.

Our identification of the Bethe algebra with the algebra of multiplication operators of
the equivariant cohomology H∗

GLn
(Fλ,C) can be considered as a degeneration of the recent

description in [O] of the equivariant quantum cohomology of the partial flag varieties as the
Bethe algebra of a suitable Yangian model associated with V ⊗n, cf. [BMO].

In Section 2 we introduce the Bethe algebra. Section 3 contains the main results — The-
orems 3.3, 3.4. Theorems 3.3 identifies the algebra of equivariant cohomology H∗

GLn
(Fλ,C)

and the Bethe algebras B∞(V+
λ ), B∞(V−λ ). Theorem 3.4 says that the Shapovalov pairing of

V+
λ and V−λ is nondegenerate. In Section 4 we show that the isomorphisms of Theorem 3.3

are limiting cases of a geometric Langlands correspondence. In Section 5 we explain how
the Bethe algebras B∞(V+

λ ), B∞(V−λ ) are related to the quantum equivariant cohomology
QHGLn×C∗(T

∗Fλ) of the cotangent bundle T ∗Fλ of the flag variety Fλ. Appendix contains
the topological description of glN [t]-actions on ⊕λH∗

GLn
(Fλ,C).

We thank S. Loktev and A.Okounkov for useful discussions.

2. Representations of current algebra glN [t]

2.1. Lie algebra glN . Let eij, i, j = 1, . . . , N , be the standard generators of the Lie algebra
glN satisfying the relations [eij, esk] = δjseik − δikesj. We denote by h ⊂ glN the subalge-
bra generated by eii, i = 1, . . . , N . For a Lie algebra g , we denote by U(g) the universal
enveloping algebra of g.

A vector v of a glN -module M has weight λ = (λ1, . . . , λN) ∈ CN if eiiv = λiv for
i = 1, . . . , N . We denote by Mλ ⊂ M the weight subspace of weight λ.

Let V = CN be the standard vector representation of glN with basis v1, . . . , vN such that
eijvk = δjkvi for all i, j, k. A tensor power V ⊗n of the vector representation has a basis given
by the vectors vi1 ⊗ · · · ⊗ vin , where ij ∈ {1, . . . , N}.

Every sequence (i1, . . . , in) defines a decomposition I = (I1, . . . , IN) of {1, . . . , n} into
disjoint subsets I1, . . . , IN : Ij = {k | ik = j}. We denote the basis vector vi1 ⊗ · · · ⊗ vin by
vI .
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Let
V ⊗n =

⊕

λ∈ZN
>0, |λ|=n

(V ⊗n)λ

be the weight decomposition. Denote Iλ the set of all indices I with |Ij| = λj, j = 1, . . . N .
The vectors {vI , I ∈ Iλ}, form a basis of (V ⊗n)λ. The dimension of (V ⊗n)λ equals the
multinomial coefficient dλ := n!

λ1!...λN !
.

Let S be the bilinear form on V ⊗n such that the basis {vI} is orthonormal. We call S the
Shapovalov form.

2.2. Current algebra glN [t]. Let glN [t] = glN ⊗ C[t] be the Lie algebra of glN -valued
polynomials with pointwise commutator. We identify glN with the subalgebra glN ⊗ 1 of
constant polynomials in glN [t]. Hence, any glN [t]-module has the canonical structure of a
glN -module.

The Lie algebra glN [t] has a basis eij ⊗ tr, i, j = 1, . . . , N , r ∈ Z>0, such that

[eij ⊗ tr, esk ⊗ tp] = δjseik ⊗ tr+p − δikesj ⊗ tr+p .

It is convenient to collect elements of glN [t] in generating series of a variable u. For g ∈ glN ,
set g(u) =

∑∞
s=0(g ⊗ ts)u−s−1.

The subalgebra zN [t] ⊂ glN [t] with basis
∑N

i=1 eii ⊗ tr, r ∈ Z>0, is central.

2.3. The glN [t]-modules V±. Let Sn be the permutation group on n elements. For an Sn-
module M we denote by M+ (resp. M−) the subspace of Sn-invariants (resp. antiinvariants).

The group Sn acts on C[z] := C[z1, . . . , zn] by permuting the variables. Denote by σs(z),
s = 1, . . . , n, the sth elementary symmetric polynomial in z1, . . . , zn.

Let V be the vector space of polynomials in variables z with coefficients in V ⊗n:

V = V ⊗n⊗C C[z] .

The symmetric group Sn acts on V by permuting the factors of V ⊗n and the variables z
simultaneously,

σ
(
v1 ⊗ · · · ⊗ vn ⊗ p(z1, . . . , zn)

)
= v(σ−1)1⊗ · · · ⊗ v(σ−1)n

⊗ p(zσ1 , . . . , zσn) , σ ∈ Sn .

