COHOMOLOGY OF A FLAG VARIETY AS A BETHE ALGEBRA

R. RIMÁNYI^{*,1}, V. SCHECHTMAN[†], V. TARASOV^{\$}, A. VARCHENKO^{*,2}

*Department of Mathematics, University of North Carolina at Chapel Hill Chapel Hill, NC 27599-3250, USA

[†] Insititut de Mathématiques de Toulouse, 118 Route de Narbonne, Univesité Paul Sabatier, 31062 Toulouse, France

[•]Department of Mathematical Sciences, Indiana University – Purdue University Indianapolis 402 North Blackford St, Indianapolis, IN 46202-3216, USA

> [•]St. Petersburg Branch of Steklov Mathematical Institute Fontanka 27, St. Petersburg, 191023, Russia

> > To the memory of V.I. Arnold

ABSTRACT. We interpret the equivariant cohomology $H^*_{GL_n}(\mathcal{F}_{\lambda}, \mathbb{C})$ of a partial flag variety \mathcal{F}_{λ} parametrizing subspaces $0 = F_0 \subset F_1 \subset \cdots \subset F_N = \mathbb{C}^n$, dim $F_i/F_{i-1} = \lambda_i$, as the Bethe algebra $\mathcal{B}^{\infty}(\mathcal{V}^{\pm}_{\lambda})$ of the \mathfrak{gl}_N -weight subspace $\mathcal{V}^{\pm}_{\lambda}$ of a $\mathfrak{gl}_N[t]$ -module \mathcal{V}^{\pm} .

1. INTRODUCTION

A Bethe algebra of a quantum integrable model is a commutative algebra of linear operators (Hamiltonians) acting on the space of states of the model. An interesting problem is to describe the Bethe algebra as the algebra of functions on a suitable scheme. Such a description can be considered as an instance of the geometric Langlands correspondence, see [MTV2], [MTV3]. The \mathfrak{gl}_N Gaudin model is an example of a quantum integrable model [G1], [G2]. The Bethe algebra \mathcal{B}^K of the \mathfrak{gl}_N Gaudin model is a commutative subalgebra of the current algebra $U(\mathfrak{gl}_N[t])$. The algebra \mathcal{B}^K depends on the parameters $K = (K_1, \ldots, K_N) \in \mathbb{C}^N$. Having a $\mathfrak{gl}_N[t]$ -module M, one obtains the commutative subalgebra $\mathcal{B}^K(M) \subset \operatorname{End}(M)$ as the image of \mathcal{B}^K . The geometric interpretation of the algebra $\mathcal{B}^K(M)$ as the algebra of functions on a scheme leads to interesting objects. For example, the Bethe algebra $\mathcal{B}^{K=0}((\otimes_{s=1}^n L_{\Lambda_s}(z_s))_{\lambda}^{sing})$ of the subspace of singular vectors of the \mathfrak{gl}_N -weight λ of the tensor product of finite dimensional evaluation modules $\otimes_{s=1}^n L_{\Lambda_s}(z_s)$ is interpreted as the space of functions on the intersection of suitable Schubert cycles in a Grassmannian variety, see [MTV2]. This interpretation gives a relation between representation theory and Schubert calculus useful in both directions.

One of the most interesting $\mathfrak{gl}_N[t]$ -modules is the vector space $\mathcal{V} = V^{\otimes n} \otimes \mathbb{C}[z_1, \ldots, z_n]$ of $V^{\otimes n}$ -valued polynomials in z_1, \ldots, z_n , where $V = \mathbb{C}^N$ is the standard vector representation

 $^{^1\!}E\text{-mail:}$ rimanyi@email.unc.edu, supported in part by NSA grant CON:H98230-10-1-0171

 $^{^{\}dagger}E$ -mail: schechtman@math.ups-tlse.fr

^{*}E-mail: vt@math.iupui.edu, vt@pdmi.ras.ru, supported in part by NSF grant DMS-0901616

²E-mail: anv@email.unc.edu, supported in part by NSF grant DMS-0555327

of \mathfrak{gl}_N . The Lie algebra $\mathfrak{gl}_N[t]$ naturally acts on \mathcal{V} as well as the symmetric group S_n , which permutes the factors of $V^{\otimes n}$ and variables z_1, \ldots, z_n simultaneously. We denote by \mathcal{V}^+ and \mathcal{V}^- the S_n -invariant and antiinvariant subspaces of \mathcal{V} , respectively. The actions of $\mathfrak{gl}_N[t]$ and S_n on \mathcal{V} commute, so \mathcal{V}^+ and \mathcal{V}^- are $\mathfrak{gl}_N[t]$ -submodules of \mathcal{V} . The Bethe algebra \mathcal{B}^K preserves the \mathfrak{gl}_N -weight decompositions $\mathcal{V}^+ = \bigoplus_{\lambda} \mathcal{V}_{\lambda}^+$ and $\mathcal{V}^- = \bigoplus_{\lambda} \mathcal{V}_{\lambda}^-$, $\lambda = (\lambda_1, \ldots, \lambda_N) \in$ $\mathbb{Z}_{\geq 0}^N, |\lambda| = n$. The Bethe algebra $\mathcal{B}^K(\mathcal{V}_{\lambda}^+)$ was described in [MTV3] as the algebra of functions on a suitable space of quasiexponentials $\{e^{K_i u}(u^{\lambda_i} + \Sigma_{i1}u^{\lambda_i-1} + \cdots + \Sigma_{i\lambda_i}), i = 1, \ldots, N\}$. In this paper we give a similar description for $\mathcal{B}^K(\mathcal{V}_{\lambda}^-)$ and study the limit of the algebras $\mathcal{B}^K(\mathcal{V}_{\lambda}^+), \mathcal{B}^K(\mathcal{V}_{\lambda}^-)$ as all coordinates of the vector K tend to infinity so that $K_i/K_{i+1} \to \infty$ for all i. We show that in this limit both Bethe algebras $\mathcal{B}^\infty(\mathcal{V}_{\lambda}^+), \mathcal{B}^\infty(\mathcal{V}_{\lambda}^-)$ can be identified with the algebra of the equivariant cohomology $H_{GL_n}^*(\mathcal{F}_{\lambda}, \mathbb{C})$ of the partial flag variety \mathcal{F}_{λ} parametrizing subspaces

$$0 = F_0 \subset F_1 \subset \cdots \subset F_N = \mathbb{C}^n,$$

dim $F_i/F_{i-1} = \lambda_i$. This identification was motivated for us by the considerations in [RV], [RSV] where the equivariant cohomology of the partial flag varieties were used to construct certain conformal blocks in $V^{\otimes n}$.

Our identification of the Bethe algebra with the algebra of multiplication operators of the equivariant cohomology $H^*_{GL_n}(\mathcal{F}_{\lambda}, \mathbb{C})$ can be considered as a degeneration of the recent description in [O] of the equivariant quantum cohomology of the partial flag varieties as the Bethe algebra of a suitable Yangian model associated with $V^{\otimes n}$, cf. [BMO].

In Section 2 we introduce the Bethe algebra. Section 3 contains the main results — Theorems 3.3, 3.4. Theorems 3.3 identifies the algebra of equivariant cohomology $H^*_{GL_n}(\mathcal{F}_{\lambda}, \mathbb{C})$ and the Bethe algebras $\mathcal{B}^{\infty}(\mathcal{V}^+_{\lambda})$, $\mathcal{B}^{\infty}(\mathcal{V}^-_{\lambda})$. Theorem 3.4 says that the Shapovalov pairing of \mathcal{V}^+_{λ} and \mathcal{V}^-_{λ} is nondegenerate. In Section 4 we show that the isomorphisms of Theorem 3.3 are limiting cases of a geometric Langlands correspondence. In Section 5 we explain how the Bethe algebras $\mathcal{B}^{\infty}(\mathcal{V}^+_{\lambda})$, $\mathcal{B}^{\infty}(\mathcal{V}^-_{\lambda})$ are related to the quantum equivariant cohomology $QH_{GL_n\times\mathbb{C}^*}(T^*\mathcal{F}_{\lambda})$ of the cotangent bundle $T^*\mathcal{F}_{\lambda}$ of the flag variety \mathcal{F}_{λ} . Appendix contains the topological description of $\mathfrak{gl}_N[t]$ -actions on $\bigoplus_{\lambda} H^*_{GL_n}(\mathcal{F}_{\lambda}, \mathbb{C})$.

We thank S. Loktev and A. Okounkov for useful discussions.

2. Representations of current algebra $\mathfrak{gl}_N[t]$

2.1. Lie algebra \mathfrak{gl}_N . Let e_{ij} , i, j = 1, ..., N, be the standard generators of the Lie algebra \mathfrak{gl}_N satisfying the relations $[e_{ij}, e_{sk}] = \delta_{js} e_{ik} - \delta_{ik} e_{sj}$. We denote by $\mathfrak{h} \subset \mathfrak{gl}_N$ the subalgebra generated by e_{ii} , i = 1, ..., N. For a Lie algebra \mathfrak{g} , we denote by $U(\mathfrak{g})$ the universal enveloping algebra of \mathfrak{g} .

