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1. Introduction

The goal of this paper is to demonstrate the usefulness of the theory of Thom polynomials
for group actions developed by Maxim Kazarian in [Kaz95] and [Kaz97] by calculating some
formulas of degeneracy loci. Our calculations are based on our method, the restriction equations
([FRa]), and a beautiful chapter of algebra: the representation theory of quivers. The paper
is intended to be self contained except some technical details on the existence of the Poincaré
dual and standard facts from the representation theory of quivers.

Certain types of Thom polynomials were studied under different names:
The name Thom polynomial comes from singularity theory where René Thom proposed

the following question: Given a smooth map f : M → N what is the cohomology class
[η(f)] ∈ H∗(M) defined via Poincaré duality by the closure of η(f) ⊂ M—the points of
M where f has a singularity of type η. As Thom observed this class can be expressed as a
polynomial of characteristic classes of the vector bundles TM and f ∗TN .

In homotopy theory an extensively studied question is whether a fiber bundle admits a
section. One obstruction is the so called first obstruction which is a cohomology class of the
base of the fiber bundle measuring the non-existence of a section. Thom polynomials for group
actions are first obstructions.

In algebraic topology these questions can be translated to questions on equivariant cohomol-
ogy theory.

In algebraic geometry Thom polynomials are called classes or formulas of degeneracy loci.
The earliest example—which was also the first example in singularity theory—is the following:

Example 1.1. Let E and F are complex vector bundles of complex dimension n and p over the
manifold M and s : E → F is a vector bundle homomorphism—i.e. a section of Hom(E, F ).
Let Σk(s) denote the set of m ∈M such that the linear map s(m) has corank k. We are looking
for an expression for the cohomology class [Σk(s)]—the Poincaré dual of the closure of Σk(s).

The corresponding situation in singularity theory is that if we have a smooth map f :M → N
then we look for the set of points in M where df—the Jacobian of f—has corank k. It is a
special case of Example 1.1—for real vector bundles—for the bundles E = TM, F = f ∗TN,
and the section df .

The homotopy theory approach to the same problem would be to look at the subspace
Σ<k ⊂ Hom(Cn,Cp) containing matrices of corank smaller than k. Σ<k possesses a group action:
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It is an invariant subset for the group G = GL(n,C)×GL(p,C) acting on Hom(Cn,Cp). So for
any G-principal bundle P we can associate a fiber bundle P ×G Σ<k. It is not too difficult to
prove that the first obstruction is exactly [Σk(s)] (in particular it doesn’t depend on the section
s provided it is ’generic’ see 2.6).

The formulas were proved by Ian Porteous:

Theorem 1.2 ([Por71]).
[Σk(s)] = det(A),

where Aij = ci−j+k for i, j = 1, . . . , k + p− n and cl = cl(F ⊖ E) are the Chern classes of the
difference bundle F ⊖E.

Generalized Thom polynomial theory is a powerful tool to study a wide variety of questions.
However, to calculate the actual values of the coefficients of these polynomials was a notoriously
difficult problem. Until recently the only known method was the method of resolutions. For
example to calculate the Thom polynomial of Σk it was necessary to find a resolution of the
singular variety Σk.

In [Rim01] the second author found a different method to calculate Thom polynomials of
singularities, which was easy to generalize ([FRa]). This method provides the Thom polynomials
as—for a wide variety of cases—the unique solution of a system of linear equations, called the
restriction equations. Roughly speaking the method of resolutions finds the Thom polynomial
as the image of a pushforward map and restriction equation method finds it in the kernel of
pullback maps.

In this paper we would like to demonstrate this method on a case which was studied inten-
sively by algebraic geometers. This is a straightforward generalization of Example 1.1:

Problem 1.3. Take now several vector bundles E1, . . . , En over a manifold M and vector
bundle maps ϕij : Ei → Ej for some pairs (i, j). To keep track of these pairs we can consider
the oriented graph Q with vertices Q0 = {1, . . . , n} and arrows Q1 = {(i, j): if we have a map
ϕij : Ei → Ej}. (So we can make sense of multiple arrows and loops as well.) And we can
ask questions like what is the cohomology class [Ωr] defined by the degeneracy locus Ωr where
r : Q1 → N and

Ωr = {m ∈M : the rank of ϕij(m) = r(i, j) for all (i, j) ∈ Q1)}.

In fact in Section 3 we will see what the good question is.
In this context these oriented graphs are called quivers. The quiver of Example 1.1 is • → •

(called A2). The cohomology formulas [Ωr] were calculated by Buch and Fulton in [Buc99] and

[BF99] for the quivers
1
• →

2
• → · · · →

n
• (called An). They use the resolution method.

Our method works for a wider class of quivers—the so called representation-finite quivers—
and we believe that it is conceptually simpler.

The way our method works is the following. For any fixed orbit of a fixed quiver representation
we build a system of linear equations whose unique solution is the sought Thom polynomial.
Although this is a definite algorithm, it may seem somewhat implicit. However, the authors
think that such a description can give at least as much insight into the behaviour of these
polynomials as any other algorithmic description. We have a growing evidence on this, see
[FRc], [BFR]. On the other hand our method has the disadvantage of not producing formulas
for infinite series of Thom polynomials (or at least additional work is needed for them as in the
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papers quoted above). For example our algorithm works for any orbit of the D4 quiver (see
section 6 for examples), but we can at present not give a formula to cover all orbits of D4.

