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We consider the subgroup of the automorphism group of the free group generated by the braid group and the 
permutation group. This is proved to be the same as the subgroup of automorphisms of permutation-conjugacy 
type and is represented by generalised braids (braids in which some crossings are allowed to be “welded”). As 
a consequence of this representation there is a finite presentation which shows the close connection with both the 
classical braid and permutation groups. The group is isomorphic to the automorphism group of the free quandle 
and closely related to the automorphism group of the free rack. These automorphism groups are connected with 
invariants of classical knots and links in the 3-sphere. Copyright 0 1996 Elsevier Science Ltd 

1. INTRODUCTION 

Let F,, denote the free group of rank n with generators {x1, . . . , x.} and let Aut F. denote its 
automorphism group. Let pi E Aut F,, i = 1,2, . . . , n - 1 be given by 

and let Zi E Aut F,, i = 1,2, 

‘Xi -Xi+1 

‘ Xi+1 HXi+lXiXi+l 

xj HXj, j # i, i f 1 

‘. 3 n - 1, be given by 

I 

Xi -Xi+1 

Xi+1 HXi 

Xj HXj, j # i, i + 1. 

The elements (Tip i = 1,2, . . . , n - 1, generate the braid subgroup B, of Aut F. which is well 
known to be isomorphic to the classical braid group of on n strings (for a proof see [l, 1.101 
or [2,7.3]), and the elements Zi, i = 1,2, . . . , n - 1, generate the permutation subgroup P, of 
Aut F. which is a copy of the symmetric group S, of degree n. We shall call the subgroup BP, 

of Aut F. generated by both sets of elements (Ti and Zi, i = 1,2, . . . ,n - 1, the braid- 

permutation group and this is the subject of this paper. 
Our main result is that this group is isomorphic to a group of generalised braids. These 

are braids in which some of the crossings are “welded” and the welded and unwelded 
crossings interact in an intuitively simple way. 

As a consequence of this isomorphism, BP, has the following finite presentation which 

includes the standard presentations for both B, and S,. This result was announced in [3]. 
Generators for BP,, are bi,Zi, i = 1, . . . , n - 1, as above, and relations are: 

(Braid group relations) 
aiOj =OjGi, [i-j1 > 1 

(Ti~i+ lbi = bi+ l(TiCi+ 1 

123 



124 Roger Fenn et al. 

(Permutation group relations) 

! 

ZiZj = TjTi, Ii -jl > 1 

TiTi+lZi = Ti+lTiZi+l 

(Mixed relations) 

i 

OiTj = Tj(Ti, Ii -jl > 1 

zizi + 1 ci = oi+l~i~i+l 

fliOi+lZi = Zi+lCTi(Ti+ln 

The proof of this result occupies Sections 2 and 3; Section 2 contains the definition of 
welded braids and Section 3 contains the main proof, which is diagramatic. 

The group BP, is interesting for a number of other reasons. Firstly, the elements of BP, 

have the following simple algebraic characterisation. Let K E S, be a permutation and wi, 
i=12 3 ,..., n be words in F.. Then the assignation xi H wi- lx n(i)Wi determines a homomor- 
phism of F, to itself which is in fact injective (see [Z, Corollary 8.61). If it is also surjective 
(and hence an automorphism) then we call it an automorphism of permutation-conjugacy 

type. The automorphisms of permutation-conjugacy type define a subgroup PC, of Aut F, 

which is in fact precisely BP,,. 

Secondly, BP, is isomorphic to the automorphism group Aut FQ. of the free quandle of 
rank n, and is closely related to the automorphism group Aut FR, of the free rack of rank 
n (the latter group is the wreath product of BP, with the integers) and these groups are 
connected with invariants of classical knots and links in the 3-sphere. 

Finally, the interpretation of elements of BP, as welded braids suggests a natural 
relationship with the singular braid group SB,, of Birman et al., which has applications to 

the theory of Vassiliev invariants [4-61. Initially, this was defined as a monoid. However, it 
naturally embeds in a group with a common presentation, see [7]. Indeed the groups BP, 

and SB, have a common subgroup (the braid group) and a common quotient. The 
connection of these groups with the Vassiliev invariants will be explored in a later paper. 