We are interested in the subspaces V+,V− ⊂ V of Sn-invariants and antiinvariants.
The space V is a glN [t]-module,

g ⊗ tr
(
v1 ⊗ · · · ⊗ vn ⊗ p(z)) =

n∑
s=1

v1 ⊗ · · · ⊗ gvs ⊗ · · · ⊗ vn ⊗ zr
sp(z) .

The image of the subalgebra U(zN [t]) ⊂ U(glN [t]) in End(V) is the algebra of operators of
multiplication by elements of C[z]+. The glN [t]-action on V commutes with the Sn-action.
Hence, V+ and V− are glN [t]-submodules of V . The subspaces V+ and V− are free C[z]+-
modules of rank Nn.

Consider the glN -weight decompositions

V+ = ⊕λ∈ZN
>0,|λ|=nV+

λ , V− = ⊕λ∈ZN
>0,|λ|=nV−λ .
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For any λ, the subspaces V+
λ , and V−λ are free C[z]+-modules of rank dλ.

Denote by 1
D
V− the vector space of all V ⊗n-valued rational functions of the form 1

D
x,

x ∈ V−, D =
∏

16i<j6n(zj − zi). The Shapovalov form induces a C[z]+-bilinear map

S+− : V+ ⊗ 1

D
V− → C[z]+.

The glN [t]-module structures on V+ and 1
D
V− are contravariantly related through the Shapo-

valov form,

S+−
(
(eij ⊗ tr)x,

1

D
y
)

= S+−
(
x, (eji ⊗ tr)

1

D
y
)

for all i, j, x, y.

2.4. Bethe algebra. Given an N × N matrix A with possibly noncommuting entries aij,
we define its row determinant to be

rdet A =
∑
σ∈SN

(−1)σ a1σ(1)a2σ(2) . . . aNσ(N) .

Let K = (K1, . . . , KN) be a sequence of distinct complex numbers. Let ∂ be the operator
of differentiation in a variable u. Define the universal differential operator DK by

DK = rdet




∂ −K1 − e11(u) −e21(u) . . . −eN1(u)
−e12(u) ∂ −K2 − e22(u) . . . −eN2(u)

. . . . . . . . . . . .
−e1N(u) −e2N(u) . . . ∂ −KN − eNN(u)


 .

It is a differential operator in the variable u, whose coefficients are formal power series in
u−1 with coefficients in U(glN [t]),

DK = ∂N +
N∑

i=1

BK
i (u) ∂N−i , BK

i (u) =
∞∑

j=0

BK
ij u−j

and BK
ij ∈ U(glN [t]) for i = 1, . . . , N , j > 0.

Denote by BK the unital subalgebra of U(glN [t]) generated by BK
ij , with i = 1, . . . , N ,

j > 0. The subalgebra BK is called the Bethe algebra with parameters K.

Theorem 2.1 ([T], [CT], [MTV1]). The algebra BK is commutative. The algebra BK com-
mutes with the subalgebra U(h) ⊂ U(glN [t]). If K = 0, then the algebra BK=0 commutes with
the subalgebra U(glN) ⊂ U(glN [t]). ¤

Each element BK
ij is a polynomial in K1, . . . , KN . We define B∞ to be the unital subalgebra

of U(glN [t]) generated by the leading terms of the elements BK
ij , i = 1, . . . , N , j > 0, as K

tends to infinity so that Ki/Ki+1 →∞ for all i.

Lemma 2.2. The algebra B∞ is the unital subalgebra generated by the elements eii⊗ tj with
i = 1, . . . , N , j > 0.

Proof. We have BK
i0 = (−1)i K1 . . . Ki

(
1 + o(1)

)
, and

BK
ij = (−1)i K1 . . . Ki−1

( N∑
m=i

emm ⊗ tj−1 + o(1)
)
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for j > 0 , where o(1) stands for the terms vanishing as K tends to infinity. ¤

Remark. There are N ! asymptotic zones labeled by elements of SN in which K may tend
to infinity. For σ ∈ SN we may assume that all coordinates of K tend to infinity and
Kσi

/Kσi+1
→ ∞ for all i. It is easy to see that the limiting Bethe algebra B∞ does not

depend on σ.

The algebra B∞ is commutative and contains U(zN [t]). The algebra B∞ commutes with
the subalgebra U(h) ⊂ U(glN [t]).

As a subalgebra of U(glN [t]), the Bethe algebra BK acts on any glN [t]-module M . Since
BK commutes with U(h), it preserves the weight subspaces Mλ. If K = 0, then BK=0

preserves the singular weight subspaces M sing
λ . We will study the action of B∞ on the weight

subspaces V+
λ , V−λ .

Lemma 2.3. The element
∑N

i=1 eii ⊗ tr ∈ U(zN [t]) acts on V as the operator of multiplica-
tion by

∑n
s=1 zr

s .