A vector v of a \mathfrak{gl}_N -module M has weight $\lambda = (\lambda_1, \ldots, \lambda_N) \in \mathbb{C}^N$ if $e_{ii}v = \lambda_i v$ for $i = 1, \ldots, N$. We denote by $M_{\lambda} \subset M$ the weight subspace of weight λ .

Let $V = \mathbb{C}^N$ be the standard vector representation of \mathfrak{gl}_N with basis v_1, \ldots, v_N such that $e_{ij}v_k = \delta_{jk}v_i$ for all i, j, k. A tensor power $V^{\otimes n}$ of the vector representation has a basis given by the vectors $v_{i_1} \otimes \cdots \otimes v_{i_n}$, where $i_j \in \{1, \ldots, N\}$.

Every sequence (i_1, \ldots, i_n) defines a decomposition $I = (I_1, \ldots, I_N)$ of $\{1, \ldots, n\}$ into disjoint subsets I_1, \ldots, I_N : $I_j = \{k \mid i_k = j\}$. We denote the basis vector $v_{i_1} \otimes \cdots \otimes v_{i_n}$ by v_I .

Let

$$V^{\otimes n} = \bigoplus_{\lambda \in \mathbb{Z}^N_{\geq 0}, \, |\lambda| = n} (V^{\otimes n})_{\lambda}$$

be the weight decomposition. Denote \mathcal{I}_{λ} the set of all indices I with $|I_j| = \lambda_j, \ j = 1, ..., N$. The vectors $\{v_I, I \in \mathcal{I}_{\lambda}\}$, form a basis of $(V^{\otimes n})_{\lambda}$. The dimension of $(V^{\otimes n})_{\lambda}$ equals the multinomial coefficient $d_{\lambda} := \frac{n!}{\lambda_1!...\lambda_N!}$.

Let \mathcal{S} be the bilinear form on $V^{\otimes n}$ such that the basis $\{v_I\}$ is orthonormal. We call \mathcal{S} the Shapovalov form.

2.2. Current algebra $\mathfrak{gl}_N[t]$. Let $\mathfrak{gl}_N[t] = \mathfrak{gl}_N \otimes \mathbb{C}[t]$ be the Lie algebra of \mathfrak{gl}_N -valued polynomials with pointwise commutator. We identify \mathfrak{gl}_N with the subalgebra $\mathfrak{gl}_N \otimes 1$ of constant polynomials in $\mathfrak{gl}_N[t]$. Hence, any $\mathfrak{gl}_N[t]$ -module has the canonical structure of a \mathfrak{gl}_N -module.

The Lie algebra $\mathfrak{gl}_N[t]$ has a basis $e_{ij} \otimes t^r$, $i, j = 1, \ldots, N, r \in \mathbb{Z}_{\geq 0}$, such that

$$[e_{ij} \otimes t^r, e_{sk} \otimes t^p] = \delta_{is} e_{ik} \otimes t^{r+p} - \delta_{ik} e_{sj} \otimes t^{r+p}$$

It is convenient to collect elements of $\mathfrak{gl}_N[t]$ in generating series of a variable u. For $g \in \mathfrak{gl}_N$, set $g(u) = \sum_{s=0}^{\infty} (g \otimes t^s) u^{-s-1}$.

The subalgebra $\mathfrak{z}_N[t] \subset \mathfrak{gl}_N[t]$ with basis $\sum_{i=1}^N e_{ii} \otimes t^r$, $r \in \mathbb{Z}_{\geq 0}$, is central.

2.3. The $\mathfrak{gl}_N[t]$ -modules \mathcal{V}^{\pm} . Let S_n be the permutation group on n elements. For an S_n -module M we denote by M^+ (resp. M^-) the subspace of S_n -invariants (resp. antiinvariants).

The group S_n acts on $\mathbb{C}[\mathbf{z}] := \mathbb{C}[z_1, \ldots, z_n]$ by permuting the variables. Denote by $\sigma_s(\mathbf{z})$, $s = 1, \ldots, n$, the sth elementary symmetric polynomial in z_1, \ldots, z_n .

Let \mathcal{V} be the vector space of polynomials in variables \boldsymbol{z} with coefficients in $V^{\otimes n}$:

$$\mathcal{V} = V^{\otimes n} \otimes_{\mathbb{C}} \mathbb{C}[oldsymbol{z}]$$
 .

The symmetric group S_n acts on \mathcal{V} by permuting the factors of $V^{\otimes n}$ and the variables \boldsymbol{z} simultaneously,

$$\sigma(v_1 \otimes \cdots \otimes v_n \otimes p(z_1, \ldots, z_n)) = v_{(\sigma^{-1})_1} \otimes \cdots \otimes v_{(\sigma^{-1})_n} \otimes p(z_{\sigma_1}, \ldots, z_{\sigma_n}), \quad \sigma \in S_n.$$

We are interested in the subspaces $\mathcal{V}^+, \mathcal{V}^- \subset \mathcal{V}$ of S_n -invariants and antiinvariants.

The space \mathcal{V} is a $\mathfrak{gl}_N[t]$ -module,

$$g\otimes t^r\left(v_1\otimes\cdots\otimes v_n\otimes p(oldsymbol{z})
ight)\,=\,\sum_{s=1}^n v_1\otimes\cdots\otimes gv_s\otimes\cdots\otimes v_n\otimes z_s^r p(oldsymbol{z})\,.$$

The image of the subalgebra $U(\mathfrak{z}_N[t]) \subset U(\mathfrak{gl}_N[t])$ in $\operatorname{End}(\mathcal{V})$ is the algebra of operators of multiplication by elements of $\mathbb{C}[\mathbf{z}]^+$. The $\mathfrak{gl}_N[t]$ -action on \mathcal{V} commutes with the S_n -action. Hence, \mathcal{V}^+ and \mathcal{V}^- are $\mathfrak{gl}_N[t]$ -submodules of \mathcal{V} . The subspaces \mathcal{V}^+ and \mathcal{V}^- are free $\mathbb{C}[\mathbf{z}]^+$ -modules of rank N^n .

Consider the \mathfrak{gl}_N -weight decompositions

$$\mathcal{V}^+ = \oplus_{oldsymbol{\lambda} \in \mathbb{Z}^N_{\geqslant 0}, |oldsymbol{\lambda}| = n} \mathcal{V}^+_{oldsymbol{\lambda}}, \qquad \mathcal{V}^- = \oplus_{oldsymbol{\lambda} \in \mathbb{Z}^N_{\geqslant 0}, |oldsymbol{\lambda}| = n} \mathcal{V}^-_{oldsymbol{\lambda}}.$$

For any λ , the subspaces \mathcal{V}_{λ}^+ , and \mathcal{V}_{λ}^- are free $\mathbb{C}[z]^+$ -modules of rank d_{λ} .

Denote by $\frac{1}{D}\mathcal{V}^-$ the vector space of all $V^{\otimes n}$ -valued rational functions of the form $\frac{1}{D}x$, $x \in \mathcal{V}^-, D = \prod_{1 \leq i < j \leq n} (z_j - z_i)$. The Shapovalov form induces a $\mathbb{C}[\boldsymbol{z}]^+$ -bilinear map

$$\mathcal{S}_{+-}: \mathcal{V}^+ \otimes \frac{1}{D} \mathcal{V}^- \to \mathbb{C}[\boldsymbol{z}]^+.$$

The $\mathfrak{gl}_N[t]$ -module structures on \mathcal{V}^+ and $\frac{1}{D}\mathcal{V}^-$ are contravariantly related through the Shapovalov form,

$$\mathcal{S}_{+-}\big((e_{ij}\otimes t^r)x,\frac{1}{D}y\big) = \mathcal{S}_{+-}\big(x,(e_{ji}\otimes t^r)\frac{1}{D}y\big) \quad \text{for all } i,j,x,y.$$

2.4. Bethe algebra. Given an $N \times N$ matrix A with possibly noncommuting entries a_{ii} , we define its row determinant to be

rdet
$$A = \sum_{\sigma \in S_N} (-1)^{\sigma} a_{1\sigma(1)} a_{2\sigma(2)} \dots a_{N\sigma(N)}$$
.

Let $K = (K_1, \ldots, K_N)$ be a sequence of distinct complex numbers. Let ∂ be the operator of differentiation in a variable u. Define the universal differential operator \mathcal{D}^K by

$$\mathcal{D}^{K} = \operatorname{rdet} \begin{pmatrix} \partial - K_{1} - e_{11}(u) & -e_{21}(u) & \dots & -e_{N1}(u) \\ -e_{12}(u) & \partial - K_{2} - e_{22}(u) & \dots & -e_{N2}(u) \\ \dots & \dots & \dots & \dots \\ -e_{1N}(u) & -e_{2N}(u) & \dots & \partial - K_{N} - e_{NN}(u) \end{pmatrix}.$$

It is a differential operator in the variable u, whose coefficients are formal power series in u^{-1} with coefficients in $U(\mathfrak{gl}_N[t]),$

$$\mathcal{D}^K = \partial^N + \sum_{i=1}^N B_i^K(u) \,\partial^{N-i}, \qquad B_i^K(u) = \sum_{j=0}^\infty B_{ij}^K \, u^{-j}$$

and $B_{ij}^K \in U(\mathfrak{gl}_N[t])$ for $i = 1, ..., N, j \ge 0$. Denote by \mathcal{B}^K the unital subalgebra of $U(\mathfrak{gl}_N[t])$ generated by B_{ij}^K , with i = 1, ..., N, $j \ge 0$. The subalgebra \mathcal{B}^K is called the Bethe algebra with parameters K.