The proof of the identity of BP,, and BC, is in Section 4, where the connection with racks 
and quandles is also to be found. 

The presentation for BP, and the proof of this presentation given in this paper 
are closely related to results for Aut FR, given by Kruger [S]. However, his context is 
rather different from ours and in particular there is no interpretation in terms of welded 
braids. 

2. WELDED BRAIDS 

A welded braid diagram on n strings is a set of n monotone arcs from n points on 
a horizontal line at the top of the diagram down to a similar set of n points at the bottom of 
the diagram. The arcs are allowed to cross each other either in a “crossing” thus: 

or in a “weld” thus: 

X 



THE BRAID-PERMUTATION GROUP 125 

. 

Fig. 1. A welded braid diagram. 

jTl jgl ii’ . . . n 

Fig. 2. The three atomic braids. 

An example (on three strings) is illustrated in Fig. 1. It is assumed that the crossings and 
welds all occur on different horizontal levels; thus, a welded braid diagram determines 
a word in the atomic diagram illustrated and labelled in Fig. 2. 

2.1. Convention 

Braids are read jrom top to bottom and words are read from left to right. Thus Fig. 1 
determines the word zlcYzal which is read: first r1 then C2 then crl. We identify braid 
diagrams which determine the same word in the atomic diagrams (in other words diagrams 
which differ by a planar isotopy through diagrams). 

The set of welded braid diagrams (on n strings) forms a semi-group WD, with composi- 
tion given by “stacking”: if jI1 and #I2 are diagrams then /I& is the diagram obtained by 
placing fll above /I2 so that the bottoms of the arcs of fil coincide with the tops of the arcs of 

bz. There is an identity in WD,, namely the diagram with no crossings. 
The notation for atomic diagrams is intended to be confused with the notation for the 

generators of BP, because we now consider the homomorphism Q,: WD, + Aut F,, with 
image BP,, defined by mapping bi and ri to the automorphisms with the same names and 
ai U;‘. 
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xb bg bx 

a b a b a b 

Fig. 3. Rules for labelling subarcs. 

Fig. 4. 

Thus, a welded braid diagram /I determines an automorphism Q(p) of F, (of permuta- 
tion-conjugacy type). There is a convenient way to read @(/3) from the diagram fi which we 
now describe. 

2.3. Reading the automorphism from the diagram 

Label the strings at the bottom of the diagram by the generators x1,x2, . . . ,x, in order 
and continue to label the subarcs between crossings moving up the diagram and using the 
rules given in Fig. 3. 

2.4. Notation 

From now on, until further notice, the notation xy will mean the product y-‘xy. In 
Fig. 3 we have used the convention that X means x-l. This is useful to avoid double 
exponents. The top of the strings are thus labelled by words wl, w2, . . . , w, and the 
automorphism determined by the diagram is given by xi H Wi for i = 1, . . . , n. An example 
of this process is given in Fig. 4, where the automorphism corresponding to the diagram in 
Fig. 1 is calculated. 

To see that this process gives the correct result it is merely necessary to observe that it is 
correct for elementary braids (which follows at once from the rules in Fig. 3) and that the 
process gives a homomorphism WD, + Aut F.. 

To see this consider the effect of stacking the braid 8’ on top of the braid fi. If the ith 
point at the bottom of /I is labelled xi and at the top is labelled Wi, then the labels at the top 
of the combined braid are obtained from those for 8’ by substituting wi for Xi. But this is 
precisely how the composition O(/?‘)@(/?) of the two automorphism of F, is formed. 

2.5. Allowable moves on diagrams 

We now consider the local changes that can be made to a welded braid diagram /3 which 
leave the automorphism Q,(b) unchanged. Four such moves are given in Fig. 5. These are 
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K / 
Fig. 5. / k 

(4 

i 

Fig. 6. 

4-b 

Fig. I. 

\ 
\ 

/ 

fi / 

; 

+) 

(‘4 

Y / I 

moves involving two or three strings which do not mix welded and unwelded crossings. It is 
easy to check that these leave the induced automorphism unchanged. For the second move 
in Fig. 5 this follows from the following verified property of conjugation that ubc = ucbc. 