In Section 2 we outline the general theory of Thom polynomials for group actions following
[Kaz97].

In Section 3 we show how to apply the theory for representation-finite quivers. To get some
feeling of this algebraic machinery we demonstrate it on the case of Example 1.1.

In Section 4 we calculate the formulas for quivers of type An (with the usual orientation).
In Section 5 we calculate a slightly more complicated example (for an A3-type representation)

than Example 1.1 to illustrate the method. We compare the result with the result of the Buch-
Fulton algorithm.

In Section 6 we calculate some formulas for the quiver D4, and make some comments on
other quivers.

We are grateful to Tamás Hausel for drawing our attention to quivers and to Mátyás Domokos
for very valuable discussions on the algebraic theory of quivers: we learned all the material in
section 3 from him.

2. Thom polynomials for group actions

In this section we give a heuristic introduction to the theory of Thom polynomials for group
actions. The approach relies on a generalization of the Poincaré dual. In Remark 2.6 we sketch
the technical points. Details can be found in [Kaz97] and about the restriction equation method
in [FRa].

Though the theory can be formulated in a more general context we restrict our attention to
the following situation: Let ρ : G→ GL(V ) be a linear representation of the complex Lie group
G on a complex vector space V . Then for any principal bundle P → M we can associate a
vector bundle E = P ×ρV . If η is an orbit of the G-action on V and s :M → E is a section, we
can ask: At which points of M does the section s belong to the orbit η? It turns out that the
cohomology class defined by this set depends only on the G-characteristic classes of the bundle
P . In other words it defines a cohomology class Tp(η) ∈ H∗(BG), called the Thom polynomial
of η.

Being a crossed product E has a well defined map ω to the orbit space V/G. In this paper
we assume that V/G consists of finitely many points.

Definition 2.1.

η(E) := ω−1(η) and η(s) := s−1(η(E)).

We are interested in [η(s)] ∈ H∗(M) = H∗(M ;Q) the Poincaré dual of the closure of η(s). (In
this paper we work with rational cohomology. It is possible to work with integral cohomology
see [FRb].) Example 1.1 is a special case for V = Hom(Cn,Cp) and G = GL(n,C)×GL(p,C)
acting on Hom(Cn,Cp) by ρ(A,B)X := BXA−1. The orbits of this action are Σk = {v ∈ V :
corank(v) = k}.

Proposition 2.2. [η(s)] = s∗[η(E)] for a generic section s : M → E, where s∗ : H∗(E) →
H∗(M) is the induced map in cohomology.

The class [η(E)] is the generalized Poincaré dual of the closure of η(E) and generic means
transversal to ξ(E) for all ξ ∈ V/G. See Remark 2.6 for more details.
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Proposition 2.2 implies that the class [η(s)] is the same for any generic section s since s∗ :
H∗(E) → H∗(M) is the same map for any section s. In fact it is an isomorphism.

Next we show that it is enough to calculate one case—the universal one. Let k :M → BG be
the classifying map of the principal G-bundle P → M . Then k induces a map kE : E → BV ,
where BV = EG ×ρ V is the universal V -bundle (we consider V as a G-space and suppress ρ
from the notation) and EG ≃ ∗ is the universal principal G-bundle over BG. The B in BV
refers to Borel construction.

Proposition 2.3.

[η(E)] = k∗E[η(BV )].

The space BV is infinite dimensional. However we can still make sense of [η(BV )], see
Remark 2.6. We can think of Tp(η) as the G-equivariant Poincaré dual of η in V .
η(BV ) as a set is nothing else but Bη = EG ×ρ η. It is an easy exercise to show that

Bη ≃ B Stabη, where Stabη is the stabilizer subgroup of the orbit η (more precisely of a point
of η). It is usually more convenient to work with a maximal compact subgroup Gη of Stabη.
Since BGη ≃ B Stabη it doesn’t effect the calculations.

Proposition 2.3 means that [η(s)] can be expressed in terms of G-characteristic classes of
P . Since H∗(BG) is a subring of a polynomial ring we call the element [η(BV )] ∈ H∗(BV ) ∼=
H∗(BG) the Thom polynomial of η.

[η(BV )] shares some properties of the ordinary Poincaré dual. In particular

(i) restricted to the complement of the closure η(BV ) is zero, and
(ii) restricted to itself we get the top Chern class—we will also use the name Euler class—of

the normal bundle of η(BV ) in BV .

These imply the following:

Theorem 2.4 ([FRa, Thm.2.9]). Suppose that θ is an orbit of ρ with codim θ ≤ codim η and
jθ : Bθ → BV is induced by the inclusion θ ⊂ V .

Then

j∗θ Tp(η) =

{

e(νη) if θ = η ‘principal equation’

0 if θ 6= η ‘homogeneous equations’
,

where νη is the normal bundle of Bη in BV and e denotes the top Chern class or Euler class.