Theorem 2.1 ([T], [CT], [MTV1]). The algebra \mathcal{B}^K is commutative. The algebra \mathcal{B}^K commutes with the subalgebra $U(\mathfrak{h}) \subset U(\mathfrak{gl}_N[t])$. If K = 0, then the algebra $\mathcal{B}^{K=0}$ commutes with the subalgebra $U(\mathfrak{gl}_N) \subset U(\mathfrak{gl}_N[t]).$

Each element B_{ij}^K is a polynomial in K_1, \ldots, K_N . We define \mathcal{B}^{∞} to be the unital subalgebra of $U(\mathfrak{gl}_N[t])$ generated by the leading terms of the elements B_{ij}^K , $i = 1, \ldots, N, j \ge 0$, as K tends to infinity so that $K_i/K_{i+1} \to \infty$ for all *i*.

Lemma 2.2. The algebra \mathcal{B}^{∞} is the unital subalgebra generated by the elements $e_{ii} \otimes t^{j}$ with $i = 1, \ldots, N, \ j \ge 0.$

Proof. We have $B_{i0}^K = (-1)^i K_1 \dots K_i (1 + o(1))$, and

$$B_{ij}^{K} = (-1)^{i} K_{1} \dots K_{i-1} \left(\sum_{m=i}^{N} e_{mm} \otimes t^{j-1} + o(1) \right)$$

for j > 0, where o(1) stands for the terms vanishing as K tends to infinity.

Remark. There are N! asymptotic zones labeled by elements of S_N in which K may tend to infinity. For $\sigma \in S_N$ we may assume that all coordinates of K tend to infinity and $K_{\sigma_i}/K_{\sigma_{i+1}} \to \infty$ for all i. It is easy to see that the limiting Bethe algebra \mathcal{B}^{∞} does not depend on σ .

The algebra \mathcal{B}^{∞} is commutative and contains $U(\mathfrak{z}_N[t])$. The algebra \mathcal{B}^{∞} commutes with the subalgebra $U(\mathfrak{h}) \subset U(\mathfrak{gl}_N[t])$.

As a subalgebra of $U(\mathfrak{gl}_N[t])$, the Bethe algebra \mathcal{B}^K acts on any $\mathfrak{gl}_N[t]$ -module M. Since \mathcal{B}^K commutes with $U(\mathfrak{h})$, it preserves the weight subspaces M_{λ} . If K = 0, then $\mathcal{B}^{K=0}$ preserves the singular weight subspaces M_{λ}^{sing} . We will study the action of \mathcal{B}^{∞} on the weight subspaces \mathcal{V}_{λ}^+ , \mathcal{V}_{λ}^- .

Lemma 2.3. The element $\sum_{i=1}^{N} e_{ii} \otimes t^r \in U(\mathfrak{z}_N[t])$ acts on \mathcal{V} as the operator of multiplication by $\sum_{s=1}^{n} z_s^r$.

If $L \subset M$ is a \mathcal{B}^{K} -invariant subspace, then the image of \mathcal{B}^{K} in $\operatorname{End}(L)$ will be called the Bethe algebra of H and denoted by $\mathcal{B}^{K}(L)$.

3. Equivariant cohomology of partial flag varieties

3.1. Partial flag varieties. For $\lambda \in \mathbb{Z}_{\geq 0}^N$, $|\lambda| = n$, consider the partial flag variety \mathcal{F}_{λ} parametrizing subspaces

$$0 = F_0 \subset F_1 \subset \cdots \subset F_N = \mathbb{C}^n$$

with dim $F_i/F_{i-1} = \lambda_i$, $i = 1, \ldots, N$.

Let $T^n \subset GL_n$ be the torus of diagonal matrices. The groups $T^n \subset GL_n(\mathbb{C})$ act on \mathbb{C}^n and hence on \mathcal{F}_{λ} . The fixed points $\mathcal{F}_{\lambda}^{T^n}$ of the torus action are the coordinate flags $F_I = (F_0 \subset \cdots \subset F_N), \ I = (I_1, \ldots, I_N) \in \mathcal{I}_{\lambda}$, where F_i is the span of the basis vectors $v_j \in \mathbb{C}^n$ with $j \in I_1 \cup \cdots \cup I_i$. The fixed points are in a one-to-one correspondence with the set \mathcal{I}_{λ} and hence with the basis in V_{λ} .

We consider the $GL_n(\mathbb{C})$ -equivariant cohomology

$$H_{\lambda} = H^*_{GL_n}(\mathcal{F}_{\lambda}, \mathbb{C}).$$

Denote by $\Gamma_i = \{\gamma_{i1}, \ldots, \gamma_{i\lambda_i}\}$ the set of the Chern roots of the bundle over \mathcal{F}_{λ} with fiber F_i/F_{i-1} . Denote by $\boldsymbol{z} = \{z_1, \ldots, z_n\}$ the Chern roots corresponding to the factors of the torus T^n . Then

(3.1)
$$H_{\boldsymbol{\lambda}} = \mathbb{C}[\boldsymbol{z}; \Gamma_1; \dots; \Gamma_N]^{S_N \times S_{\lambda_1} \times \dots \times S_{\lambda_N}} / \left\langle \prod_{i=1}^N \prod_{j=1}^{\lambda_i} (1 + u\gamma_{ij}) = \prod_{i=1}^n (1 + uz_i) \right\rangle.$$

The cohomology H_{λ} is a module over $H^*_{GL_n}(pt, \mathbb{C}) = \mathbb{C}[\mathbf{z}]^+$.

Let $J_H \subset H_{\lambda}$ be the ideal generated by the polynomials $\sigma_i(\boldsymbol{z})$, i = 1, ..., n. Then $H_{\lambda}/J_H = H^*(\mathcal{F}_{\lambda}, \mathbb{C})$.

3.2. Integration over \mathcal{F}_{λ} . We will need the integration map $\int : H_{\lambda} \to H^*_{GL_n}(pt, \mathbb{C})$. The following formula (3.2) gives the integration map in terms of the fixed point set $\mathcal{F}_{\lambda}^{T^n}$.

For a subset $A \subset \{1, \ldots, N\}$ denote $\boldsymbol{z}_A = \{z_a, a \in A\}$. For $I = (I_1, \ldots, I_N) \in \mathcal{I}_{\boldsymbol{\lambda}}$ denote

$$R(\boldsymbol{z}_{I_1}|\boldsymbol{z}_{I_2}|\ldots|\boldsymbol{z}_{I_m}) = \prod_{i < j} \prod_{a \in I_i, b \in I_j} (z_b - z_a).$$

The Atiyah-Bott equivariant localization theorem [AB] says that for any $[h(\boldsymbol{z}, \Gamma_1, \ldots, \Gamma_N)] \in H_{\boldsymbol{\lambda}}$,

(3.2)
$$\int [h] = \sum_{I \in \mathcal{I}_{\lambda}} \frac{h(\boldsymbol{z}, \boldsymbol{z}_{I_1}, \dots, \boldsymbol{z}_{I_N})}{R(\boldsymbol{z}_{I_1} | \boldsymbol{z}_{I_2} | \dots | \boldsymbol{z}_{I_N})}$$

Clearly, the right hand side in (3.2) lies in $\mathbb{C}[\mathbf{z}]^+$. The integration map induces the pairing

$$(\,,)\,:\,H_{\boldsymbol{\lambda}}\otimes H_{\boldsymbol{\lambda}}\to \mathbb{C}[\boldsymbol{z}]^+,\qquad [h]\otimes [g]\mapsto \int [hg].$$

After factorization by the ideal J_H we obtain the nondegenerate Poincare pairing

 $(,): H^*(\mathcal{F}_{\lambda},\mathbb{C})\otimes H^*(\mathcal{F}_{\lambda},\mathbb{C}) \to \mathbb{C}.$

3.3. H_{λ} and \mathcal{V}^{\pm} .

Lemma 3.1. The maps

$$i_{\boldsymbol{\lambda}}^{+}: H_{\boldsymbol{\lambda}} \to \mathcal{V}_{\boldsymbol{\lambda}}^{+}, \qquad [h(\boldsymbol{z}, \Gamma_{1}, \dots, \Gamma_{N})] \mapsto \sum_{I \in \mathcal{I}_{\boldsymbol{\lambda}}} v_{I} \otimes h(\boldsymbol{z}, \boldsymbol{z}_{I_{1}}, \dots, \boldsymbol{z}_{I_{N}}),$$
$$i_{\boldsymbol{\lambda}}^{-}: H_{\boldsymbol{\lambda}} \to \frac{1}{D} \mathcal{V}_{\boldsymbol{\lambda}}^{-}, \qquad [h(\boldsymbol{z}, \Gamma_{1}, \dots, \Gamma_{N})] \mapsto \sum_{I \in \mathcal{I}_{\boldsymbol{\lambda}}} v_{I} \otimes \frac{h(\boldsymbol{z}, \boldsymbol{z}_{I_{1}}, \dots, \boldsymbol{z}_{I_{N}})}{R(\boldsymbol{z}_{I_{1}} | \boldsymbol{z}_{I_{2}} | \dots | \boldsymbol{z}_{I_{N}})}$$

are well-defined isomorphisms of $\mathbb{C}[\mathbf{z}]^+$ -modules.

