
ON THE ORIENTABILITY OF SINGULARITY SUBMANIFOLDS

R. Rimányi

Abstract. As an application of the generalized Pontrjagin-Thom construction (see
[5]) here we prove some results on the orientability of singularity submanifolds. Our

approach is based on the computation of symmetries of singularities and is different

from the one based on the fundamental work of Boardman ([3]) which involves the
high intristic derivatives. As an example we apply our method to all the Σ1r and

Σ2,0 singularities.

The integer k > 0 will be fixed throughout the paper. Let η : (Rn, 0) −→
(Rn+k, 0) be a smooth map germ. From now on, we will restrict ourselves to simple
singularities. By a suspension of η we mean a germ Ση : (Rn+v, 0) −→ (R(n+k)+v, 0)
defined by (x, u) 7→ (η(x), u) — otherwise we will use the standard notations of
singularity theory, see e.g. [2]. For a C∞-stable map f : N −→ P between smooth
manifolds we define the singularity submanifold

η(f) = { y ∈ P | f−1(y) has only one element and the germ of f
at f−1(y) is A-equivalent to a suspension of η }.

We may think of η(f) either as an abstract manifold (not necessarily closed), or a
submanifold of P , or a submanifold f−1(η(f)) of N .

Now let η be a C∞-stable germ, and suppose that it is not A-equivalent to
the suspension of any other germ — germs having this property will be called
“isolated”. Another description of an isolated stable germ η is that de(η,K) =
its target dimension (see [2; p. 166] for the definition of de( ,K)). According to
Mather’s classification theorem: A-equivalence classes of isolated stable singulari-
ties are in one-to-one correspondence with finite dimensional local R-algebras. In
[5] the maximal compact subgroup G of η’s automorphism group

AutAη = { (ϕ, φ) ∈ Diff(Rn, 0)×Diff(Rn+k, 0) | φ ◦ η ◦ ϕ−1 = η }

is considered. We can assume it is linear, and its representation on the source
and target spaces will be denoted by λ1 and λ2. The vector bundle associated to
the universal principal G-bundle using the representation λi will be denoted by
Eλi −→ BG.

The following two theorems are byproducts of the mail lemma in [5]. The letters
N and P will always denote closed smooth manifolds, and the letter ν will refer to
normal bundles.
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Theorem 1. For any stable smooth map f : Nm −→ Pm+k there exists a contin-
uous map g : η(f) −→ BG, such that

ν(η(f) ⊂ N) = g∗Eλ1, ν(η(f) ⊂ P ) = g∗Eλ2.

Theorem 2. For any closed manifold K and any continuous map g : K −→ BG
there exist smooth manifolds Nm, Pm+k and a stable smooth map f : N −→ P ,
such that K is a component of η(f) and

ν(K ⊂ N) = g∗Eλ1, ν(K ⊂ P ) = g∗Eλ2.

�

Remark. Observe that these two theorems together completely describe the nor-
mal bundles of the singularity submanifolds η(f) in the source and in the target
manifolds. Namely, these normal bundles can be any pull-back bundles (so any
finite dimensional approximations) of Eλ1 and Eλ2 using the same map into BG.

The smooth map f : N −→ P will be called k-codimensional if dimP −dimN =
k. The following two statements are easy conseqences.

Theorem 3. The following two conditions are equivalent:
(1) for every k-codimensional map f : N −→ P , where P is orientable, the

manifold η(f) is orientable;
(2) detλ2(g) > 0 for all g ∈ G.

Theorem 4. The following two conditions are equivalent:
(3) for every k-codimensional map f : N −→ P , where N is orientable, the

manifold η(f) is orientable;
(4) detλ1(g) > 0 for all g ∈ G.

Proof. Condition (1) is equivalent to the following: for every k-codimensional
map f : N −→ P , where P is orientable, ν(η(f) ⊂ P ) is an orientable bundle.
Because of Theorem 2 it implies that for all K and g : K −→ BG the bundle
g∗Eλ2 is orientable. Then it follows that Eλ2 is orientable, which is equivalent to
condition (2).

Conversely, if Eλ2 is orientable, then (using Theorem 1) for any f : Nm −→
Pm+k the bundle ν(η(f) ⊂ P ) is orientable. If P is orientable, then this implies
that η(f) is also orientable.