We can see that νη ∼= EGη ×ρη Nη, where Nη = TxV/Txη is the normal space of η at a point
x ∈ η. We refer to the equations above as restriction equations.

Theorem 2.4 seems to be an innocent observation, but it is enough to calculate Tp(η):

Theorem 2.5 ([FRa]). Let ρ : G → GL(V ) be a linear representation on a complex vector
space V with finitely many orbits. Suppose that for every orbit η we have e(νη) 6= 0. Then the
restriction equations have a unique solution.

The proof of this theorem is based on an induction using Mayer-Vietoris and Gysin sequences.
So we will use Theorem 2.4 to calculate Thom polynomials for group actions of quiver type

in Section 3. It remains now to sketch how the various Poincaré duals used above can be
defined. In the next remark we sketch the general approach of Kazarian, although a simpler
construction works in our case, since the orbits are complex algebraic varieties, see [FRa].
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Remark 2.6. In [Kaz97] Kazarian uses the codimension filtration F(V ) of V—i.e. Fd =
⋃

{orbits of codimension ≤ d} to get a filtration F(E) on the total space of any V -bundle E. A
filtration F of a space X defines a relative cohomology spectral sequence E∗,∗

∗ (F) converging to
H∗(X). In our case the orbits are complex manifolds, so their codimension is even. It implies

that E0,2k+1
1 = 0 therefore E0,∗

1 = E0,∗
2 . Also, the complex structure defines an orientation of

the normal bundles of the orbits, which defines an element o(η) ∈ E0,d
1 for every orbit η with

codimension d. Composing the above isomorphism with the edge homomorphism e : E0,∗
2 →

H∗(E) we get elements [η(E)] := e(o(η)). If we have a filtration preserving map it induces
a map between the spectral sequences. In particular we get such maps for pullbacks of V -
bundles and for sections s : M → E if s is transversal to every orbit (transversality implies
that s−1(η(E)) is a manifold with the right codimension).

3. Geometry of quiver representations

In this section we return to Problem 1.3. Using the theory developed in Section 2 first we
define a certain class—quiver type—of representations.

Let Q = (Q0, Q1) be an oriented graph where Q0 is the set of vertices and Q1 is the set
of arrows e = (e′, e′′) ∈ Q0 × Q0 (multiple arrows and loops allowed). Given a nonnegative
integer function d on Q0 called dimension vector, we associate a representation ρ(Q, d) of
G = GL(d) = Xi∈Q0

GL(d(i)) on the vector space V = V (Q, d) =
⊕

e∈Q1
Hom(Cd(e′),Cd(e′′)).

In this context Q is called a quiver and V is called the space of representations of Q.
Now we want to answer the following questions:

(i) What are the orbits of ρ(Q, d)?
(ii) For which quivers Q are the conditions of Theorem 2.5 (finitely many orbits and nonzero

normal Euler classes) satisfied?
(iii) How to calculate the necessary input of the restriction equations: the stabilizers and the

actions on the normal spaces?

All these questions can be answered with algebraic methods. We happily realized that these
type of questions were studied in the theory of representations of quivers. We are grateful to
Mátyás Domokos who provided all the information we needed and explained us this beautiful
chapter of representation theory unknown to us before. As a general reference for the section
we recommend [ARS95].

The basic idea of applying algebra is that orbits of the action ρ(Q, d) can be identified with
certain modules over an algebra. Then a dictionary can be developed connecting geometry with
algebra. For example the stabilizer of an orbit can be identified with the automorphism group
of the corresponding module.

Definition 3.1. The path algebra CQ of the quiver Q is the C-algebra generated by the oriented
paths of Q, including for every i ∈ Q0 the trivial path ψi starting and ending at i. Multiplication
corresponds to the concatenation of paths. If they don’t fit then the product is zero.

We can see that the ψi’s are the minimal idempotents in CQ and
∑

ψi = 1.
An element v of V (Q, d) can be considered as a functor from the category Q to the category

of finite dimensional vector spaces V ect such that v(i) = Cd(i) for i ∈ Q0. We will frequently
use the following equivalence (which is not too difficult to verify):
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Theorem 3.2 ([ARS95]). The category of functors Q → V ect is equivalent to the category of
finite dimensional (right) CQ-modules.

In particular for a CQ-module M we can recover the dimension vector dM via dM(i) :=
dim(M(i)) where M(i) :=Mψi.

To get some familiarity with these abstract notions we turn to Example 1.1: The correspond-
ing quiver is A2 and CA2 is generated by the elements ψ1, ψ2 and a, where ψi are the trivial
paths corresponding to the two vertices and a is the only nontrivial path. Multiplication is
defined by ψ2

1 = ψ1, ψ
2
2 = ψ2, ψ1a = aψ2 = a and all other products are zero. Suppose now

that we have a map ϕ ∈ V (A2) = Hom(Cn,Cp) then we can define a CA2-module Mϕ on the
vector space Cn ⊕ Cp by the rule:

(v1, v2)ψ1 = (v1, 0), (v1, v2)ψ2 = (0, v2), (v1, v2)a = (0, ϕ(v1)).