(Note that the first two moves are Reidemeister moves from knot theory.) If we identify 
welded braid diagrams that differ by these moves then we can give welded braid diagrams 
the structure of a group. 

However, there are more local changes that do not change the assigned automorphism. 
In Fig. 6 we present two of them. In addition, there are moves of a general class involving 
four strings which allow non-interfering crossings to be reordered. One such move is 
illustrated in Fig. 7. 

We call the moves illustrated in Figs 5-7 (and moves similar to Fig. 7) allowable moues 
and we define a welded braid to be an equivalence class of welded braid diagrams under 
allowable moves. Welded braids on n strings form a group which we shall denote WB, with 
composition given (as in WD,) by stacking. The inverse of a welded braid /I is obtained by 
reflecting /I in a horizontal line. That this is an inverse follows from the first and third moves 
in Fig. 5. 
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Fig. 8. 

a b cba a b cab 

C b a C b a 

Fig. 9. Two welded braids which do not induce the same element of Aut F.. 

There are other local moves of the same type as those given above which do not also 
change the induced automorphism. For instance, the moves obtained from the moves in 
Fig. 6 by reflection in horizontal or vertical lines. However, as the reader can readily check, 
these other moves can all be obtained as suitable sequences of the allowable moves given in 
Figs 5 and 6. In Fig. 8, we show as an example how this can be done for a move of the same 
type as Fig. 6(a). All the allowable moves (and consequent moves such as Fig. 8) are similar 
to Reidemeister moves, and therefore one could be forgiven for thinking the following. 
Welded braids can be defined as the two-dimensional projection of three-dimensional 
welded braids and two welded braid diagrams give the same automorphism of F. if they are 
projections of equivalent welded braids - where the equivalence among three-dimensional 
welded braids is a natural equivalence, for example, isotopy in 3-space. That this is not so 
can be seen by observing that the local change pictured in Fig. 9 changes the assigned 
automorphism. 

There is however a way to regard welded braids as three-dimensional objects if desired. 
Think of the braids as comprising strings embedded in half of 3-space, namely the half abooe 
the plane of the diagram, and think of the strings as free to move above the plane except at 
the welds, which are to be regarded as small spots of glue holding the strings down onto the 
plane. Thus, strings are not allowed to move behind welds, as happens in Fig. 9. 

We can now state the main results of the paper: 

MAIN THEOREM 2.1. Two welded braid diagrams determine the same automorphism of F, if 
and only if they can be obtainedfiom each other by a jnite sequence of allowable moves (see 
dejinition above). 

The proof of the theorem comprises the next section. We finish this section by remarking 
that the theorem implies the presentation for BP, given in Section 1. It is not hard to see 
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that the group WB, of welded braids has this presentation. The elementary braids oi and ri 

generate WB, and the allowable moves each correspond to one of the relations listed in 

Section 1. For example, the moves in Fig. 6 correspond to the second and third “mixed 
relations”, respectively. Indeed, welded braids can be regarded as a convenient way of 
illustrating this presentation. 

Now we have the homomorphism Q : W D, + Aut F, with image BP,. Since allowable 
moves leave the induced automorphism unaltered this factors via a homomorphism 
WB, -+ Aut F, with the same image. The theorem implies that this homomorphism is 
injective and hence WB, and BP, are isomorphic. Moreover, the generators of WB, and 
BP, (with the same names) correspond, hence BP, has the presentation given. 

3. PROOF OF THE MAIN THEOREM 

In order to prove the main theorem (Theorem 2.1) it is sufficient to show that any welded 

braid which induces the identity automorphism of the free group F, can be reduced to the 
identity braid by a finite sequence of allowable moves. 

Let C = {XT 1 w E F,} denote the set of conjugates of generators of F.. If a = xr is in C, 
let L(a) = I(w) where w is chosen to have minimal length I(w). Note that, for example, 
xp’w = xr. If a, b belong to C then we write a < b if L(b”) < L(b) and we write ti < b if 
L(b’) < L(b). The following technical lemmas will be useful. Let a, b, c be arbitary elements 
of c. 