The proof of Theorem 4 goes the same way. �

Now we turn to the investigation of conditions (2) and (4). First we recall from [5]
some results about the maximal compact automorphism group of η : Rn −→ R

n+k.
If η is a miniversal unfolding of ζ : Ra −→ R

a+k, where dζ(0) = 0, and V is a
complement of the subspace tζ(θa)+ ζ∗m(a+ k)θζ in the vector space θζ , then η is
A-equivalent to

R
a × V −→ R

a+k × V

(x, φ) 7→ (x+ φ(x), φ).
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Now let G be the maximal compact subgroup of the K-equivalence group AutKζ. If
ζ is well chosen from its K-equvivalence class then we can suppose G acting linearly
on R

a × R
a+k. Then, in particular, G acts as an A automorphism group, so it has

representations α and β on R
a and R

a+k respectively. The group G also acts on
θζ by (α, β) · φ = β ◦ φ ◦ α−1 — leaving tζ(θa) + ζ∗m(a + k)θζ invariant. If V
is chosen to be G-invariant (G compact, so it is possible) then G also acts on V .
Let this action be γ. A theorem in [5] proves that the maximal compact subgroup
of AutAη is G with the representations λ1 := α ⊕ γ, λ2 := β ⊕ γ on the source
(Ra × V ) and target (Ra+k × V ) spaces, respectively. This reduces the problem
of finding MC AutAη to finding MC AutKζ and the representations α, β. (MC
stands for ‘maximal compact subgroup of’.) This latter problem is also essentially
solved (reduced to a finite dimensional one) in [5], we will come back to these results
in concrete examples.

Notation. In what follows ρr will always mean the standard r-dimensional rep-
resentation of O(r). If ρr is written as a representation of O(r)×H then it really
means ρr ◦ prO(r).

Example 1. For all r ≥ 0 there is a unique isolated germ η1r (in codimension k)
corresponding to the local algebra R[[t]]/(tr+1). This germ is called the isolated
Morin singularity type of Σ1r . This is the miniversal unfolding of ζ1r : R −→
R

k+1, x 7→ (xr+1, 0, . . . , 0). It is clear that MC AutKζ
1r = O(1)× O(k), and the

representations α, β are as follows:

α = ρ1, β = ρr+1
1 ⊕ ρk.

Indeed, O(1) × O(k) ≤ MC AutAζ
1r ≤ MC AutKζ

1r , as the representations α
and β show. On the other hand — by Theorem 7 in [5] — MC AutKζ

1r ≤
MC Aut Qζ1r ×O(k− d) = O(1)×O(k) where Qζ1r is the local algebra of ζ1r and
d is its defect.

The space V can be chosen to be spanned by the vectors

x 7→ (xi, 0, . . . , 0) i = 1, . . . , r − 1
x 7→ (0, 0, . . . , 0, xj, 0, . . . , 0) j = 1, . . . , r

the coordinate of xj is from 2, . . . , k + 1

and (using the definition of γ above) the action of O(1)×O(k) on V can be com-
puted:

γ =
⌈r − 1

2

⌉

1⊕
⌊r − 1

2

⌋

ρ1 ⊕
⌊r

2

⌋

ρk ⊕
⌈ r

2

⌉

ρ1 ⊗ ρk.

As an application of this example and Theorem 3 and 4 we can prove the following
two theorems about the orientability of the Morin-singularity submanifolds.

Theorem 5. Let η1r be as in the example above. Then the following two conditions
are equivalent:
(5) for every k-codimensional map f : N −→ P , where P is orientable, the

manifold η1r(f) is orientable;
(6) k is even and r ≡ 1 mod 4.

Theorem 6. Let η1r be as in the example above. Then the following two conditions
are equivalent:
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(7) for every k-codimensional map f : N −→ P , where N is orientable, the
manifold η1r(f) is orientable;

(8) either k is odd and r is even, or k is even and r ≡ 0 mod 4.