On the other hand from the multiplication table it follows thatM =Mψ1⊕Mψ2 andMψ1a =
Maψ2 ⊂ Mψ2 so multiplication by a defines a map ϕa : Mψ1 → Mψ2. It is also not too
difficult to show that Mϕ

∼= Mϕ′ if and only if ϕ′ = BϕA−1 for some invertible linear maps A
and B.

The most useful feature of the language of modules is that we don’t have to fix the dimension
vectors: we can take direct sums of CQ-modules. Geometrically these modules correspond to
orbits of different representations, so this “additive” structure is hidden. In particular we
cannot see geometrically the importance of the basic blocks—the indecomposable CQ-modules.
The next theorem on indecomposable CQ-modules is the key to our results:

Theorem 3.3 (P. Gabriel [BGP73]). CQ admits finitely many indecomposable modules if and
only if Q is a quiver of Dynkin type (more precisely a Dynkin diagram with simple arrows i.e.
of type Ai, Di, E6, E7 or E8). The indecomposable modules are determined by their dimension
vectors and correspond to the positive roots R(Q) of Q.

The proof is based on the observation that you can define a bilinear form on the dimension
vectors of Q called the Euler form:

Definition 3.4.

EQ(a, b) :=
∑

i∈Q0

a(i)b(i)−
∑

e∈Q1

a(e′)b(e′′).

It can be shown that CQ admits finitely many indecomposable modules if and only if EQ

is positive definite, and a is a dimension vector of an indecomposable module if and only if
EQ(a, a) = 1 and a(i) ≥ 0 for all i ∈ Q0 i.e. a is a positive root of Q.

Translating this theorem into the language of group representations these are the cases when
the representation ρ(Q, d) has finitely many orbits. This answers half of our questions raised
at the beginning of this section. It is not impossible to calculate Thom polynomials for other
quivers—see Section 7—but it requires different methods.

Our next goal is to calculate the maximal compact subgroup Gv of the stabilizer group of
a v ∈ V (Q, d). Using the equivalence of categories we have Gv

∼= AutCQ(Mv), where Mv is
the CQ-module corresponding to v. We also use the notation GM for Gv. First we write Mv

as a sum of indecomposable modules. Since the Remak-Krull-Schmidt theorem holds in this
category ([ARS95, Thm. 2.2]) we have the following:
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Theorem 3.5. For every finite dimensional CQ-moduleM in the decompositionM ∼=
⊕

r∈R(Q)

µrlr,

where lr is the indecomposable CQ-module with dimension vector d, the multiplicities {µr} are
uniquely defined.

Proposition 3.6.

GM
∼= X

r∈R(Q)
U(µr).

It may help the reader to look at the case of the quiver A2 again: The module Mϕ is
indecomposable if and only if ϕ is indecomposable, i.e. cannot be written as ϕ = ϕ′ ⊕ ϕ′′ in a
nontrivial way. Gauss elimination shows that we have three indecomposable maps: l1,1 = Id :
C → C, l1,0 : C → 0 and l0,1 : 0 → C. Also, if we have a map ϕ ∈ V (A2) = Hom(Cn,Cp) of
corank k, then we have the decomposition:

Mϕ
∼= (n− k)l1,1 ⊕ kl1,0 ⊕ (p− n+ k)l0,1,

so Proposition 3.6 specializes to the classical fact (see e.g. [FRa]) that Gϕ
∼= U(n−k)×U(k)×

U(p− n + k).
For the proof of Proposition 3.6 we introduce the Auslander-Reiten graph A(Q) of a quiver

Q which contains most of the information we need for our calculations.

Definition 3.7. A(Q)0 := R(Q) and there is an arrow (l, m) ∈ A(Q)1 if and only if there is
an irreducible homomorphism in Hom(l, m).

Proposition 3.8.

GM
∼=MaxCpt

(

X
r∈R(Q)

Aut(µrlr)
)

.

Proof. Since Q is Dynkin, A(Q) contains no closed oriented path (as it is easy to see from the
construction in [Gab79, §6.5]). Hence it defines a partial ordering of R(Q). Let < be an ordering
extending this partial ordering. If X ∈ Aut(M) then X = (Xij) where Xij : µili → µjlj because
of the unicity of the decomposition. Using the ordering above Xij = 0 if i > j i.e. X = (Xij)
is “upper triangular”.

Proposition 3.9. Aut(l) ∼= C× for l ∈ R(Q).

Sketch of proof: As we mentioned after Theorem 3.3 the dimension vector of an indecompos-
able module l is a root for the Euler form, i.e.

1 = EQ(l, l) =
∑

i∈Q0

d2l (i)−
∑

e∈Q1

dl(e
′)dl(e

′′) = dimGL(dl)− dimV (Q, dl).

It shows that if dM = dl then the orbit of M is open iff dim(Aut(M)) = 1. By Theorem
3.3 the module l is the only indecomposable module with this dimension vector and clearly
dim(Aut(M)) > 1 for a decomposable module M . So the orbit of l has to be the only open
orbit.