If L ⊂ M is a BK-invariant subspace, then the image of BK in End(L) will be called the
Bethe algebra of H and denoted by BK(L).

3. Equivariant cohomology of partial flag varieties

3.1. Partial flag varieties. For λ ∈ ZN
>0, |λ| = n, consider the partial flag variety Fλ

parametrizing subspaces

0 = F0 ⊂ F1 ⊂ · · · ⊂ FN = Cn

with dim Fi/Fi−1 = λi, i = 1, . . . , N .
Let T n ⊂ GLn be the torus of diagonal matrices. The groups T n ⊂ GLn(C) act on

Cn and hence on Fλ. The fixed points FT n

λ of the torus action are the coordinate flags
FI = (F0 ⊂ · · · ⊂ FN), I = (I1, . . . , IN) ∈ Iλ, where Fi is the span of the basis vectors
vj ∈ Cn with j ∈ I1 ∪ · · · ∪ Ii. The fixed points are in a one-to-one correspondence with the
set Iλ and hence with the basis in Vλ.

We consider the GLn(C)-equivariant cohomology

Hλ = H∗
GLn

(Fλ,C).

Denote by Γi = {γi1, . . . , γiλi
} the set of the Chern roots of the bundle over Fλ with fiber

Fi/Fi−1. Denote by z = {z1, . . . , zn} the Chern roots corresponding to the factors of the
torus T n. Then

(3.1) Hλ = C[z; Γ1; . . . ; ΓN ]SN×Sλ1
×···×SλN

/〈 N∏
i=1

λi∏
j=1

(1 + uγij) =
n∏

i=1

(1 + uzi)
〉

.

The cohomology Hλ is a module over H∗
GLn

(pt,C) = C[z]+.
Let JH ⊂ Hλ be the ideal generated by the polynomials σi(z), i = 1, . . . , n. Then

Hλ/JH = H∗(Fλ,C).
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3.2. Integration over Fλ. We will need the integration map
∫

: Hλ → H∗
GLn

(pt,C). The
following formula (3.2) gives the integration map in terms of the fixed point set FT n

λ .
For a subset A ⊂ {1, . . . , N} denote zA = {za, a ∈ A}. For I = (I1, . . . , IN) ∈ Iλ denote

R(zI1|zI2| . . . |zIm) =
∏
i<j

∏

a∈Ii, b∈Ij

(zb − za).

The Atiyah-Bott equivariant localization theorem [AB] says that for any [h(z, Γ1, . . . , ΓN)] ∈
Hλ,

(3.2)

∫
[h] =

∑
I∈Iλ

h(z, zI1 , . . . , zIN
)

R(zI1|zI2| . . . |zIN
)

.

Clearly, the right hand side in (3.2) lies in C[z]+. The integration map induces the pairing

( , ) : Hλ ⊗Hλ → C[z]+, [h]⊗ [g] 7→
∫

[hg].

After factorization by the ideal JH we obtain the nondegenerate Poincare pairing

( , ) : H∗(Fλ,C)⊗H∗(Fλ,C) → C.

3.3. Hλ and V±.
Lemma 3.1. The maps

i+λ : Hλ → V+
λ , [h(z, Γ1, . . . , ΓN)] 7→

∑
I∈Iλ

vI ⊗ h(z,zI1 , . . . , zIN
),

i−λ : Hλ → 1

D
V−λ , [h(z, Γ1, . . . , ΓN)] 7→

∑
I∈Iλ

vI ⊗ h(z,zI1 , . . . , zIN
)

R(zI1|zI2| . . . |zIN
)

are well-defined isomorphisms of C[z]+-modules. ¤
Proof. If h belongs to the ideal of relations in (3.1) then h(z, zI1 , ..., zIN

) = 0 for any I,
because the Γi = zIi

substitution makes the generators of the ideal identities. This proves
well-definedness.

Consider the C[z]+-module C[z]Sλ1
×...×SλN of polynomials symmetric in the first λ1 vari-

ables, the next λ2 variables, etc. In Schubert calculus it is known that this module is free of
rank dλ, and that it is isomorphic to Hλ under the correspondence

(3.3) p ∈ C[z]Sλ1
×...×SλN ←→ [

p(Γ1, . . . , ΓN)
] ∈ Hλ.

An element
∑

I∈Iλ
vI ⊗ pI(z) of Vλ belongs to V+

λ , if and only if pI(z) = p(zI1 , . . . , zIN
) for

a polynomial p ∈ C[z]Sλ1
×...×SλN . This shows that V+

λ is isomorphic to C[z]Sλ1
×...×SλN , and

that i+λ is the composition of this isomorphism with (3.3).
A similar argument shows that i−λ is also an isomorphism. ¤

Corollary 3.2. The Shapovalov form and the Poincare pairing are related by the formula

S+−(i+[h], i−[g]) =

∫
[h][g] .