Proof. If h belongs to the ideal of relations in (3.1) then $h(z, z_{I_1}, ..., z_{I_N}) = 0$ for any I, because the $\Gamma_i = z_{I_i}$ substitution makes the generators of the ideal identities. This proves well-definedness.

Consider the $\mathbb{C}[\boldsymbol{z}]^+$ -module $\mathbb{C}[\boldsymbol{z}]^{S_{\lambda_1} \times \ldots \times S_{\lambda_N}}$ of polynomials symmetric in the first λ_1 variables, the next λ_2 variables, etc. In Schubert calculus it is known that this module is free of rank $d_{\boldsymbol{\lambda}}$, and that it is isomorphic to $H_{\boldsymbol{\lambda}}$ under the correspondence

(3.3)
$$p \in \mathbb{C}[\mathbf{z}]^{S_{\lambda_1} \times \ldots \times S_{\lambda_N}} \iff [p(\Gamma_1, \ldots, \Gamma_N)] \in H_{\mathbf{\lambda}}$$

An element $\sum_{I \in \mathcal{I}_{\lambda}} v_I \otimes p_I(\boldsymbol{z})$ of \mathcal{V}_{λ} belongs to \mathcal{V}_{λ}^+ , if and only if $p_I(\boldsymbol{z}) = p(z_{I_1}, \ldots, z_{I_N})$ for a polynomial $p \in \mathbb{C}[\boldsymbol{z}]^{S_{\lambda_1} \times \ldots \times S_{\lambda_N}}$. This shows that \mathcal{V}_{λ}^+ is isomorphic to $\mathbb{C}[\boldsymbol{z}]^{S_{\lambda_1} \times \ldots \times S_{\lambda_N}}$, and that i_{λ}^+ is the composition of this isomorphism with (3.3).

A similar argument shows that i_{λ}^{-} is also an isomorphism.

Corollary 3.2. The Shapovalov form and the Poincare pairing are related by the formula

$$S_{+-}(i_{+}[h], i_{-}[g]) = \int [h][g] .$$

Let A be a commutative algebra. The algebra A considered as an A-module is called the regular representation of A. Here is our main result.

Theorem 3.3.

- (i) The maps $\xi_{\boldsymbol{\lambda}}^{\pm} : e_{ii} \otimes t^r |_{\mathcal{V}_{\boldsymbol{\lambda}}^{\pm}} \mapsto \sum_{j=1}^{\lambda_i} \gamma_{ij}^r$ define isomorphisms of the algebras $\mathcal{B}^{\infty}(\mathcal{V}_{\boldsymbol{\lambda}}^{\pm})$ and $H_{\boldsymbol{\lambda}}$.
- (ii) The maps ξ_{λ}^+ , i_{λ}^+ identify the $\mathcal{B}^{\infty}(\mathcal{V}_{\lambda}^+)$ -module \mathcal{V}_{λ}^+ with the regular representation of H_{λ} .
- (iii) The maps ξ_{λ}^{-} , i_{λ}^{-} identify the $\mathcal{B}^{\infty}(\mathcal{V}_{\lambda}^{-})$ -module $\mathcal{V}_{\lambda}^{-}$ with the regular representation of H_{λ} .

The theorem follows from Lemmas 2.2, 2.3 and 3.1.

3.4. Cohomology as $\mathfrak{gl}_N[t]$ -modules. Let J be the ideal of $\mathbb{C}[\mathbf{z}]^+$ generated by the elementary symmetric functions $\sigma_i(\mathbf{z})$, $i = 1, \ldots, n$. Define $J^+ = J\mathcal{V}^+$ and $J^- = \frac{1}{D}J\mathcal{V}^-$. Clearly, J^+ is a $\mathfrak{gl}_N[t]$ -submodule of \mathcal{V}^+ and J^- is a $\mathfrak{gl}_N[t]$ -submodule of $\frac{1}{D}\mathcal{V}^-$. The $\mathfrak{gl}_N[t]$ -module \mathcal{V}^+/J^+ is graded and has dimension N^n over \mathbb{C} , see [MTV2]. Similarly, $\frac{1}{D}\mathcal{V}^-/J^-$ is a graded $\mathfrak{gl}_N[t]$ -module of the same dimension.

Theorem 3.4. The Shapovalov form establishes a nondegenerate pairing

$$\mathcal{S}_{+-}$$
 : $\mathcal{V}^+/J^+ \otimes \frac{1}{D}\mathcal{V}^-/J^- \to \mathbb{C}$

The theorem follows from Lemmas 3.1, 3.2 and the nondegeneracy of the Poincare pairing.

Corollary 3.5. The $\mathfrak{gl}_N[t]$ -modules \mathcal{V}^+/J^+ and $\frac{1}{D}\mathcal{V}^-/J^-$ are contravariantly related through the Shapovalov form, $\mathcal{S}_{+-}((e_{ij} \otimes t^r)x, \frac{1}{D}y) = \mathcal{S}_{+-}(x, (e_{ji} \otimes t^r)\frac{1}{D}y)$ for all i, j, x, y.

Let W_n be the $\mathfrak{gl}_N[t]$ -module generated by a vector w_n with the defining relations:

$$e_{ii}(u)w_n = \delta_{1i} \frac{n}{u} w_n, \qquad i = 1, \dots, N,$$

$$e_{ij}(u)w_n = 0, \qquad \qquad 1 \le i < j \le N,$$

$$(e_{ji} \otimes 1)^{n\delta_{1i}+1}w_n = 0, \qquad \qquad 1 \le i < j \le N.$$

As an $\mathfrak{sl}_N[t]$ -module, the module W_n is isomorphic to the Weyl module from [CL], [CP], corresponding to the weight $n\omega_1$, where ω_1 is the first fundamental weight of \mathfrak{sl}_N .

In [MTV2] an isomorphism of \mathcal{V}^+/J^+ and the Weyl module W_n is constructed.

Corollary 3.6. The Shapovalov form S_{+-} establishes an isomorphism of $\frac{1}{D}\mathcal{V}^-/J^-$ and the contravariantly dual of the Weyl module W_n .

Here is an application of this fact. For $\lambda \in \mathbb{Z}_{\geq 0}^N$, $|\lambda| = n$, $\lambda_1 \geq \cdots \geq \lambda_N$, denote

$$\left(\frac{1}{D}\mathcal{V}^{-}/J^{-}\right)_{\lambda}^{sing} = \left\{ v \in \frac{1}{D}\mathcal{V}^{-}/J^{-} \mid e_{ij}v = 0 \text{ for } i < j, \ e_{ii}v = \lambda_{i}v \text{ for } i = 1, \dots, N \right\}.$$

This is a graded space. Denote by $\left(\left(\frac{1}{D}\mathcal{V}^{-}/J^{-}\right)_{\lambda}^{sing}\right)_{k}$ the subspace of all elements of \boldsymbol{z} -degree k. Define the graded character by the formula

$$\operatorname{ch}\left(\left(\frac{1}{D}\mathcal{V}^{-}/J^{-}\right)_{\boldsymbol{\lambda}}^{sing}\right) = \sum_{k} q^{k} \operatorname{dim}\left(\left(\frac{1}{D}\mathcal{V}^{-}/J^{-}\right)_{\boldsymbol{\lambda}}^{sing}\right)_{k}.$$

Corollary 3.7. We have

(3.4)
$$\operatorname{ch}\left(\left(\frac{1}{D}\mathcal{V}^{-}/J^{-}\right)_{\boldsymbol{\lambda}}^{sing}\right) = \frac{(q)_{n} \prod_{1 \leq i < j \leq N} (1 - q^{\lambda_{i} - \lambda_{j} + j - i})}{\prod_{i=1}^{N} (q)_{\lambda_{i} + N - i}} q^{-\sum_{i=1}^{N} (i-1)\lambda_{i}},$$

where $(q)_a = \prod_{j=1}^{a} (1 - q^j)$.

The corollary follows from Lemma 2.2 in [MTV2] and Corollary 3.6.

The isomorphisms

(3.5)
$$i^{+} = \bigoplus_{\lambda} i^{+}_{\lambda} : \bigoplus_{\lambda} H_{\lambda} \to \mathcal{V}^{+}, \qquad i^{-} = \bigoplus_{\lambda} i^{-}_{\lambda} : \bigoplus_{\lambda} H_{\lambda} \to \frac{1}{D} \mathcal{V}^{-}$$

induce two graded $\mathfrak{gl}_N[t]$ -module structures on $\oplus_{\lambda} H_{\lambda}$ denoted by ρ^+ and ρ^- , respectively. These module structures descend to two graded $\mathfrak{gl}_N[t]$ -module structures on the cohomology with constant coefficients

$$H(\mathbb{C}) := \bigoplus_{\boldsymbol{\lambda} \in \mathbb{Z}_{\geq 0}^{N}, \, |\boldsymbol{\lambda}|=n} H^{*}(\mathcal{F}_{\boldsymbol{\lambda}}, \mathbb{C}) \,,$$

denoted by the same letters ρ^+ and ρ^- .