LEMMA 3.1. 1fn < b (a < b) and a = xr for some w, then b = xrfiw (b = x7”‘) for some 

u where UXiw (UXiw) is reduced. 

Proof If b = xp then b” = xywxiw. If l(VWxiW) < I(V) it follows that u ends in fiW. The 
case when a < b is similarly proved. Cl 

LEMMA3.2. Zfa<bandb<cthena<canda<c*. 

Proof. If a = xy then by the above b = xyw and c = xpfiw. So C“ = XT”‘, c** = xyw 
and c* = xFw. Using the fact that I(Xi w) > I(w) the result follows, 

LEMMA 3.3. Zf a < b and 6 < c then a < c and a < c’. 

Proof. The proof is similar to the proof of Lemma 3.2. cl 

LEMMA 3.4. Zf a < b, c < b and a # c then L(a) # L(c). Zf L(a) < L(c) then a < c and 

L(b’“) < L(b). 

Proof: Let a = XT, c = x7 in reduced form. From the hypotheses it follows that the 
exponent of b ends in XiW and also XjU. Because a # c L(a) # L(C). If L(U) < L(c) it follows 
that u = sXiw and b = $@i”‘, c = x7”‘, Then c” = x;” so t(c”) < L(c). We have 

b”” = xp”’ which gives the second conclusion. q 

LEMMA 3.5. Zf CT < b, c < b and L(a) < L(c), then a < c and L(b”“) < L(b). 

Proof: The proof is similar to the proof of Lemma 3.4. q 
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LEMMA 3.6. Each of the following three pairs of conditions is contradictory. 

(1) a < b and b < a. 
(2) a < b and 6 < a. 

(3) a<bandG<b. 

ProoJ For the pairs (1) and (2), Lemmas 3.2 and 3.3, respectively, imply that a < a 

which is impossible. For (3), Lemma 3.1 implies that b = x~““” = xyxiw. A simple argument 
using the minimal length representation of the exponent shows that b = xl = a which is 
again a contradiction. q 

We can assign a non-negative integer L(rc), the length to any endomorphism IC of F,, of 
PC-type by the formula L(K) = 1 L(K(xi)). Clearly, L(K) = 0 if and only if Ic is a permutation 
of the generators. 

Now let fl be a welded braid diagram which represents the identity automorphism. We 
assume that all (welded and unwelded) crossings have distinct y-coordinates. Let us suppose 
that the unwelded crossings occur with y-coordinates: y,, . . . , yk _ 1. We choose the notation 
so that 

o=yo<yl <y2 < “’ <y&l <yk= 1 

where y. is the top level of the braid and yk is the bottom level of the braid. Remember the 

y-coordinate increases as we go down the page. Any horizontal line whose height is none of 
these critical values and also does not meet a weld will divide the welded braid p into an 
upper welded braid /I’ and a lower welded braid j?” so that /3 = fi’/3”. If t is the height of the 
horizontal line define L(t) = I@(/?“)). Notice that the function L(t) changes only at the 
critical values. The values of L for 0 < t < y, and for yk- 1 < t c 1 will be 0. If k > 1, let us 
take one of the maximal L-valued intervals, say [y,, y,+ J. The value of s cannot be 0 or 
k - 1. We will show that we can change the welded braid by allowable moves so that the 
value of L is reduced within this interval and is unaltered elsewhere. 

Let qi and <j be the unwelded crossings at level y, and y,+ 1, respectively. Then the braid 
between levels y, and y,, 1 has only welded crossings. In other words, it is a permutation 
r say. We will endevour to reduce the number of welds in z to a minimum. 

Let x be the number of strings which are involved with si and <j. The integer x can take 
the values 2,3 or 4. By allowable moves that do not essentially alter the function L we can 
assume that the remaining n - x strings do not have any welded crossings in the interval 
[yS, y,, J. For example, Figs 6 and 8 show how to move a welded string past an unwelded 
crossing. 

Now we consider the three cases x = 2,3,4. We will assume that we have used allowable 
moves to minimize the number of welds in the interval [yS, y,+ 1]. 