¤
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Let A be a commutative algebra. The algebra A considered as an A-module is called the
regular representation of A. Here is our main result.

Theorem 3.3.

(i) The maps ξ±λ : eii ⊗ tr|V±λ 7→
∑λi

j=1 γr
ij define isomorphisms of the algebras B∞(V±λ )

and Hλ .
(ii) The maps ξ+

λ , i+λ identify the B∞(V+
λ )-module V+

λ with the regular representation of
Hλ.

(iii) The maps ξ−λ , i−λ identify the B∞(V−λ )-module V−λ with the regular representation of
Hλ.

The theorem follows from Lemmas 2.2, 2.3 and 3.1.

3.4. Cohomology as glN [t]-modules. Let J be the ideal of C[z]+ generated by the ele-
mentary symmetric functions σi(z), i = 1, . . . , n. Define J+ = JV+ and J− = 1

D
JV−.

Clearly, J+ is a glN [t]-submodule of V+ and J− is a glN [t]-submodule of 1
D
V−. The glN [t]-

module V+/J+ is graded and has dimension Nn over C, see [MTV2]. Similarly, 1
D
V−/J− is

a graded glN [t]-module of the same dimension.

Theorem 3.4. The Shapovalov form establishes a nondegenerate pairing

S+− : V+/J+ ⊗ 1

D
V−/J− → C.

The theorem follows from Lemmas 3.1, 3.2 and the nondegeneracy of the Poincare pairing.

Corollary 3.5. The glN [t]-modules V+/J+ and 1
D
V−/J− are contravariantly related through

the Shapovalov form, S+−
(
(eij ⊗ tr)x, 1

D
y
)

= S+−
(
x, (eji ⊗ tr) 1

D
y
)

for all i, j, x, y.

Let Wn be the glN [t]-module generated by a vector wn with the defining relations:

eii(u)wn = δ1i
n

u
wn , i = 1, . . . , N ,

eij(u)wn = 0 , 1 6 i < j 6 N ,

(eji ⊗ 1)nδ1i+1wn = 0 , 1 6 i < j 6 N .

As an slN [t]-module, the module Wn is isomorphic to the Weyl module from [CL], [CP],
corresponding to the weight nω1, where ω1 is the first fundamental weight of slN .

In [MTV2] an isomorphism of V+/J+ and the Weyl module Wn is constructed.

Corollary 3.6. The Shapovalov form S+− establishes an isomorphism of 1
D
V−/J− and the

contravariantly dual of the Weyl module Wn.

Here is an application of this fact. For λ ∈ ZN
>0, |λ| = n, λ1 > · · · > λN , denote

(
1

D
V−/J−)sing

λ = {v ∈ 1

D
V−/J− | eijv = 0 for i < j, eiiv = λiv for i = 1, . . . , N} .
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This is a graded space. Denote by
(
( 1

D
V−/J−)sing

λ

)
k

the subspace of all elements of z-degree
k. Define the graded character by the formula

ch
(
(

1

D
V−/J−)sing

λ

)
=

∑

k

qk dim((
1

D
V−/J−)sing

λ )k.

Corollary 3.7. We have

(3.4) ch
(
(

1

D
V−/J−)sing

λ

)
=

(q)n

∏
16i<j6N(1− qλi−λj+j−i)
∏N

i=1(q)λi+N−i

q−
∑N

i=1 (i−1)λi ,

where (q)a =
∏a

j=1(1− qj) .

The corollary follows from Lemma 2.2 in [MTV2] and Corollary 3.6.

The isomorphisms

(3.5) i+ =
⊕
λ

i+λ :
⊕
λ

Hλ → V+, i− =
⊕
λ

i−λ :
⊕
λ

Hλ → 1

D
V−

induce two graded glN [t]-module structures on ⊕λ Hλ denoted by ρ+ and ρ−, respectively.
These module structures descend to two graded glN [t]-module structures on the cohomology
with constant coefficients

H(C) :=
⊕

λ∈ZN
>0, |λ|=n

H∗(Fλ,C) ,

denoted by the same letters ρ+ and ρ−.

Corollary 3.8. The glN [t]-module H(C) with the ρ+-structure is isomorphic to the Weyl
module Wn. The glN [t]-module H(C) with the ρ−-structure is isomorphic to the contravariant
dual of the Weyl module Wn.

The ρ± structures can be defined topologically, see [RSV] and Appendix. The ρ−-structure
appears to be more preferable. It was used in [RV], [RSV] to construct conformal blocks in
the tensor power V ⊗n.

4. Isomorphisms i±λ as a geometric Langlands correspondence

4.1. The V+
λ case. The following geometric description of the BK-action on V+

λ was given
in [MTV3] as an example of the geometric Langlands correspondence.