Corollary 3.8. The $\mathfrak{gl}_N[t]$ -module $H(\mathbb{C})$ with the ρ^+ -structure is isomorphic to the Weyl module W_n . The $\mathfrak{gl}_N[t]$ -module $H(\mathbb{C})$ with the ρ^- -structure is isomorphic to the contravariant dual of the Weyl module W_n .

The ρ^{\pm} structures can be defined topologically, see [RSV] and Appendix. The ρ^{-} -structure appears to be more preferable. It was used in [RV], [RSV] to construct conformal blocks in the tensor power $V^{\otimes n}$.

4. Isomorphisms i^{\pm}_{λ} as a geometric Langlands correspondence

4.1. The \mathcal{V}^+_{λ} case. The following geometric description of the \mathcal{B}^{K} -action on \mathcal{V}^+_{λ} was given in [MTV3] as an example of the geometric Langlands correspondence.

Let $K = (K_1, \ldots, K_N)$ be a sequence of distinct complex numbers. Let $\lambda \in \mathbb{Z}_{\geq 0}^N$, $|\lambda| = n$. Introduce the polynomial algebras

$$\mathbb{C}[\boldsymbol{\Sigma}] := \mathbb{C}[\Sigma_{ij}, i = 1, \dots, N, j = 1, \dots, \lambda_i], \qquad \mathbb{C}[\boldsymbol{\sigma}] := \mathbb{C}[\sigma_1, \dots, \sigma_n].$$

Define

$$\Sigma_i(u) = e^{K_i u} \left(u^{\lambda_i} + \Sigma_{i1} u^{\lambda_i - 1} + \dots + \Sigma_{i\lambda_i} \right), \qquad i = 1, \dots, N.$$

For arbitrary functions $g_1(u), \ldots, g_N(u)$, introduce the Wronskian determinant by the formula

$$Wr(g_1(u), \dots, g_N(u)) = det \begin{pmatrix} g_1(u) & g'_1(u) & \dots & g_1^{(N-1)}(u) \\ g_2(u) & g'_2(u) & \dots & g_2^{(N-1)}(u) \\ \dots & \dots & \dots & \dots \\ g_N(u) & g'_N(u) & \dots & g_N^{(N-1)}(u) \end{pmatrix}$$

We have

Wr
$$(\Sigma_1(u), \ldots, \Sigma_N(u)) = e^{\sum_{i=1}^N K_i u} \prod_{1 \le i < j \le N} (K_j - K_i) \cdot \left(u^n + \sum_{s=1}^n (-1)^s A_s^K(\Sigma) u^{n-s} \right),$$

where $A_1^K(\boldsymbol{\Sigma}), \ldots, A_n^K(\boldsymbol{\Sigma}) \in \mathbb{C}[\boldsymbol{\Sigma}]$. Define an algebra homomorphism

$$\mathcal{W}^K: \mathbb{C}[\boldsymbol{\sigma}] \to \mathbb{C}[\boldsymbol{\Sigma}], \qquad \sigma_s \mapsto A_s^K(\boldsymbol{\Sigma}).$$

The homomorphism defines a $\mathbb{C}[\sigma]$ -module structure on $\mathbb{C}[\Sigma]$.

Define a differential operator \mathcal{D}_{Σ}^{K} by

$$\mathcal{D}_{\boldsymbol{\Sigma}}^{K} = \frac{1}{\operatorname{Wr}(\Sigma_{1}(u), \dots, \Sigma_{N}(u))} \operatorname{rdet} \begin{pmatrix} \Sigma_{1}(u) & \Sigma_{1}'(u) & \dots & \Sigma_{1}^{(N)}(u) \\ \Sigma_{2}(u) & \Sigma_{2}'(u) & \dots & \Sigma_{2}^{(N)}(u) \\ \dots & \dots & \dots & \dots \\ 1 & \partial & \dots & \partial^{N} \end{pmatrix}.$$

It is a differential operator in the variable u, whose coefficients are formal power series in u^{-1} with coefficients in $\mathbb{C}[\boldsymbol{\Sigma}]$,

(4.1)
$$\mathcal{D}_{\Sigma}^{K} = \partial^{N} + \sum_{i=1}^{N} F_{i}^{K}(u) \partial^{N-i}, \qquad F_{i}^{K}(u) = \sum_{j=0}^{\infty} F_{ij}^{K} u^{-j},$$

and $F_{ij}^K \in \mathbb{C}[\boldsymbol{\Sigma}], \ i = 1, \dots, N, \ j \ge 0.$

Theorem 4.1 ([MTV3]). The map

$$\tau_{\boldsymbol{\lambda}}^{K+} : B_{ij}^{K}|_{\mathcal{V}_{\boldsymbol{\lambda}}^{+}} \mapsto F_{ij}^{K}$$

defines an isomorphism of the Bethe algebra $\mathcal{B}^{K}(\mathcal{V}_{\lambda}^{+})$ and the algebra $\mathbb{C}[\boldsymbol{\Sigma}]$. The isomorphism τ_{λ}^{K+} becomes an isomorphism of the $U(\mathfrak{z}_{N}[t])|_{\mathcal{V}_{\lambda}^{+}}$ -module $\mathcal{B}^{K}(\mathcal{V}_{\lambda}^{+})$ and the $\mathbb{C}[\boldsymbol{\sigma}]$ -module $\mathbb{C}[\boldsymbol{\Sigma}]$ if we identify the algebras $U(\mathfrak{z}_{N}[t])|_{\mathcal{V}_{\lambda}^{+}}$ and $\mathbb{C}[\boldsymbol{\sigma}]$ by the map $.\sigma_{s}[\boldsymbol{z}] \mapsto \sigma_{s}, \ s = 1, \ldots, n$.

Denote

$$v^+ = \sum_{I \in \mathcal{I}_{\lambda}} v_I \in \mathcal{V}_{\lambda}^+.$$

Theorem 4.2 ([MTV3]). The map

$$\mu_{\boldsymbol{\lambda}}^{K+} : B_{ij}^{K} v^{+} \mapsto F_{ij}^{K},$$

defines a linear isomorphism $\mathcal{V}^+_{\lambda} \to \mathbb{C}[\boldsymbol{\Sigma}]$. The maps $\tau^{K+}_{\lambda}, \mu^{K+}_{\lambda}$ give an isomorphism of the $\mathcal{B}^K(\mathcal{V}^+_{\lambda})$ -module \mathcal{V}^+_{λ} and the regular representation of the algebra $\mathbb{C}[\boldsymbol{\Sigma}]$.

4.2. The limit of τ_{λ}^{K+} and μ_{λ}^{K+} as $K \to \infty$. Let all the coordinates of the vector K tend to infinity so that $K_i/K_{i+1} \to \infty$ for $i = 1, \ldots, N-1$. Then the homomorphism \mathcal{W}^K has a limit \mathcal{W}^{∞} . Namely, define $A_s^{\infty}(\Sigma)$ by the formula

$$\prod_{i=1}^{N} \left(u^{\lambda_i} + \Sigma_{i1} u^{\lambda_i - 1} + \dots + \Sigma_{i\lambda_i} \right) = u^n + \sum_{s=1}^{n} \left(-1 \right)^s A_s^{\infty}(\boldsymbol{\Sigma}) u^{n-s}.$$

Then

(4.2) $\mathcal{W}^{\infty}: \mathbb{C}[\boldsymbol{\sigma}] \to \mathbb{C}[\boldsymbol{\Sigma}], \quad \sigma_i \mapsto A_s^{\infty}(\boldsymbol{\Sigma}).$

Define algebra isomorphisms

(4.3)
$$\mathbb{C}[\boldsymbol{\sigma}] \to \mathbb{C}[\boldsymbol{z}]^+, \quad \eta : \mathbb{C}[\boldsymbol{\Sigma}] \to H_{\boldsymbol{\lambda}},$$

by the agreement that the first isomorphism sends σ_s to $\sigma_s(z)$ for all s, and the second one sends $(-1)^s \Sigma_{is}$ to the *s*th elementary symmetric function of $\gamma_{i1}, \ldots, \gamma_{i\lambda_i}$ for all i, s.

Lemma 4.3. The isomorphisms (4.3) identify the $\mathbb{C}[\boldsymbol{\sigma}]$ -module $\mathbb{C}[\boldsymbol{\Sigma}]$ defined by formula (4.2) and the $\mathbb{C}[\boldsymbol{z}]^+$ -module $H_{\boldsymbol{\lambda}}$.