Proofs. According to the Theorems 3 and 4 we only have to analyse the sign of
the determinants of λ1(g), λ2(g). Since explicit formulae are given for λ1 = α ⊕ γ
and λ2 = β ⊕ γ, easy computation gives the proofs. �

Example 2. Let ηr be the miniversal unfolding of ζr : Rr −→ R
r+k,

(x1, . . . , xr) 7→ (x2
1, . . . , x

2
r, x1x2, x1x3, . . . , xr−1xr, 0, . . . , 0),

(where there are t = k −
(

r
2

)

0’s at the end). This ηr is the “simplest” singularity

of Thom-Boardman type Σr,0. The group MC AutKζr is O(r) × O(t). Indeed,
O(r)×O(t) clearly acts as a K-symmetry (in fact as an A-symmetry) group of ζr,
so O(r)×O(t) ≤ MC AutKζr. On the other hand MC AutKζr ≤ MC Aut Qζr ×
O(k − d) = O(r) × O(t), where Qζr is ζr’s local algebra, and d is its defect. The
representation α = ρr, but we will not need to determine β explicitly.

If we choose V to be spanned by

(x1, . . . , xr) 7→ (0, . . . , 0, xi, 0, . . . , 0) i = 1, . . . , r
the coordinate is j = 1, . . . , r, i 6= j

(x1, . . . , xr) 7→ (0, . . . , 0, xi, 0, . . . , 0) i = 1, . . . , r
the coordinate is j = r + 1, . . . , r + k,

then V will be O(r)×O(t)-invariant.
Although we have not written up explicit formulae for β and γ, we will need

some information on the sign of det β(g), det γ(g) (g ∈ MC AutAηr). Let g1, g2 ∈
O(r)×O(t) be given by

g1 :=

(









−1
1

. . .

1









, It×t

)

, g2 :=

(

Ir×r,









−1
1

. . .

1









)

.

Easy computation shows that

detα(g1) = −1, det β(g1) = (−1)r−1, det γ(g1) = (−1)k−r+1,

detα(g2) = 1, det β(g2) = −1, det γ(g2) = (−1)r.

Theorem 7. Let ηr be as in the example above. Then the following two conditions
are equivalent:
(9) for every k-codimensional map f : N −→ P , where P is orientable, the

manifold ηr(f) is orientable;
(10) k is even and r is odd.
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Theorem 8. Let ηr be as in the example above. Then the following two conditions
are equivalent:
(11) for every k-codimensional map f : N −→ P , where N is orientable, the

manifold ηr(f) is orientable;
(12) k is even and r is even.

Proof. According to Theorem 3 condition (9) is equivalent to det β(g)·det γ(g) > 0
for every g ∈ O(r)×O(t). This latter is equivalent to det β(g1) · det γ(g1) > 0 and
det β(g2) ·det γ(g2) > 0, that is (using the computation above): r−1+k−r+1 ≡ 0
mod 2 and 1+r ≡ 0 mod 2. This is exactly condition (10). The proof of Theorem 8
is similar. �

For a stable map f : N −→ P we can define the submanifold

Σr(f) = { x ∈ N | the germ of f at x is of Thom-Boardman type Σr. }.

Clearly f−1(ηr(f)) ⊂ Σr(f), and the difference is a union of submanifolds all of
codimension ≥ k. Since a manifold of codimension ≥ 2 can not alter orientability,
we have the following two corollaries.

Corollary 9. Let k, r > 1. The condition
(13) for every k-codimensional map f : N −→ P , where P is orientable, the
manifold Σr(f) is orientable
is equivalent to condition (9) (and therefore to condition (10)). �

Corollary 10. Let k, r > 1. The condition
(14) for every k-codimensional map f : N −→ P , where N is orientable, the
manifold Σr(f) is orientable
is equivalent to condition (11) (and therefore to condition (12)). �

Example 3. We turn to Σ2,0 germs, which is — according to the authors knowl-
edge — the last Thom-Boardman type for which the A-classification is complete.
Mather proved that there are five infinite sequences of algebras corresponding to
Σ2,0 singularity types:

Ia,b R[[x, y]] / (xy, xa + yb) 2 ≤ a, b
IIa,b R[[x, y]] / (xy, xa − yb) 2 ≤ a, b both even
IIIa,b R[[x, y]] / (xy, xa, yb) 2 ≤ a, 3 ≤ b
IVa R[[x, y]] / (x2 + y2, xa) 3 ≤ a
Va R[[x, y]] / (x2 + y2, xa, yxa−1) 2 ≤ a