Let K = (K1, . . . , KN) be a sequence of distinct complex numbers. Let λ ∈ ZN
>0 , |λ| = n.

Introduce the polynomial algebras

C[Σ] := C[Σij, i = 1, . . . , N, j = 1, . . . , λi] , C[σ] := C[σ1, . . . , σn] .

Define

Σi(u) = eKiu (uλi + Σi1u
λi−1 + · · ·+ Σiλi

) , i = 1, . . . , N .
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For arbitrary functions g1(u), . . . , gN(u), introduce the Wronskian determinant by the for-
mula

Wr(g1(u), . . . , gN(u)) = det




g1(u) g′1(u) . . . g
(N−1)
1 (u)

g2(u) g′2(u) . . . g
(N−1)
2 (u)

. . . . . . . . . . . .

gN(u) g′N(u) . . . g
(N−1)
N (u)


 .

We have

Wr(Σ1(u), . . . , ΣN(u)) = e
∑N

i=1 Kiu
∏

16i<j6N

(Kj −Ki) ·
(
un +

n∑
s=1

(−1)s AK
s (Σ) un−s

)
,

where AK
1 (Σ), . . . , AK

n (Σ) ∈ C[Σ]. Define an algebra homomorphism

WK : C[σ] → C[Σ], σs 7→ AK
s (Σ) .

The homomorphism defines a C[σ]-module structure on C[Σ].

Define a differential operator DK
Σ by

DK
Σ =

1

Wr(Σ1(u), . . . , ΣN(u))
rdet




Σ1(u) Σ ′
1(u) . . . Σ

(N)
1 (u)

Σ2(u) Σ ′
2(u) . . . Σ

(N)
2 (u)

. . . . . . . . . . . .
1 ∂ . . . ∂N


 .

It is a differential operator in the variable u, whose coefficients are formal power series in
u−1 with coefficients in C[Σ],

(4.1) DK
Σ = ∂N +

N∑
i=1

FK
i (u) ∂N−i , FK

i (u) =
∞∑

j=0

FK
ij u−j ,

and FK
ij ∈ C[Σ], i = 1, . . . , N , j > 0.

Theorem 4.1 ([MTV3]). The map

τK+
λ : BK

ij |V+
λ
7→ FK

ij

defines an isomorphism of the Bethe algebra BK(V+
λ ) and the algebra C[Σ]. The isomorphism

τK+
λ becomes an isomorphism of the U(zN [t])|V+

λ
-module BK(V+

λ ) and the C[σ]-module C[Σ]

if we identify the algebras U(zN [t])|V+
λ

and C[σ] by the map .σs[z] 7→ σs, s = 1, . . . , n.

Denote
v+ =

∑
I∈Iλ

vI ∈ V+
λ .

Theorem 4.2 ([MTV3]). The map

µK+
λ : BK

ij v+ 7→ FK
ij ,

defines a linear isomorphism V+
λ → C[Σ]. The maps τK+

λ , µK+
λ give an isomorphism of the

BK(V+
λ )-module V+

λ and the regular representation of the algebra C[Σ].
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4.2. The limit of τK+
λ and µK+

λ as K →∞. Let all the coordinates of the vector K tend
to infinity so that Ki/Ki+1 →∞ for i = 1, . . . , N − 1. Then the homomorphism WK has a
limit W∞. Namely, define A∞

s (Σ) by the formula

N∏
i=1

(uλi + Σi1u
λi−1 + · · ·+ Σiλi

) = un +
n∑

s=1

(−1)s A∞
s (Σ) un−s .

Then
(4.2) W∞ : C[σ] → C[Σ], σi 7→ A∞

s (Σ) .

Define algebra isomorphisms

(4.3) C[σ] → C[z]+, η : C[Σ] → Hλ ,

by the agreement that the first isomorphism sends σs to σs(z) for all s , and the second one
sends (−1)sΣis to the sth elementary symmetric function of γi1, . . . , γiλi

for all i, s.

Lemma 4.3. The isomorphisms (4.3) identify the C[σ]-module C[Σ] defined by formula
(4.2) and the C[z]+-module Hλ.

Let pi(u) = uλi + Σi1u
λi−1 + · · ·+ Σiλi

for all i = 1, . . . N . Notice that

(4.4) η
(
pi(u)

)
=

λi∏
j=1

(u− γij) , η
( p′i(u)

pi(u)

)
=

∞∑
r=0

λi∑
j=1

γr
ij u−r−1 .

Lemma 4.4. We have FK
i0 = (−1)i K1 . . . Ki

(
1 + o(1)

)
, and

∞∑
j=1

FK
ij u−j = (−1)i K1 . . . Ki−1

( N∑
m=i

p′m(u)

pm(u)
+ o(1)

)
,

where o(1) stands for the terms vanishing as K tends to infinity.