Case x = 2. The maximum number of welds occurring now is 1. The possible cases up 
to a simple symmetry are displayed in Fig. 10. The remaining n - 2 strings are not shown. 
The first case can easily be simplified. It is not difficult to show with the help of the above 
lemmas that the other three cases cannot occur if the interval defines a maximum of the 
function L. For example, the second picture above gives the conditions a < b and b < a 
which contradicts Lemma 4.6(l) (see the notation of the picture). 

Case x = 3. The number of possibilities to be considered can be reduced up to a simple 
symmetry to the 9 cases illustrated in Fig. 11. These can be grouped into three sets of 3 by 
the following description. The first 3 occur where the overcrossing string at the bottom is an 
overcrossing string at the top. For the next 3 the overcrossing string at the bottom is an 
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$ i \ 

b 

b a 

a & 
tJb b b= a 

Fig. 10. 

C a’ b a C b" 

/ I\ N / / / \ 
a b C b c a' 

a b” c c a b” 

a C b" / Yi \ 
C a= b 

a b” c 

c’ b a b cb a 

a C b" 

b h a C 

a 2 b 

C b" a 

C a b” 

Fig. 11. 
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a C b” 
C 

a’ b 

h 
a b C 

a b” c 

f b a 

a C b” 

b C a’ 

C a b” 

b cb a 

Fig. 12. 

C 6” a 

a C b" 

C a’ b 

a b" c 

a I? b 

C b" a 

b F a C 
a b” c C a b” 

Fig. 13. 

undercrossing string at the top and for the last 3 the undercrossing string at the bottom is 
the undercrossing string at the top. 

The fourth possibility is that the undercrossing string at the bottom is an overcrossing 
string at the top. However, this becomes the middle case by reflection in a horizontal line. 
We now change the first six cases by allowable moves so that they look like the ones 
illustrated in Fig. 12. The relevant change to the last three depends on the length of a and c. 
If the lengths L(a) and L(c) are equal then Lemma 3.4 gives a contradiction. We give the 
appropriate changes if L(a) < L(c) in Fig. 13. The reader can easily construct the changes in 
the opposite case. After these changes have been completed it only remains to check that the 
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Fig. 14. 

value of L has been decreased in the interval. This can be done using the above lemmas and 
may safely be left to the reader. For convenience, we give the notation in the pictures so that 
they fit the notations of Lemmas 3.1-3.6. 

Case x = 4. By minimality there is only one possibility which is illustrated in Fig. 14. 

We change the situation by interchanging the heights of qi and sj. This has the curious effect 
of decreasing the value of L in the interval as the reader may verify. 

We now repeat this argument until the value of L is constant (which must be zero). This 
implies that all crossings are welded and therefore the induced automorphism is a permuta- 
tion. Since this is the identity permutation we can reduce the welded braid to the identity by 

a sequence of the two right-hand moves in Fig. 5. 
This completes the proof of the main theorem. q 

4. FURTHER RESULTS 

4.1. Automorphisms of permutation-conjugacy type 

The groups BP, and PC, were defined in Section 1. We start this section by proving the 
equality of these two groups. The proof uses standard Nielsen theory techniques and we 
shall refer to the appendix of [2] for details here; similar results can be found in [9-121. 

Since the generators oi,ri of BP,, are automorphisms of permutation-conjugacy type, 
BP, is a subgroup of PC,; thus, we have to show that any automorphism of permutation- 
conjugacy type is a product of the “elementary” automorphisms oi, ri. It is convenient to use 
rather different elementary automorphisms. We shall call the automorphisms Pi,k, s, E PC,, 
given as follows, elementary automorphisms, 

%I : xi N x~(i)~ 7c E s,. 

It is easy to see that Pi,k,sn are alternative generators for BP, indeed: 

Oi = Pi+ l,izi and ri = s,, 

where ti is the transposition (i, i + 1) and 

Tizi+l ... Tk_lok-lTk_2 ... ri ifick 
Pi,k = 

Ti-ITi- ... Tk+lokTk ... Ti-1 if i > k. 

(Note that products in these formulae are read from left to right.) 