Here the only coincidenses are Ia,b = Ib,a, etc. (For convenience III2,2 of Mather
is renamed as V2 here, since — considering symmetries — III2,2 is closer to the
Va sequence.) Using the method descibed above we can compute their maximal
compact symmetry groups (some more details in [4]), in which we will use the
following notations: for the groups O(2) and Dn (dihedral group) ρw2 means the
two-dimensional representation which maps

(

cosα − sinα
sinα cosα

)

to

(

coswα − sinwα
sinwα coswα

)
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and

(

1 0
0 −1

)

to itself. Three one-dimensional representations of the dihedral

groups will also be used. Let the dihedral group D2a (of order 4a) be presented as
< f, t|f2a = t2 = 1, tft = f2a−1 >. The following define 1-dimensional representa-
tions of D2a:

λ : f 7→ −1, t 7→ −1 κ : f 7→ −1, t 7→ 1 τ : f 7→ 1, t 7→ −1.

Moreover, ε and θ will mean the non-trivial 1-dimensional representation of Z2 (two
letters are needed when Z2×Z2 is concerned). If one of the defined representations
are written as a representation of a group O(l)×H, D2a×H, Z2×H then they really
mean to be a composition of that representation with the projection to O(l), D2a

or Z2.

Theorem 11. If η is an isolated singularity of type Σ2,0 then MC AutAη and its
representations λ1 = α ⊕ γ, λ2 = β ⊕ γ are given by

η MC Aut η α β

Ia,b, IIa,b 2 ≤ a < b both even D2 ×O(k) ρ2 τ ⊕ 1⊕ ρk
Ia,b 2 < a odd, 2 ≤ b even Z2 ×O(k) 1⊕ ε ε⊕ 1⊕ ρk
Ia,b 2 < a < b both odd Z2 ×O(k) 2ε 1⊕ ε⊕ ρk
Ia,a 2 < a odd D2 ×O(k) ρ2 1⊕ κ⊕ ρk
Ia,a 2 ≤ a even D4 ×O(k) ρ2 λ⊕ 1⊕ ρk
IIa,a 2 < a even D4 ×O(k) ρ2 λ⊕ κ⊕ ρk
II2,2 O(2)×O(k) ρ2 ρ22 ⊕ ρk
IIIa,a 2 < a even D4 ×O(k − 1) ρ2 λ⊕ 1⊕ κ⊕ ρk−1

IIIa,a 2 < a odd D4 ×O(k − 1) ρ2 λ⊕ ρ2 ⊕ ρk−1

IIIa,b 2 ≤ a < b Z2 × Z2 ×O(k − 1) ε⊕ θ (ε⊗ θ)⊕ ε⊗a ⊕ θ⊗b ⊕ ρk−1

IVa 3 ≤ a D2a ×O(k) ρ2 1⊕ λ⊕ ρk
Va 2 ≤ a O(2)×O(k − 1) ρ2 1⊕ ρa2 ⊕ ρk−1

η γ

Ia,b, IIa,b 2 ≤ a < b both even
[

a
2ρ2 ⊕

b−a
2 λ⊕ a+b−4

2 1
]

⊗ (1⊕ ρk)⊕ ρk
Ia,b 2 < a odd, 2 ≤ b even

[

b
2ε⊕

2a+b−4
2 1

]

⊗ (1⊕ ρk)⊕ ρk
Ia,b 2 < a < b both odd a+b−2

2 (1⊕ ε)⊗ (1⊕ ρk)⊕ (ε⊗ ρk)

Ia,a 2 < a odd a−1
2 (ρ2 ⊕ ρ22)⊗ (1⊕ ρk)⊕ (λ⊗ ρk)

Ia,a 2 ≤ a even
[

a
2ρ2 ⊕

a−2
2 (1⊕ κ)

]

⊗ (1⊕ ρk)⊕ (κ⊗ ρk)

IIa,a 2 < a even
[

a
2ρ2 ⊕

a−2
2 (1⊕ κ)

]

⊗ (1⊕ ρk)⊕ (ρk)

II2,2 ρ32 ⊕ (ρ2 ⊕ 1)⊗ ρk
IIIa,a 2 < a even

[

a
2ρ2 ⊕

a−2
2 (1⊕ κ)

]