Proof. Let yi(u) = Wr
(
Σi(u), . . . ΣN(u)

)
, i = 1, . . . N . Then the operator DK

Σ can be
factorized:

(4.5) DK
Σ =

(
∂ − y′1(u)

y1(u)
+

y′2(u)

y2(u)

)
. . .

(
∂ − y′N−1(u)

yN−1(u)
+

y′N(u)

yN(u)

)(
∂ − y′N(u)

yN(u)

)
.

Since yi(u) = (−1)(N−i)(N−i−1)/2 KN−i
i . . . KN−1

(
pi(u) . . . pN(u) + o(1)

)
e

∑N
m=i Kmu as K

tends to infinity, the claim follows from formulae (4.1) and (4.5). ¤
Theorem 4.5.

(i) The map η ◦ τK+
λ : BK(V+

λ ) → Hλ tends to the isomorphism ξ+
λ : B∞(V+

λ ) → Hλ,

see Theorem 3.3, as K tends to infinity.

(ii) The map η ◦ µK+
λ : V+

λ → Hλ tends to the isomorphism (i+λ )−1 : V+
λ → Hλ, see

Lemma 3.1, as K tends to infinity.

Proof. The statement follows from the definitions of the maps, Lemma 4.4, formulae (4.4),
and the proof of Lemma 2.2. ¤
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4.3. The V−λ case. Theorem 3.4 allows us to establish a geometric description of the BK-
action on 1

D
V− which is analogous to the description of the BK-action on V+.

Theorem 4.6. The map
τK−
λ : BK

ij | 1
D
V−λ 7→ FK

ij

defines an isomorphism of the Bethe algebra BK( 1
D
V−λ ) and the algebra C[Σ]. The isomor-

phism τK−
λ becomes an isomorphism of the U(zN [t])| 1

D
V−λ -module BK( 1

D
V−λ ) and the C[σ]-

module C[Σ] if we identify the algebras U(zN [t])| 1
D
V−λ and C[σ] by the map σs[z] 7→ σs,

s = 1, . . . , n.

Denote
v− =

∑
I∈Iλ

vI ⊗ 1

R(zI1|zI2| . . . |zIN
)
∈ 1

D
V−λ .

Theorem 4.7. The map
µK−

λ : BK
ij v− 7→ FK

ij ,

defines a linear isomorphism 1
D
V−λ → C[Σ]. The maps τK−

λ , µK−
λ give an isomorphism of

the BK( 1
D
V−λ )-module 1

D
V−λ and the regular representation of the algebra C[Σ].

The proofs of Theorems 4.6 and 4.7 are basically word by word the same as the proofs of
Theorems 4.1 and 4.2 in [MTV3].

It is interesting to note that the element v− becomes a conformal block under certain
conditions and satisfies a KZ equation with respect to z, see [V], [RV], [RSV].

4.4. The limit of τK−
λ and µK−

λ as K →∞. Let all the coordinates of the vector K tend
to infinity so that Ki/Ki+1 →∞ for i = 1, . . . , N − 1.

Theorem 4.8.

(i) The map η ◦ τK−
λ : BK(V−λ ) → Hλ tends to the isomorphism ξ−λ : B∞(V−λ ) → Hλ,

see Theorem 3.3, as K tends to infinity.

(ii) The map η ◦ µK−
λ : V−λ → Hλ tends to the isomorphism (i−λ )−1 : V−λ → Hλ, see

Lemma 3.1, as K tends to infinity.

The proof is similar to the proof of Theorem 4.5.

4.5. The ( 1
D
V−)sing

λ case. Formula (3.4) for the graded character of ( 1
D
V−/J−)sing

λ is the

analog of the formula for the graded character of (V+/J+)sing
λ in [MTV2]. The latter formula

was used in [MTV2] to obtain a geometric description of the BK=0-action on (V+)sing
λ . Using

formula (3.4) we can obtain a similar geometric description of the BK=0-action on ( 1
D
V−)sing

λ .
Let λ ∈ ZN

>0, λ1 > · · · > λN , |λ| = n. Introduce P = {d1, . . . , dN}, di = λi + N − i, i =
1, . . . , N . Let

Σi(u) = udi +
∑

j=1, di−j /∈P

Σiju
di−j.

Consider the polynomial algebras

C[Σ] := C[Σij, i = 1, . . . , N, j ∈ {1, . . . , di}, di − j /∈ P ], C[σ] := C[σ1, . . . , σn].
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We have

Wr(Σ1(u), . . . , ΣN(u)) =
∏

16i<j6N

(dj − di) ·
(
un +

n∑
s=1

(−1)s As(Σ) un−s
)

,

where A1(Σ), . . . , An(Σ) ∈ C[Σ]. Define an algebra homomorphism

W : C[σ] → C[Σ] , σs 7→ As(Σ) .