THEOREM 4.1. BP, = PC,. 
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Proof We have to prove that if f is an automorphism of F, of permutation-conjugacy 
type then f is a product of elementary automorphisms. For the definitions of sets ofPC-type 
and double Nielsen transformations, see [2, pp. 402, 4031. 

Let f(xi) = Ui then {ui} is a set of words of PC-type. Now composition off with the 

elementary automorphism Pi,k for i # k realises a double Nielsen transformation on {pi}. (If 
i = k the automorphism has no effect.) Therefore, by [2, Lemma 8.53 we may assume that 
{Ui} is Nielsen reduced. But by [2, Corollary 8.21 this implies that these words are 
a permutation of the words xi, i = 1, . . . , n, and therefore f is the elementary automorphism 
s, for suitable rr. 0 

4.2. Racks and quandles 

Finally, we turn to the theory which originally prompted our interest in the subgroups 
of Aut F. studied in the previous sections. We have throughout written a* for the conjugate 

b- ‘ab in a group. This leads naturally to the binary operation of a rack which can be 
thought of as generalised conjugation. A rack or quandle is an algebraic gadget intimately 
associated with a knot or link. Racks and quandles have been defined by many authors. We 
refer to [2] for full definitions and examples. 

Note that from now on exponential notation is no longer used as a shorthand for 

conjugation in groups. 

In Cl, pp. 391-3931 are defined the automorphism groups of the free rack and quandles 
(denoted Aut FR, and Aut FQn, respectively) on the basis {x1, . . . ,x,}. The elementary 
properties of these groups and explanation of their connection with knots and links can be 
found here. In particular, it is proved that Aut FQn is isomorphic to a subgroup of Aut F,, [2, 
p. 393, top], which coincides with BP, [2, Theorem 8.71. 

Let ei and ri, i = 1,2, . . . , n - 1, be the elements of Aut FQ. and Aut FR, which are 
defined in an exactly similar way to their namesakes in Aut F,,. The elementary automor- 

phisms pi,k and s, of FQn and FR, are also defined in exactly the same way as for F,. By [2, 
Theorem 8.71 these elementary automorphisms generate the two automorphism groups. 
NOW let pi, i = 1,2, . . . , n, be the elements of Aut FR, defined by 

i 

x. -xX’ 
I I 

Xj HXj, j # i. 

In other words, pi is pi,i. It is easily seen that 

Piai = OiPi+ 17 PiTi = ziPi+ 1 and pipj = pjpi. 

Let q : Aut FR, --) Aut FQn be the natural map. Then the kernel of q is R the subgroup of 
Aut FR, generated by the pi. Clearly, R is isomorphic to the lattice group Z”. Thus, Aut FR, 

is a semi-direct product of Aut FQ,, with R; moreover, the action on R permutes the factors. 
In other words, Aut FR, is the permutation wreath product of Aut FQn with Z. 

In terms of presentations we now have the following. 

THEOREM 4.2. The group AutFQ, has a finite presentation identical to that for BP, 
given in Section 1. The group Aut FR, has a finite presentation with generators oi, Zi 
(i = 1, . . . , n - 1) and pi (i = 1, . . . , n) as dejned above and relations of five types: Braid 
relations, permutation group relations and mixed relations (identical to those for BP,, given in 
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Section 1) and the following two new types of relation: 

(commuting relations) PiPj = PjPi 

(further mixed relations) 
Pifli = biPi+ 1 

0 
PiTi = ziPi+l* 

4.3. Final remarks 

The theory of the welded braids developed in this paper has a corresponding theory of 
welded knots and links. For example, gluing the top of welded braid to the bottom yields 
a welded link in half 3-space. This can be generalised to yield a theory of welded links in any 
3-manifold with boundary. This theory is important because any such link has a funda- 
mental rack: for a glued braid this can be calculated by quotienting the free rack by the 

automorphism which the welded braid determines. (This automorphism can be computed 
from the welded braid by the same method as we gave in Section 3 for computing the 

induced automorphism of the free group.) The theory of racks can then be applied to yield 
invariants for these generalised links. We shall investigate this further in a subsequent paper. 

Acknowledgement-We would like to thank Gyo Taek Jin for pointing out an inaccuracy in the original statement 
of Lemmas 3.4 and 3.5. 
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