Proposition 3.6 is a direct consequence of Propositions 3.8 and 3.9. The proof also describes
the homomorphism GM → G, so we can calculate the maps j∗M : H∗(BG) → H∗(BGM):
We have dimM(v) =

∑

µr dim lr(v). Let π(v, ·) be a bijection of sets corresponding to this
equation. For example an ordering on R(Q) defines such a π. Let {αv,k : v ∈ Q0, k ≤
dimCM(v)} denote the Chern roots of H∗(BG) and {αr,j : r ∈ R(Q), j ≤ µr} denote the
Chern roots of H∗(BGM).
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Proposition 3.10. j∗Mαv,k = απ(v,k).

To see the map j∗M more explicitly suppose that we have an ordering on R(Q). It defines a
bijection R(Q) → {1, . . . , R := |R(Q)|}. Using this numbering to index the elements of R(Q)
and the notation dr(v) := dim lr(v) we get:

Chern roots of BG · · · αv,1 αv,2 · · · αv,d1(v) αv,d1(v)+1 · · · αv,2d1(v)

j∗M · · · α1,1 α1,1 · · · α1,1 α1,2 · · · α1,2

αv,2d1(v)+1 · · · αv,µ1d1(v) αv,µ1d1(v)+1 · · · αv,
∑R

i=1
µidi(v)

· · ·

α1,3 · · · α1,µ1
α2,1 · · · αR,µR

· · ·

A different choice of π leads to the same map j∗M since we look at only the symmetric
polynomials of the roots.

To calculate the principal equation of Theorem 2.4 we need the normal space NM and the
action of GM on NM :

Proposition 3.11. NM
∼= ExtCQ(M,M) as GM -representations.

This is a version of the Voight-lemma, see [Voi77]. It was first observed in [LP90] that
the Voight-lemma can be applied to quivers. Proposition 3.11 is stated in [DZ01] for simple
modules, but the argument is the same for non simple modules.

Using the bilinearity of the functor Ext we get:

Corollary 3.12. Suppose that M ∼=
⊕

r∈R(Q) µrlr is the decomposition of the CQ-module M
into indecomposables. Then

ExtCQ(M,M) ∼=
⊕

r,s∈R(Q)

Hom(Cµr ,Cµs)mrs

as GM-representations, where mrs = dimExtCQ(lr, ls).

The action of GM
∼= Xr∈R(Q) U(µr) on the right hand side is that only the U(µr) factor acts

from the left and the U(µs) from the right on the summand Hom(Cµr ,Cµs).

Corollary 3.13.

e(νη) =
∏

r,s∈R,i≤µr,j≤µs

(αs,j − αr,i)
mrs,

where νη is the normal bundle of η(BV ) andM ∼=
⊕

r∈R(Q) µrlr is the CQ-module corresponding
to the orbit η and αr,i are the Chern roots of the universal bundle over BGη.

So we need an algorithm to calculate ExtCQ(lr, ls) for indecomposable modules lr and ls. The
essential tool for this is a partial self map τ of R(Q), the Auslander-Reiten translation. For the
definition and calculation of τ see [ARS95] (they use the notation DTr) and [Gab79, §6.5]. We
need the following lemmas to calculate the numbers mrs:

Proposition 3.14.

(i) dimExtCQ(M,N) = dimHomCQ(N, τM) or 0 if τM is not defined. [ARS95] (Auslander-
Reiten formula)

(ii) ExtCQ(M,N) ∼= ExtCQ(τM, τN) if τ is defined on M and N . [ARS95]
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(iii) For quivers of Dynkin type every indecomposable module can be translated via τ into a
projective module. [BGP73]

Corollary 3.15. Any representation of a quiver of Dynkin type satisfies the assumption of
Theorem 2.5, therefore the restriction equations have a unique solution.

Proof. We have to show that e(νη) 6= 0. By Corollary 3.13 it is enough to show that ExtCQ(lr, lr) =
0. Which is a consequence of Proposition 3.14.(ii) and (iii) and the fact that ExtCQ(P, ·) = 0
for a projective module P .

Now it remains to calculate HomCQ(P,N) where P is a projective indecomposable module.
The following statements are easy to verify:

Proposition 3.16.

(1) The projective indecomposable modules are {Pi = ψiCQ : i ∈ Q0}.
(2) HomCQ(Pv,M) ∼=M(v) for the projective module corresponding to v ∈ Q0.

For the quiver A2 we can easily calculate the two indecomposable projective modules:

P1 = ψ1CA2 = 〈ψ1, a〉 = l1,1, P2 = ψ2CA2 = 〈ψ2〉 = l0,1.

It shows that for a linear map ϕ the corresponding CA2-module Mϕ is projective if and only if
ϕ ∈ Hom(Cn,Cp) is injective.

The only Auslander-Reiten translation is: τ(l1,0) = l0,1. So by Corollary 3.12 and Proposition
3.14 we get that if ϕ has corank k then:

Nϕ
∼= Ext(Mϕ,Mϕ) ∼= Hom(Cp−n+k,Ck) ∼= Hom(Cokerϕ, kerϕ).

The rest of the calculation of the Thom-Porteous formulas along these lines can be found in
[FRa].