The homomorphism defines a C[σ]-module structure on C[Σ]. Define a differential operator
DΣ by

DΣ =
1

Wr(Σ1(u), . . . , ΣN(u))
rdet




Σ1(u) Σ ′
1(u) . . . Σ

(N)
1 (u)

Σ2(u) Σ ′
2(u) . . . Σ

(N)
2 (u)

. . . . . . . . . . . .
1 ∂ . . . ∂N


 .

It is a differential operator in the variable u, whose coefficients are formal power series in
u−1 with coefficients in C[Σ],

DΣ = ∂N +
N∑

i=1

Fi(u) ∂N−i , Fi(u) =
∞∑
j=i

Fij u−j ,

and Fij ∈ C[Σ], i = 1, . . . , N , j > i.

Theorem 4.9. The map

τ−λ : BK=0
ij |( 1

D
V−)sing

λ
7→ Fij

defines an isomorphism of the Bethe algebra BK=0
(
( 1

D
V−)sing

λ

)
and the algebra C[Σ]. The

isomorphism τ−λ becomes an isomorphism of the U(zN [t])|( 1
D
V−)sing

λ
-module BK=0

(
( 1

D
V−)sing

λ

)

and the C[σ]-module C[Σ] if we identify the algebras U(zN [t])|( 1
D
V−)sing

λ
and C[σ] by the map

σs[z] 7→ σs, s = 1, . . . , n.

Fix a vector v− ∈ ( 1
D
V−)sing

λ of degree
∑N

i=1(1 − i)λi. By formula (3.4) such a vector is
unique up to proportionality.

Theorem 4.10. The map

µ−λ : BK=0
ij v− 7→ Fij,

defines a linear isomorphism ( 1
D
V−)sing

λ → C[Σ]. The maps τ−λ , µ−λ give an isomorphism of

the BK=0
(
( 1

D
V−)sing

λ

)
-module ( 1

D
V−)sing

λ and the regular representation of the algebra C[Σ].

The proofs of Theorems 4.9 and 4.10 are word by word the same as the proofs of Theo-
rems 5.3 and 5.6 in [MTV2].
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5. Relations with quantum cohomology

In lectures [O] Okounkov, in particular, considers the equivariant quantum cohomology
QHGLn×C∗(T

∗Fλ) of the cotangent bundle T ∗Fλ of a flag variety Fλ. More precisely, he
considers the standard equivariant cohomology H∗

GLn×C∗(T
∗Fλ) as a module over the algebra

of quantum multiplication and described this module as the Yangian Bethe algebra of the
XXX model associated with V ⊗n.

The algebra H∗
GLn×C∗(T

∗Fλ) has n+1 equivariant parameters z1, . . . , zn, u. The parameters
z1, . . . , zn correspond to the GLn-action on T ∗Fλ and u corresponds of the C∗-action on
T ∗Fλ stretching the cotangent vectors. The operators of quantum multiplication depend on
additional parameters q1, . . . , qN corresponding to quantum deformation.

It is well-known how the Yangian Bethe algebra degenerates into the Gaudin Bethe algebra,
see for example [T], [MTV1]. This degeneration construction gives us the following fact.
Introduce new parameters K1, . . . , KN by the formula qi = 1 + Kiu, i = 1, . . . , N , and
consider the limit of the algebra of quantum multiplication on H∗

GLn×C∗(T
∗Fλ) as u → 0.

Then this limit is isomorphic to the BK(V+
λ )-module V+

λ . This limit is also isomorphic to
the BK( 1

D
V−λ )-module 1

D
V−λ .

Appendix: Topological description of the glN [t]-module structure
on the cohomology of flag manifolds

Given λ ∈ ZN
>0 define

ea,a+1λ = (λ1, . . . , λa−1, λa + 1, λa+1 − 1, λa+2, . . . , λN) ,

ea+1,aλ = (λ1, . . . , λa−1, λa − 1, λa+1 + 1, λa+2, . . . , λN) ,

λ′ = (λ1, . . . , λa−1, λa, 1, λa+1 − 1, λa+2, . . . , λN) ,

λ′′ = (λ1, . . . , λa−1, λa − 1, 1, λa+1, λa+2, . . . , λN) .

Let A′ (resp. B′, C ′) be the rank λa (resp. rank 1, λa+1 − 1) bundle over Fλ′ whose fiber
over the flag L1 ⊂ . . . ⊂ LN+1 is La/La−1 (resp. La+1/La, La+2/La+1). Let A′′ (resp.
B′′, C ′′) be the rank λa − 1 (resp. rank 1, λa+1) bundle over Fλ′′ whose fiber over the flag
L1 ⊂ . . . ⊂ LN+1 is La/La−1 (resp. La+1/La, La+2/La+1).