⊗ [1⊕ 1⊕ ρk−1]

IIIa,a 2 < a odd a−1
2

[

2ρ2 ⊕ ρ22 ⊕ ρ42 ⊕ (ρ2 ⊕ 1⊕ κ)⊗ ρk−1

]

IIIa,b 2 ≤ a < b
⊕a−1

j=1

[

ε⊗a+j ⊕ ε⊗j ⊗ (θ⊗b ⊕ ρk−1)
]

⊕

⊕
⊕b−1

j=1

[

θ⊗b+j ⊕ θ⊗j ⊗ (ε⊗a ⊕ ρk−1)
]

IVa 3 ≤ a (
⊕a−1

j=1 ρ
j
2)⊗ (1⊕ ρk)⊕ (λ⊗ ρk)

Va 2 ≤ a
⊕a−1

j=1 (ρ
a−j
2 ⊕ ρa+j

2 )⊕ (
⊕a−1

j=1 ρ
j
2)⊗ ρk−1 �
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As an application of this theorem and Theorems 3 and 4 we have the following
characterization of the orientability of Σ2,0-singularity submanifolds.

Theorem 12. In the next table — for some singularities of Thom-Boardman type
Σ2,0 — equivalent conditions are given to condition (2) (and therefore to condition
(1)):

η = Ia,b: a ≡ b ≡ 2 mod 4 a 6= b k is even
η = IIa,b: a ≡ b ≡ 2 mod 4 k is even
η = Ia,b: a ≡ b ≡ 1 mod 2 a 6= b k is odd
η = Ia,b, Ib,a: a ≡ 1, b ≡ 3 mod 4
η = IIIa,b, IIIb,a: a ≡ 2, b ≡ 3 mod 4 k is even
η = IVa: k is odd.
Moreover, for the Σ2,0 singularities above these are the only values of a, b, k for
which condition (2) holds. �

Theorem 13. In the next table — for some singularities of Thom-Boardman type
Σ2,0 — equivalent conditions are given to condition (4) (and therefore to condition
(3)):

η = Ia,b, Ib,a: a ≡ 1 mod 2, b ≡ 2 mod 4 k is even
η = IIIa,b: a ≡ b ≡ 3 mod 4 a 6= b k is even
η = IIIa,b: a ≡ b ≡ 2 mod 4 k is even
η = Va: a ≡ 0 mod 2 k is even.
Moreover, for the Σ2,0 singularities above these are the only values of a, b, k for
which condition (4) holds. �

Besides Theorems 3 and 4 there is a third type of results we can prove about
the orientability of singularity submanifolds η(f), this time in case both the source
N and the target P manifolds are oriented. The arguments follows the same line
with the only difference that now we must start with the “universal singular map”
Y SOτ

fτ
−→XSOτ in [5]. The only change in this case is that we have to replace the

group G = MC AutAη to

G+ = G ∩
(

Diff+(Rn, 0)×Diff+(Rn+k, 0)∪Diff−(Rn, 0)×Diff+(Rn+k, 0)
)

for any map germ η : (Rn, 0) −→ (Rn+k, 0). Otherwise all the proofs goes the same
way, so we will restrict ourselves to only stating the results.

Theorem 14. The following conditions are equivalent:
(15) for every f : N −→ P , where N and P are orientable, the manifold η(f) is

orientable;
(16) detλ1(G

+) > 0;
(17) detλ1(G

−) > 0;
(18) there is no g ∈ G such that detλ1(g) < 0 and detλ2(g) < 0;
(19) either detλ1(g) > 0 for all g ∈ G or detλ2(g) > 0 for all g ∈ G (⇔ (2) or (4)).

�

In case η = η1r of Example 1 condition (19) is equivalent to the condition: (6)
or (8). In case η = ηr of Example 2 condition (19) reads: (10) or (12), that is
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(20) k is even.
Just like above, we can use that if k > 0 then the orientability of ηr is equivalent

to the orientability of Σr(f) therefore we have the following corollary.

Corollary 15. Let k > 1. The condition
(21) for every k-codimensional map f : N −→ P , where N and P are orientable,
the manifold Σr(f) is orientable;
is equivalent to condition (20). �

This last corollary can also be derived from a result of Ando [1, Proposition 4.1].
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