We would like to demonstrate in the next sections that the calculations of this section are
very simple, and only the last step when a system of linear equations has to be solved requires
computer.

4. Quivers of type An

In this section we study the quivers An =
1
• →

2
• → · · · →

n
•. This is the case where

Buch annd Fulton calculated the Thom polynomials in [BF99]. So (An)0 = {v1, . . . , vn} and

(An)1 = {(v1, v2), . . . , (vn−1, vn)}. The vector space V = V (An) =
⊕n−1

i=1 Hom(Vi, Vi+1) and
G = X

n
i=1GL(Vi).

The positive roots are R(An) = {lij : 1 ≤ i ≤ j ≤ n} where lij := (0, . . . , 0,
i

1, . . . ,
j

1, 0, . . . , 0).
We use the same notation for the corresponding indecomposable modules.

The reader may ask that given an element ϕ = (ϕ12, . . . , ϕn−1,n) ∈ V how can we decide
which orbit ϕ belongs to. In other words how to decompose ϕ (we use the same notation for ϕ
and the corresponding CAn-module) into indecomposable modules? To answer this we define
ϕij : Vi → Vj taking compositions:

Lemma 4.1. Let ϕ =
⊕

µijlij(ϕ) ∈ V and suppose that the map ϕij : Vi → Vj has rank rij(ϕ).
Then the multiplicity of lij in ϕ is

µij(ϕ) = ri+1,j−1 − ri,j−1 − ri+1,j + ri,j
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Proof. Using that rij(ϕ1 ⊕ ϕ2) = rij(ϕ1) + rij(ϕ2) we get that

rij(lkm) =

{

1 if k ≤ i < j ≤ m,
0 otherwise

,

so rij(ϕ) =
∑

k≤i<j≤m µk,m. This system of equations can be solved for µk,m using Figure 1.

i i+ 1
j

j + 1

µij

Figure 1. The multiplicity of lij

Remark 4.2.

(i) Lemma 4.1 shows that in the case of An the orbits can be described using rank conditions.
This is not true for every quiver. For example if you change the orientation of some
arrows in An, you get a quiver, where you don’t have enough compositions. However the
Thom polynomial method works equally well for these cases. The dimension vectors of
the indecomposable modules don’t change, but the Auslander-Reiten translation will be
different. It also changes the behaviour of the Thom polynomials, see Remark 4.6.

(ii) The decomposition into indecomposable modules is encoded in the “diagram of dots con-
nected with lines” in [BF99, Sect. 2.3]. Also the numbers µij(ϕ) = ri+1,j−1 − ri,j−1 −
ri+1,j + ri,j play a central role in their calculations.

Proposition 3.6 implies that Gϕ
∼= XU(µij(ϕ)). Next we calculate the Euler class of the

normal bundle νϕ:

Lemma 4.3.

Hom(lij, lkm) ∼=

{

C if i ≤ k ≤ j ≤ m,
0 otherwise.

It is also easy to see that τlij = li+1,j+1 and the projective indecomposable corresponding to
the vertex vi is Pi = lin (see Remark 6.1 where we explain how to calculate these) so we can
calculate the coefficients mrs of Theorem 3.12:
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Lemma 4.4.

mij,km = dimExt(lij , lkm) = dimHom(lkm, li+1,j+1) =

{

1 if i+ 1 ≤ k ≤ j + 1 ≤ m,
0 otherwise.

Now we can calculate the Euler class:

Proposition 4.5. For ϕ ∈ V (An):

e(νϕ) =
∏

i+1≤k≤j+1≤m

∏

a≤µij (ϕ), b≤µkm(ϕ)

(αija − αkmb),

where the α’s are the Chern roots of Gϕ.

We also have to calculate the maps j∗ϕ : H∗(BG) → H∗(BGϕ). From Proposition 3.10 we
know that j∗Mαv,k = απ(v,k) for an appropriate map π on the indices of the Chern roots. We
can see that

dim Vk = dimϕ(vk) = rkk(ϕ) =
∑

µij dim(lij(vk)) =
∑

i≤k≤j

µij.

So one way to fix π is:

π(vk, m) := (i, j, l) if

i−1
∑

a=1

n
∑

b=k

µab +

j−1
∑

b=k

µib + l = m and l ≤ µij .

This choice of π corresponds to the lexicographic ordering of the roots {(i, j) : 1 ≤ i ≤ j ≤ n}.

Remark 4.6. Since l1n is projective and injective at the same time, it is not difficult to see
that Ext(M + l1n,M + l1n) = Ext(M,M), which implies that:

Tp(M) = Tp(M + l1n).

(Use that j∗M+l1n
factors through j∗M to show that Tp(M + l1n) satisfies all the equations for

Tp(M).) In other words we can recover the fact in [BF99] that Tp(M) is a polynomial of
Chern classes of differences of universal bundles. However if we change the orientation of some
of the arrows, then there is no module projective and injective at the same time and similar
statement doesn’t hold.