Consider the obvious projections

Fλ

π′1←− Fλ′
π′2−→ Fea,a+1λ and Fλ

π′′1←− Fλ′′
π′′2−→ Fea+1,aλ .

For an equivariant map f (eg. f = π′1 or π
′′
1 ) the induced pull-back map on equivariant

cohomology will be denoted by f ∗. For an equivariant fibration f (eg. f = π
′
2 or π

′′
2 ) its

Gysin map (a.k.a. push-forward map, or integration along the fibers map) will be denoted by
f∗. The equivariant Euler class of a vector bundle X will be denoted by e(X). The following
theorem was announced in [RSV].

Theorem A.1.

(i) The map ρ−(ea,a+1 ⊗ tj) : Hλ → Hea,a+1λ

x 7→ π′2∗
(
π
′∗
1 (x) · e(Hom(B′, C ′)

) · e(B′)j
)
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makes the diagram

Hλ
ρ−(ea,a+1⊗ tj)−−−−−−−−−−−−→ Hea,a+1λyi−

yi−

1
D
V−λ

ea,a+1⊗ tj−−−−−−−−−−−−→ 1
D
V−ea,a+1λ

commutative.

(ii) The map ρ−(ea+1,a ⊗ tj) : Hλ → Hea+1,aλ

x 7→ π′′2∗
(
π
′′∗
1 (x) · e(Hom(A′′, B′′)

) · e(B′′)j
)

makes the diagram

Hλ
ρ−(ea+1,a⊗ tj)−−−−−−−−−−−−→ Hea+1,aλyi−

yi−

1
D
V−λ

ea+1,a⊗ tj−−−−−−−−−−−−→ 1
D
V−ea+1,aλ

commutative.

Proof. We will prove part (i), the proof of part (ii) is similar. Let K be the index in Iea,a+1λ

with K1 = {1, . . . , (ea,a+1λ)1}, K2 = {(ea,a+1λ)1 + 1, . . . , (ea,a+1λ)1 + (ea,a+1λ)2}, etc.
Consider x = [h(z, Γ1, . . . , ΓN)] ∈ Hλ. Its i−-image is

∑
I∈Iλ

vI ⊗ h(z,zI1 , . . . , zIN
)

R(zI1| . . . |zIN
)

.

The coefficient of vK of the ea,a+1 ⊗ tj-image of this is

∑
i∈Ka

h(z,zK1 , . . . , zKa−1 , zKa−i,zKa+1∪i,zKa+2 , . . . , zKN
) zj

i

R(zK1 , . . . , zKa−1 ,zKa−i, zKa+1∪i,zKa+2 , . . . , zKN
)

=(A.1)

=
1

R(zK1| . . . |zKN
)

∑
i∈Ka

h(z,zK1 , . . . , zKa−i, zKa+1∪i, . . . , zKN
) zj

i R(zi|zKa+1)

R(zKa−i, zi)
.

On the other hand, the ρ−(ea,a+1 ⊗ tj)-image of x (using a version of the Atiyah-Bott local-
ization formula for π′2∗) is

∑

δ∈∆a

h(z, ∆1, . . . , ∆a−1, ∆a − δ, δ, ∆a+1, . . . , ∆N)R(δ|∆a+1)δ
j

R(∆a − δ|δ) ,

where we denoted the Chern roots of the natural bundles over Fea,a+1λ by ∆1, . . . , ∆N . The
coefficient of vK of its i−-image is (A.1). Thus the theorem is proved. ¤

The topological interpretation of generators of the ρ+-representation is similar, its proof
is left to the reader.
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Theorem A.2.

(i) For the map ρ+(ea,a+1 ⊗ tj) : Hλ → Hea,a+1λ

x 7→ π′2∗
(
π
′∗
1 (x) · e(Hom(A′, B′)

) · e(B′)j
)

we have i+◦ ρ+(ea,a+1 ⊗ tj) = (ea,a+1 ⊗ tj) ◦ i+.

(ii) For the map ρ+(ea+1,a ⊗ tj) : Hλ → Hea+1,aλ

x 7→ π′′2∗
(
π
′′∗
1 (x) · e(Hom(B′′, C ′′)) · e(B′′)j

)

we have i+◦ ρ+(ea+1,a ⊗ tj) = (ea+1,a ⊗ tj) ◦ i+.

The glN [t]-module structures ρ± on
⊕

λ Hλ descend to glN [t]-module structures on H(C),
also denoted by ρ± in Section 3.4. The topological interpretation of the actions of ea,a+1⊗ tj

and ea+1,a⊗tj for these representations is the same as that for
⊕

λ Hλ given in Theorems A.1
and A.2.
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