Let
$$p_i(u) = u^{\lambda_i} + \sum_{i1} u^{\lambda_i - 1} + \dots + \sum_{i\lambda_i}$$
 for all $i = 1, \dots N$. Notice that

(4.4)
$$\eta(p_i(u)) = \prod_{j=1}^{\lambda_i} (u - \gamma_{ij}), \qquad \eta\left(\frac{p'_i(u)}{p_i(u)}\right) = \sum_{r=0}^{\infty} \sum_{j=1}^{\lambda_i} \gamma_{ij}^r u^{-r-1}.$$

Lemma 4.4. We have $F_{i0}^K = (-1)^i K_1 \dots K_i (1 + o(1))$, and

$$\sum_{j=1}^{\infty} F_{ij}^{K} u^{-j} = (-1)^{i} K_{1} \dots K_{i-1} \left(\sum_{m=i}^{N} \frac{p'_{m}(u)}{p_{m}(u)} + o(1) \right),$$

where o(1) stands for the terms vanishing as K tends to infinity.

Proof. Let $y_i(u) = Wr(\Sigma_i(u), \ldots, \Sigma_N(u))$, $i = 1, \ldots, N$. Then the operator \mathcal{D}_{Σ}^K can be factorized:

(4.5)
$$\mathcal{D}_{\Sigma}^{K} = \left(\partial - \frac{y_{1}'(u)}{y_{1}(u)} + \frac{y_{2}'(u)}{y_{2}(u)}\right) \dots \left(\partial - \frac{y_{N-1}'(u)}{y_{N-1}(u)} + \frac{y_{N}'(u)}{y_{N}(u)}\right) \left(\partial - \frac{y_{N}'(u)}{y_{N}(u)}\right).$$

Since $y_i(u) = (-1)^{(N-i)(N-i-1)/2} K_i^{N-i} \dots K_{N-1} (p_i(u) \dots p_N(u) + o(1)) e^{\sum_{m=i}^N K_m u}$ as K tends to infinity, the claim follows from formulae (4.1) and (4.5).

Theorem 4.5.

- (i) The map $\eta \circ \tau_{\boldsymbol{\lambda}}^{K+} : \mathcal{B}^{K}(\mathcal{V}_{\boldsymbol{\lambda}}^{+}) \to H_{\boldsymbol{\lambda}}$ tends to the isomorphism $\xi_{\boldsymbol{\lambda}}^{+} : \mathcal{B}^{\infty}(\mathcal{V}_{\boldsymbol{\lambda}}^{+}) \to H_{\boldsymbol{\lambda}}$, see Theorem 3.3, as K tends to infinity.
- (ii) The map $\eta \circ \mu_{\lambda}^{K+} : \mathcal{V}_{\lambda}^{+} \to H_{\lambda}$ tends to the isomorphism $(i_{\lambda}^{+})^{-1} : \mathcal{V}_{\lambda}^{+} \to H_{\lambda}$, see Lemma 3.1, as K tends to infinity.

Proof. The statement follows from the definitions of the maps, Lemma 4.4, formulae (4.4), and the proof of Lemma 2.2.

4.3. The $\mathcal{V}_{\lambda}^{-}$ case. Theorem 3.4 allows us to establish a geometric description of the \mathcal{B}^{K} -action on $\frac{1}{D}\mathcal{V}^{-}$ which is analogous to the description of the \mathcal{B}^{K} -action on \mathcal{V}^{+} .

Theorem 4.6. The map

$$\tau^{K-}_{\pmb{\lambda}} \, : \, B^K_{ij}|_{\frac{1}{D}\mathcal{V}^-_{\pmb{\lambda}}} \, \mapsto \, F^K_{ij}$$

defines an isomorphism of the Bethe algebra $\mathcal{B}^{K}(\frac{1}{D}\mathcal{V}_{\lambda}^{-})$ and the algebra $\mathbb{C}[\boldsymbol{\Sigma}]$. The isomorphism $\tau_{\lambda}^{K^{-}}$ becomes an isomorphism of the $U(\mathfrak{z}_{N}[t])|_{\frac{1}{D}\mathcal{V}_{\lambda}^{-}}$ -module $\mathcal{B}^{K}(\frac{1}{D}\mathcal{V}_{\lambda}^{-})$ and the $\mathbb{C}[\boldsymbol{\sigma}]$ -module $\mathbb{C}[\boldsymbol{\Sigma}]$ if we identify the algebras $U(\mathfrak{z}_{N}[t])|_{\frac{1}{D}\mathcal{V}_{\lambda}^{-}}$ and $\mathbb{C}[\boldsymbol{\sigma}]$ by the map $\sigma_{s}[\boldsymbol{z}] \mapsto \sigma_{s}$, $s = 1, \ldots, n$.

Denote

$$v^- = \sum_{I \in \mathcal{I}_{\lambda}} v_I \otimes rac{1}{R(\boldsymbol{z}_{I_1} | \boldsymbol{z}_{I_2} | \dots | \boldsymbol{z}_{I_N})} \in rac{1}{D} \mathcal{V}_{\boldsymbol{\lambda}}^-.$$

Theorem 4.7. The map

$$\mu_{\boldsymbol{\lambda}}^{K-} : B_{ij}^{K} v^{-} \mapsto F_{ij}^{K},$$

defines a linear isomorphism $\frac{1}{D}\mathcal{V}_{\lambda}^{-} \to \mathbb{C}[\boldsymbol{\Sigma}]$. The maps $\tau_{\lambda}^{K-}, \mu_{\lambda}^{K-}$ give an isomorphism of the $\mathcal{B}^{K}(\frac{1}{D}\mathcal{V}_{\lambda}^{-})$ -module $\frac{1}{D}\mathcal{V}_{\lambda}^{-}$ and the regular representation of the algebra $\mathbb{C}[\boldsymbol{\Sigma}]$.

The proofs of Theorems 4.6 and 4.7 are basically word by word the same as the proofs of Theorems 4.1 and 4.2 in [MTV3].

It is interesting to note that the element v^- becomes a conformal block under certain conditions and satisfies a KZ equation with respect to \boldsymbol{z} , see [V], [RV], [RSV].

4.4. The limit of $\tau_{\lambda}^{K^-}$ and $\mu_{\lambda}^{K^-}$ as $K \to \infty$. Let all the coordinates of the vector K tend to infinity so that $K_i/K_{i+1} \to \infty$ for $i = 1, \ldots, N-1$.

Theorem 4.8.

- (i) The map $\eta \circ \tau_{\lambda}^{K-} : \mathcal{B}^{K}(\mathcal{V}_{\lambda}^{-}) \to H_{\lambda}$ tends to the isomorphism $\xi_{\lambda}^{-} : \mathcal{B}^{\infty}(\mathcal{V}_{\lambda}^{-}) \to H_{\lambda}$, see Theorem 3.3, as K tends to infinity.
- (ii) The map $\eta \circ \mu_{\lambda}^{K-} : \mathcal{V}_{\lambda}^{-} \to H_{\lambda}$ tends to the isomorphism $(i_{\lambda}^{-})^{-1} : \mathcal{V}_{\lambda}^{-} \to H_{\lambda}$, see Lemma 3.1, as K tends to infinity.

The proof is similar to the proof of Theorem 4.5.

4.5. The $(\frac{1}{D}\mathcal{V}^{-})^{sing}_{\lambda}$ case. Formula (3.4) for the graded character of $(\frac{1}{D}\mathcal{V}^{-}/J^{-})^{sing}_{\lambda}$ is the analog of the formula for the graded character of $(\mathcal{V}^{+}/J^{+})^{sing}_{\lambda}$ in [MTV2]. The latter formula was used in [MTV2] to obtain a geometric description of the $\mathcal{B}^{K=0}$ -action on $(\mathcal{V}^{+})^{sing}_{\lambda}$. Using formula (3.4) we can obtain a similar geometric description of the $\mathcal{B}^{K=0}$ -action on $(\frac{1}{D}\mathcal{V}^{-})^{sing}_{\lambda}$.

Let $\boldsymbol{\lambda} \in \mathbb{Z}_{\geq 0}^N$, $\lambda_1 \geq \cdots \geq \lambda_N$, $|\boldsymbol{\lambda}| = n$. Introduce $P = \{d_1, \ldots, d_N\}$, $d_i = \lambda_i + \bar{N} - i$, $i = 1, \ldots, N$. Let

$$\Sigma_i(u) = u^{d_i} + \sum_{j=1, d_i - j \notin P} \Sigma_{ij} u^{d_i - j}.$$

Consider the polynomial algebras

$$\mathbb{C}[\boldsymbol{\Sigma}] := \mathbb{C}[\Sigma_{ij}, i = 1, \dots, N, j \in \{1, \dots, d_i\}, d_i - j \notin P], \qquad \mathbb{C}[\boldsymbol{\sigma}] := \mathbb{C}[\sigma_1, \dots, \sigma_n].$$

We have

Wr(
$$\Sigma_1(u),\ldots,\Sigma_N(u)$$
) = $\prod_{1\leqslant i< j\leqslant N} (d_j-d_i) \cdot \left(u^n + \sum_{s=1}^n (-1)^s A_s(\boldsymbol{\Sigma}) u^{n-s}\right),$

where $A_1(\boldsymbol{\Sigma}), \ldots, A_n(\boldsymbol{\Sigma}) \in \mathbb{C}[\boldsymbol{\Sigma}]$. Define an algebra homomorphism

$$\mathcal{W}: \mathbb{C}[\boldsymbol{\sigma}] \to \mathbb{C}[\boldsymbol{\Sigma}], \qquad \sigma_s \mapsto A_s(\boldsymbol{\Sigma}).$$