Remark 4.7. If the dimension vector has the form d = (1, 2, . . . , k−1, k, k, k−1, . . . , 2, 1), then
the Thom polynomials of certain orbits are the so called double Schubert polynomials, see e.g.
[BF99] or [FP98]. The theory of Thom polynomials for group actions allows us to change the
representation and it turns out that the double Schubert polynomials are Thom polynomials
for a smaller group G = B+ × B− acting on the vector space Hom(Ck,Ck) where B+ (B−) is
the group of invertible upper (lower) triangular k× k matrices. This approach leads quickly to
the Lascoux-Schützenberger definition of the double Schubert polynomials (see [FRc]).

5. How does it all work in a concrete case?

In this section we explicitly calculate an example:
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Example 5.1. Suppose we have complex vector bundles E1, E2, E3 over the manifold X with
fibers C1,C2,C2 respectively, and bundle maps ϕ12 : E1 → E2, ϕ23 : E2 → E3 and ϕ13 :=
ϕ23 ◦ ϕ12 : E1 → E3. Assuming that ϕij is generic, what is the Poincaré dual [Ω110(ϕ)] of the
degeneracy locus Ω110(ϕ), where

Ω110(ϕ) = {x ∈ X : rankϕ12(x) ≤ 1, rankϕ23(x) ≤ 1, rankϕ13(x) = 0}?

In the language of Section 4 we look at the A3 quiver (arrows are oriented to the right)
with dimension vector (1, 2, 2), i.e. we consider the group GL(1) × GL(2) × GL(2) acting
on the vector space Hom(C1,C2) × Hom(C2,C2) by (U, V,W ) · (ϕ, ψ) := (V ϕU−1,WψV −1).
This action has a unique codim 0 orbit (A), a unique codim 1 orbit (B), two codim 2 orbits
(C1, C2) and higher codimensional ones. (The problem of determining the orbits is solved by
using the language of the representations of the quiver algebra where this problem reduces to
partitioning the dimension vector (1, 2, 2) into dimension vectors of indecomposable modules
of CQ(A3). The codimension of orbits are calculated in Proposition 3.11.) The ‘diagram of
dots connected with lines’ (where the connected components correspond to the indecomposable
summands) of the ≤ 3 codimensional orbits are as follows (ignore the labels on C2 now)

• • •

• •

A

• • •

• •

B

• • •

• •

C1

u
x v1 w1

v2

y ✈✈✈✈✈✈✈ w2

z

C2

Our task is to compute the Thom polynomial of C2 since Tp(C2)(E1, E2, E3) = [Ω110(ϕ)].
By definition Tp(C2) ∈ H4

(

B(GL(1)×GL(2)×GL(2))
)

. Denoting the ‘Chern root generators’
of H∗(BGL(1)), H∗(BGL(2)), H∗(BGL(2)) by u, v1, v2 and w1, w2 respectively (α12, α22, α23,
α32, α33 with the notation of Proposition 3.10 but to avoid double indices we renamed the
vertices of the quiver to u, v and w), the sought Thom polynomial is a degree two polynomial
in the variables u, v1, v2, w1, w2, symmetric in v1, v2 and w1, w2 respectively. So it must have
the form

(1) Tp(C2) = au2 + b(v1 + v2)
2 + cv1v2 + d(w1 + w2)

2+

ew1w2 + fu(v1 + v2) + gu(w1 + w2) + h(v1 + v2)(w1 + w2).

for some coefficients a, b, . . . , h. Our task is to determine these coefficients. The method of
section 2, i.e. Theorem 2.4 gives linear equations on these coefficients. Let us start with the
‘principal equation’. According to this we know that the value of Tp(C2) under the substitution

u→ x, v1 → x, v2 → y, w1 → y, w2 → z

must be (y − x)(z − x). (The substitution (that is j∗C2) is computed in Proposition 3.10—see
also the enhanced diagram above—and the right hand side is computed in Corollary 3.13 or
Proposition 4.5.)

So we have:

(2) ax2 + b(x+ y)2 + cxy + d(y + z)2 + eyx+ fx(x+ y) + gx(y + z) + h(x+ y)(y + z) =

(y − x)(z − x).
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The three variables x, y and z have
(

4
2

)

= 6 quadratic monomials so (2) gives six linear equations
for the coefficients a, b, . . . , h. Similarly the homogeneous equations for A,B and C1 give
3 + 6 + 6 equations, so it is an overdetermined system of linear equations with 21 equations
and 8 unknowns. Theorem 2.5 guarantees the unique solution:

Tp(C2) = u(v1 + v2)− u(w1 + w2)− v1v2 + w1w2.

The Buch-Fulton algorithm gives the result in the form:

(3)

s(1)

(

1− u

1− (v1 + v2) + v1v2

)

s(1)

(

1− (v1 + v2) + v1v2
1− (w1 + w2) + w1w2

)

+ s(1,1)

(

1− (v1 + v2) + v1v2
1− (w1 + w2) + w1w2

)

=

(v1 + v2 − u)(w1 + w2 − v1 − v2)+

det

(

w1 + w2 − v1 − v2 v1v2 − (v1 + v2)(w1 + w2)− w1w2 + (w1 + w2)
2

1 w1 + w2 − v1 − v2

)

,

where the s’s are the supersymmetric Schur polynomials (which simply means to substitute
the Taylor terms of the rational fuction into the corresponding ordinary Schur polynomial).
One can see that the two approaches are quite different, both having their own advantages—
although clearly both needs a computer to be effectively computable. The comparison of the
two approaches, i.e. showing linear connections between the coefficients of Schur and Schubert
type polynomials might turn out to be interesting in the future.