The homomorphism defines a $\mathbb{C}[\sigma]$ -module structure on $\mathbb{C}[\Sigma]$. Define a differential operator \mathcal{D}_{Σ} by

$$\mathcal{D}_{\boldsymbol{\Sigma}} = \frac{1}{\operatorname{Wr}(\Sigma_1(u), \dots, \Sigma_N(u))} \operatorname{rdet} \begin{pmatrix} \Sigma_1(u) & \Sigma_1'(u) & \dots & \Sigma_1^{(N)}(u) \\ \Sigma_2(u) & \Sigma_2'(u) & \dots & \Sigma_2^{(N)}(u) \\ \dots & \dots & \dots & \dots \\ 1 & \partial & \dots & \partial^N \end{pmatrix}.$$

It is a differential operator in the variable u, whose coefficients are formal power series in u^{-1} with coefficients in $\mathbb{C}[\boldsymbol{\Sigma}]$,

$$\mathcal{D}_{\boldsymbol{\Sigma}} = \partial^N + \sum_{i=1}^N F_i(u) \,\partial^{N-i}, \qquad F_i(u) = \sum_{j=i}^\infty F_{ij} \, u^{-j},$$

and $F_{ij} \in \mathbb{C}[\boldsymbol{\Sigma}], \ i = 1, \dots, N, \ j \ge i.$

Theorem 4.9. The map

$$\tau_{\boldsymbol{\lambda}}^{-} : B_{ij}^{K=0}|_{(\frac{1}{D}\mathcal{V}^{-})_{\boldsymbol{\lambda}}^{sing}} \mapsto F_{ij}$$

defines an isomorphism of the Bethe algebra $\mathcal{B}^{K=0}\left(\left(\frac{1}{D}\mathcal{V}^{-}\right)^{sing}_{\boldsymbol{\lambda}}\right)$ and the algebra $\mathbb{C}[\boldsymbol{\Sigma}]$. The isomorphism $\tau_{\boldsymbol{\lambda}}^{-}$ becomes an isomorphism of the $U(\mathfrak{z}_{N}[t])|_{\left(\frac{1}{D}\mathcal{V}^{-}\right)^{sing}_{\boldsymbol{\lambda}}}$ -module $\mathcal{B}^{K=0}\left(\left(\frac{1}{D}\mathcal{V}^{-}\right)^{sing}_{\boldsymbol{\lambda}}\right)$ and the $\mathbb{C}[\boldsymbol{\sigma}]$ -module $\mathbb{C}[\boldsymbol{\Sigma}]$ if we identify the algebras $U(\mathfrak{z}_{N}[t])|_{\left(\frac{1}{D}\mathcal{V}^{-}\right)^{sing}_{\boldsymbol{\lambda}}}$ and $\mathbb{C}[\boldsymbol{\sigma}]$ by the map $\sigma_{s}[\boldsymbol{z}] \mapsto \sigma_{s}, \ s = 1, \ldots, n.$

Fix a vector $v^- \in (\frac{1}{D}\mathcal{V}^-)^{sing}_{\boldsymbol{\lambda}}$ of degree $\sum_{i=1}^N (1-i)\lambda_i$. By formula (3.4) such a vector is unique up to proportionality.

Theorem 4.10. The map

$$\mu_{\boldsymbol{\lambda}}^-: B_{ij}^{K=0}v^- \mapsto F_{ij},$$

defines a linear isomorphism $(\frac{1}{D}\mathcal{V}^{-})^{sing}_{\boldsymbol{\lambda}} \to \mathbb{C}[\boldsymbol{\Sigma}]$. The maps $\tau_{\boldsymbol{\lambda}}^{-}, \mu_{\boldsymbol{\lambda}}^{-}$ give an isomorphism of the $\mathcal{B}^{K=0}\left((\frac{1}{D}\mathcal{V}^{-})^{sing}_{\boldsymbol{\lambda}}\right)$ -module $(\frac{1}{D}\mathcal{V}^{-})^{sing}_{\boldsymbol{\lambda}}$ and the regular representation of the algebra $\mathbb{C}[\boldsymbol{\Sigma}]$.

The proofs of Theorems 4.9 and 4.10 are word by word the same as the proofs of Theorems 5.3 and 5.6 in [MTV2].

12

5. Relations with quantum cohomology

In lectures [O] Okounkov, in particular, considers the equivariant quantum cohomology $QH_{GL_n\times\mathbb{C}^*}(T^*F_{\lambda})$ of the cotangent bundle T^*F_{λ} of a flag variety F_{λ} . More precisely, he considers the standard equivariant cohomology $H^*_{GL_n\times\mathbb{C}^*}(T^*F_{\lambda})$ as a module over the algebra of quantum multiplication and described this module as the Yangian Bethe algebra of the XXX model associated with $V^{\otimes n}$.

The algebra $H^*_{GL_n \times \mathbb{C}^*}(T^*F_{\lambda})$ has n+1 equivariant parameters z_1, \ldots, z_n, u . The parameters z_1, \ldots, z_n correspond to the GL_n -action on T^*F_{λ} and u corresponds of the \mathbb{C}^* -action on T^*F_{λ} stretching the cotangent vectors. The operators of quantum multiplication depend on additional parameters q_1, \ldots, q_N corresponding to quantum deformation.

It is well-known how the Yangian Bethe algebra degenerates into the Gaudin Bethe algebra, see for example [T], [MTV1]. This degeneration construction gives us the following fact. Introduce new parameters K_1, \ldots, K_N by the formula $q_i = 1 + K_i u, i = 1, \ldots, N$, and consider the limit of the algebra of quantum multiplication on $H^*_{GL_n \times \mathbb{C}^*}(T^*F_{\lambda})$ as $u \to 0$. Then this limit is isomorphic to the $\mathcal{B}^K(\mathcal{V}^+_{\lambda})$ -module \mathcal{V}^+_{λ} . This limit is also isomorphic to the $\mathcal{B}^K(\frac{1}{D}\mathcal{V}^-_{\lambda})$ -module $\frac{1}{D}\mathcal{V}^-_{\lambda}$.

Appendix: Topological description of the $\mathfrak{gl}_N[t]$ -module structure on the cohomology of flag manifolds

Given $\boldsymbol{\lambda} \in \mathbb{Z}_{\geq 0}^N$ define

$$e_{a,a+1}\boldsymbol{\lambda} = (\lambda_1, \dots, \lambda_{a-1}, \lambda_a + 1, \lambda_{a+1} - 1, \lambda_{a+2}, \dots, \lambda_N),$$

$$e_{a+1,a}\boldsymbol{\lambda} = (\lambda_1, \dots, \lambda_{a-1}, \lambda_a - 1, \lambda_{a+1} + 1, \lambda_{a+2}, \dots, \lambda_N),$$

$$\boldsymbol{\lambda}' = (\lambda_1, \dots, \lambda_{a-1}, \lambda_a, 1, \lambda_{a+1} - 1, \lambda_{a+2}, \dots, \lambda_N),$$

$$\boldsymbol{\lambda}'' = (\lambda_1, \dots, \lambda_{a-1}, \lambda_a - 1, 1, \lambda_{a+1}, \lambda_{a+2}, \dots, \lambda_N).$$

Let A' (resp. B', C') be the rank λ_a (resp. rank 1, $\lambda_{a+1} - 1$) bundle over $\mathcal{F}_{\lambda'}$ whose fiber over the flag $L_1 \subset \ldots \subset L_{N+1}$ is L_a/L_{a-1} (resp. L_{a+1}/L_a , L_{a+2}/L_{a+1}). Let A'' (resp. B'', C'') be the rank $\lambda_a - 1$ (resp. rank 1, λ_{a+1}) bundle over $\mathcal{F}_{\lambda''}$ whose fiber over the flag $L_1 \subset \ldots \subset L_{N+1}$ is L_a/L_{a-1} (resp. L_{a+1}/L_a , L_{a+2}/L_{a+1}).

Consider the obvious projections

$$\mathcal{F}_{\lambda} \xleftarrow{\pi'_1} \mathcal{F}_{\lambda'} \xrightarrow{\pi'_2} \mathcal{F}_{e_{a,a+1}\lambda} \quad \text{and} \quad \mathcal{F}_{\lambda} \xleftarrow{\pi''_1} \mathcal{F}_{\lambda''} \xrightarrow{\pi''_2} \mathcal{F}_{e_{a+1,a}\lambda}.$$

For an equivariant map f (eg. $f = \pi'_1$ or π''_1) the induced pull-back map on equivariant cohomology will be denoted by f^* . For an equivariant fibration f (eg. $f = \pi'_2$ or π''_2) its Gysin map (a.k.a. *push-forward* map, or *integration along the fibers* map) will be denoted by f_* . The equivariant Euler class of a vector bundle X will be denoted by e(X). The following theorem was announced in [RSV].

Theorem A.1.

(i) The map
$$\rho^{-}(e_{a,a+1} \otimes t^{j}) : H_{\lambda} \to H_{e_{a,a+1}\lambda}$$

$$x \mapsto \pi'_{2*} \Big(\pi'^{*}_{1}(x) \cdot e \big(\operatorname{Hom}(B', C') \big) \cdot e(B')^{j} \Big)$$

makes the diagram

$$\begin{array}{cccc} H_{\boldsymbol{\lambda}} & \xrightarrow{\rho^{-}(e_{a,a+1} \otimes t^{j})} & H_{e_{a,a+1}\boldsymbol{\lambda}} \\ & \downarrow^{i^{-}} & & \downarrow^{i^{-}} \\ & \frac{1}{D}\mathcal{V}_{\boldsymbol{\lambda}}^{-} & \xrightarrow{e_{a,a+1} \otimes t^{j}} & \frac{1}{D}\mathcal{V}_{e_{a,a+1}\boldsymbol{\lambda}}^{-} \end{array}$$

commutative.

(ii) The map $\rho^{-}(e_{a+1,a} \otimes t^{j}) : H_{\lambda} \to H_{e_{a+1,a}\lambda}$

$$x \mapsto \pi_{2*}'' \Big(\pi_1''^*(x) \cdot e \big(\operatorname{Hom}(A'', B'') \big) \cdot e(B'')^j \Big)$$

makes the diagram

$$\begin{array}{cccc} H_{\boldsymbol{\lambda}} & \xrightarrow{\rho^{-}(e_{a+1,a} \otimes t^{j})} & H_{e_{a+1,a}\boldsymbol{\lambda}} \\ & \downarrow^{i^{-}} & & \downarrow^{i^{-}} \\ & \frac{1}{D}\mathcal{V}_{\boldsymbol{\lambda}}^{-} & \xrightarrow{e_{a+1,a} \otimes t^{j}} & \frac{1}{D}\mathcal{V}_{e_{a+1,a}\boldsymbol{\lambda}}^{-} \end{array}$$

commutative.

Proof. We will prove part (i), the proof of part (ii) is similar. Let K be the index in $\mathcal{I}_{e_{a,a+1}\lambda}$ with $K_1 = \{1, \ldots, (e_{a,a+1}\lambda)_1\}, K_2 = \{(e_{a,a+1}\lambda)_1 + 1, \ldots, (e_{a,a+1}\lambda)_1 + (e_{a,a+1}\lambda)_2\}$, etc. Consider $x = [h(\boldsymbol{z}, \Gamma_1, \ldots, \Gamma_N)] \in H_{\boldsymbol{\lambda}}$. Its *i*⁻-image is

$$\sum_{I\in\mathcal{I}_{\boldsymbol{\lambda}}} v_I \otimes rac{h(\boldsymbol{z}, \boldsymbol{z}_{I_1}, \dots, \boldsymbol{z}_{I_N})}{R(\boldsymbol{z}_{I_1}|\dots|\boldsymbol{z}_{I_N})} \ .$$

The coefficient of v_K of the $e_{a,a+1} \otimes t^j$ -image of this is

(A.1)
$$\sum_{i \in K_{a}} \frac{h(\boldsymbol{z}, \boldsymbol{z}_{K_{1}}, \dots, \boldsymbol{z}_{K_{a-1}}, \boldsymbol{z}_{K_{a-i}}, \boldsymbol{z}_{K_{a+1} \cup i}, \boldsymbol{z}_{K_{a+2}}, \dots, \boldsymbol{z}_{K_{N}}) z_{i}^{j}}{R(\boldsymbol{z}_{K_{1}}, \dots, \boldsymbol{z}_{K_{a-1}}, \boldsymbol{z}_{K_{a-i}}, \boldsymbol{z}_{K_{a+1} \cup i}, \boldsymbol{z}_{K_{a+2}}, \dots, \boldsymbol{z}_{K_{N}})} = \frac{1}{R(\boldsymbol{z}_{K_{1}}|\dots|\boldsymbol{z}_{K_{N}})} \sum_{i \in K_{a}} \frac{h(\boldsymbol{z}, \boldsymbol{z}_{K_{1}}, \dots, \boldsymbol{z}_{K_{a-i}}, \boldsymbol{z}_{K_{a+1} \cup i}, \dots, \boldsymbol{z}_{K_{N}}) z_{i}^{j} R(z_{i}|\boldsymbol{z}_{K_{a+1}})}{R(\boldsymbol{z}_{K_{a-i}}, z_{i})}.$$

On the other hand, the $\rho^{-}(e_{a,a+1} \otimes t^{j})$ -image of x (using a version of the Atiyah-Bott localization formula for π'_{2*}) is

$$\sum_{\delta \in \Delta_a} \frac{h(\boldsymbol{z}, \Delta_1, \dots, \Delta_{a-1}, \Delta_a - \delta, \delta, \Delta_{a+1}, \dots, \Delta_N) R(\delta | \Delta_{a+1}) \delta^j}{R(\Delta_a - \delta | \delta)},$$

where we denoted the Chern roots of the natural bundles over $\mathcal{F}_{e_{a,a+1}\lambda}$ by $\Delta_1, \ldots, \Delta_N$. The coefficient of v_K of its *i*⁻-image is (A.1). Thus the theorem is proved.

The topological interpretation of generators of the ρ^+ -representation is similar, its proof is left to the reader.

Theorem A.2.

(i) For the map
$$\rho^+(e_{a,a+1} \otimes t^j) : H_{\lambda} \to H_{e_{a,a+1}\lambda}$$

 $x \mapsto \pi'_{2*} \left(\pi'^*_1(x) \cdot e(\operatorname{Hom}(A', B')) \cdot e(B')^j \right)$
we have $i^+ \circ \rho^+(e_{a,a+1} \otimes t^j) = (e_{a,a+1} \otimes t^j) \circ i^+.$
(ii) For the map $\rho^+(e_{a+1,a} \otimes t^j) : H_{\lambda} \to H_{e_{a+1,a}\lambda}$
 $x \mapsto \pi''_{2*} \left(\pi''^*_1(x) \cdot e(\operatorname{Hom}(B'', C'')) \cdot e(B'')^j \right)$
we have $i^+ \circ \rho^+(e_{a+1,a} \otimes t^j) = (e_{a+1,a} \otimes t^j) \circ i^+.$

The $\mathfrak{gl}_N[t]$ -module structures ρ^{\pm} on $\bigoplus_{\lambda} H_{\lambda}$ descend to $\mathfrak{gl}_N[t]$ -module structures on $H(\mathbb{C})$, also denoted by ρ^{\pm} in Section 3.4. The topological interpretation of the actions of $e_{a,a+1} \otimes t^j$ and $e_{a+1,a} \otimes t^j$ for these representations is the same as that for $\bigoplus_{\lambda} H_{\lambda}$ given in Theorems A.1 and A.2.

References

- [AB] M. F. Atiyah, R. Bott, The moment map and equivariant cohomology, Topology 23 (1984), 1–28
- [BMO] A. Braverman, D. Maulik, A. Okounkov, Quantum cohomology of the Springer resolution, Preprint (2010), 1–35, arXiv:1001.0056
- [CL] V. Chari, S. Loktev, Weyl, Fusion and Demazure modules for the current algebra of \mathfrak{sl}_{r+1} , Adv. Math. 207 (2006), no. 2, 928–960
- [CP] V. Chari, A. Pressley Weyl Modules for Classical and Quantum Affine algebras, Represent. Theory 5 (2001), 191–223 (electronic)
- [CT] A. Chervov, D. Talalaev, Quantum spectral curves, quantum integrable systems and the geometric Langlands correspondence, Preprint (2006), 1–54; hep-th/0604128
- [G1] M. Gaudin, Diagonalisation d'une classe d'Hamiltoniens de spin, J. Physique 37 (1976), no. 10, 1089–1098
- [G2] M. Gaudin, La fonction d'onde de Bethe, Collection du Commissariat à l'Énergie Atomique: Série Scientifique, Masson, Paris, 1983
- [MTV1] E. Mukhin, V. Tarasov, A. Varchenko, Bethe Eigenvectors of Higher Transfer Matrices, J. Stat. Mech. (2006), no. 8, P08002, 1–44
- [MTV2] E. Mukhin, V. Tarasov, A. Varchenko, Schubert calculus and representations of general linear group, Preprint (2007), 1–32; arXiv:0711.4079
- [MTV3] E. Mukhin, V. Tarasov, A. Varchenko, Spaces of quasi-exponentials and representations of gl_N, Preprint (2008), 1–29, arXiv:0801.3120
- [O] A. Okounkov, Quantum Groups and Quantum Cohomology, Lectures at the 15th Midrasha Mathematicae on: "Derived categories of algebro-geometric origin and integrable systems", December 19–24, 2010, Jerusalem
- [RV] R. Rimányi, A. Varchenko, Conformal blocks in the tensor product of vector representations and localization formulas, Preprint (2009), 1–21, arXiv:0911.3253

- [RSV] R. Rimányi, V. Schechtman, A. Varchenko, Conformal blocks and equivariant cohomology, Preprint (2010), 1–23, arXiv:1007.3155
- [T] D. Talalaev, Quantization of the Gaudin System, Preprint (2004), 1–19; hep-th/0404153
- [V] A. Varchenko, A Selberg integral type formula for an sl₂ one-dimensional space of conformal blocks, Mosc. Math. J. 10 (2010), no. 2, 469–475, 480