In the next section an advantage of our approach is presented: its applicability to Dynkin-
graphs different from An.

6. The quiver D4

The Auslander-Reiten graph of D4 is:

P2 =
1
0 1
0

$$❏
❏❏

❏❏
❏❏

❏❏

R2 =
0
1 1
1

$$❏
❏❏

❏❏
❏❏

❏❏

I2 =
1
0 0
0

P1 =
0
0 1
0

::ttttttttt

//

$$❏
❏❏

❏❏
❏❏

❏❏

P3 =
0
1 1
0

// R1 =
1
1 2
1

99ttttttttt

//

%%❏
❏❏

❏❏
❏❏

❏❏

R3 =
1
0 1
1

// I1 =
1
1 1
1

::✉✉✉✉✉✉✉✉✉

//

$$■
■■

■■
■■

■■

I3 =
0
1 0
0

P4 =
0
0 1
1

::ttttttttt

R4 =
1
1 1
0

::ttttttttt

I4 =
0
0 0
1

where Pi are the projective modules and Ii are the injective modules. The Auslander-Reiten
translation is translating two steps to the left, i.e. τ(Ri) = Pi and τ(Ii) = Ri.

Remark 6.1. We can demonstrate on this example how to calculate the Auslander-Reiten
graph of of a quiver:

(1) Draw the opposite graph with the indecomposable projective modules Pj of the corre-
sponding vertices.
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(2) Calculate the dimension vectors of Pj: di(Pj) =the number of oriented paths from j to
i.

(3) Calculate the dimension vectors of the cokernels of the existing maps i.e.:

d(R1) = d(P2) + d(P3) + d(P4)− d(P1), d(R2) = d(R1)− d(P2)

and so on.
(4) Stop when you get negative numbers.

To demonstrate how easy to read off the restriction equations from the Auslander-Reiten

graph we look at a small dimensional example ρ(D4,
1
1 2
1

) in details. This is the smallest case

where all the indecomposable modules show up.
By adding up the dimension vectors we can see that there are 15 orbits (modules), e.g:

R1, P1 +R2 + I2, 2P1 + I2 + I3 + I4, P1 + I1, P2 + P3 + I4,

and so on.
Let us calculate some of the maps j∗M : Let us denote the Chern roots of G = GL(

1
1 2
1

) by
k
l s,t
m

and the Chern roots of M = 2P1 + I2 + I3 + I4 by p1, p
′
1, i2, i3, i4. Then:

j∗M :
k
l s,t
m

→
i2
i3 p1,p

′

1

i4

.

Similarly if M = P2 + P3 + I4 then the Chern roots are p2, p3, i4 and

j∗M :
k
l s,t
m

→
p2
p3 p2,p3
i4

,

i.e. we put a p2, where the dimension vector of P2 is 1 and so on.
For the principal equations we need the Euler classes, so we have to calculate the Ext-

groups. Using that Ext is τ invariant and that Ext of a projective module is 0, we get e.g. for
M = P1 + I1:

Ext(M,M) ∼= Ext(I1, P1) ∼= CdimHom(P1,R1) ∼= CdR1
(1) = C2,

so eM = (i1 − p1)
2.

For M = 2P1 + I2 + I3 + I4:

Ext(M,M) ∼= 2
⊕

j=2,3,4

Ext(Ij , P1) ∼= 2
⊕

j=2,3,4

CdimHom(P1,Rj) ∼=
⊕

j=2,3,4

C
2dRj

(1) = C6

and eM = (i2 − p1)(i3 − p1)(i4 − p1)(i2 − p′1)(i3 − p′1)(i4 − p′1), which shouldn’t be a surprise,

since 2P1 + I2 + I3 + I4 corresponds to the orbit 0 in V (D4,
1
1 2
1

) ∼= C6.

Such a way we can write down all the restriction equations. We should warn the adventurous
reader to use computer at this point since even at this small example the number of equations
can reach 50. Some examples for Thom polynomials:

Tp(P2 + P3 + I4) = k2 − (s+ t)k + st = c2(E1 ⊖ E4),

where Ei is the universal bundle corresponding to the ith vertex.

Tp(P2 +R2) = −l −m+ (s+ t),

which is an example that the Thom polynomial is not necessarily a polynomial of Chern classes
of differences of universal bundles, as in the case of the previous section.
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7. other examples

Example 7.1. The one-loop quiver 	—i.e. the adjoint representation has infinitely many
indecomposable modules, but the orbittype stratification is a Vassiliev stratification. However
it is not difficult to show—we plan to publish it in a different paper—that all the Thom
polynomials are zero.

We suspect that for not too complicated quivers as X—corresponding to the problem of
quadruple subspaces—and the double arrow the calculations are still possible combining the
Dynkin case with the one-loop case.
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