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Introduction

In this paper the right-left automorphism group (also called symmetry group)
AutAη of stable germs η : (Rn, 0)→ (Rn+k, 0) are studied for k ≥ 0. The goal is, on
one hand, to explicitly compute its maximal compact subgroup, on the other hand,
to prove that the maximal compact subgroup carries exactly as much topological
information as the whole symmetry group.

Though these problems may be of independent interest let us discuss why we
are interested in them, and in the meanwhile we explain what they really mean.
The starting principle is that ‘local symmetry governs global topology’. A simple
example for this principle is the following: let f : N → P be a smooth map
between smooth manifolds and η the most complicated singularity of f . Then a
tubular neighbourhood of η(f) (= the η-points of f in N) is diffeomorphic to the
total space of a vector bundle ν with structure group AutAη. In other words ν can
be pulled back from a universal bundle over B(AutAη).

Following pioneering works of Szűcs (e.g. [Sz1]) in [RSz] it is shown that we can
apply this simple idea simultaneously to every singularity up to a given complex-
ity and construct a so called ‘universal map’. The building blocks of the source
and target spaces of this universal map are the B(AutAη)’s mentioned above. It
is also shown there how the analysis of the universal map can be translated to
global topological properties of all maps with prescribed singularities. So, once
we understand the B(AutAη)’s well enough, we have the chance to obtain various
topological results, such as e.g. computations of cobordism groups [Sz2], or results
on elimination of singularities, see references in [RSz]. A recent application of the
author is the computation of the cohomology classes of η(f)’s in terms of the char-
acteristic classes of f—i.e. the so called Thom polynomials of singularities, see [R2].
A further application of the idea was the computation of multiple point formulas
([R3]) describing the cohomology class defined by double, triple, etc. points of the
map f . A very simple illustration of the techniques is given below.

Before that, however, let us unearth a technical difficulty in applying the ‘local
symmetry governs global topology’ principle as above. Namely, the group AutAη is
not a finite dimensional Lie group, it does not even possess any convenient topology.
So it is difficult to calculate, even to define the classifying space B(AutAη). If
AutAη were finite dimensional then we could freely pass to its maximal compact
subgroup, since a Lie group (with finitely many components) is always homotopy
equivalent to its maximal compact subgroup (the quotient space is contractible).
Jänich [J] and Wall [W] defined the maximal compact subgroup MC AutAη of
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AutAη—and proved its basic properties. Wall also suggested (and Jänich proved
for right symmetries of function germs) that the quotient by the maximal compact
subgroup is contractible in a generalized sense. This generalized contractibility is
proved in section 2 of the present paper. Its geometric meaning is the following:
in topological circumstances we meet locally trivial fibrations with vector space
fibre (like ν above), which are not vector bundles, but behave like having structure
group AutAη. Our definition of ‘generalized contractibility of AutAη/MC AutAη’
is exactly the technical assumption needed to consider these fibrations as vector
bundles with structure group MC AutAη, e.g. these bundles can be pulled back
by a map to B(MC AutAη). This technical addendum makes the universal map
construction of the preceding paragraph work.

The application of the universal map method, however, needs one more input:
the concrete knowledge of the maximal compact symmetry groups of singularities.
Let us see how it works. By definition we obtain MC AutAη as a subgroup of
GL(n) × GL(n + k), in other words, it comes with representations λ1, λ2 on R

n

and R
n+k respectively. The generalized contractibility theorem implies that once

we have a map f : N → P , the structure group of the normal bundle of η(f) can
be reduced to λ1(MC AutAη). Therefore if det(λ1) > 0 then η(f) is coorientable
for any f (see more in Remark 3 below). This is an important condition turning up
for example in the computation of the so called Vassilev complex of singularities,
see e.g. [FR]. More delicate applications of the concrete knowledge of MC AutAη
are given in the works cited above.

So the other result of the present paper concerns the computation of the max-
imal compact symmetry group of singularities. In theorem 1.4 this problem (infi-
nite dimensional in nature) is reduced to a finite dimensional, algebraically more
attackable one, namely to the computation of maximal compact symmetry groups
of finite dimensional algebras. As an example we compute the maximal compact
symmetry groups of Σ1 and Σ2,0 singularities, needed e.g. in the Thom polynomial
computations of [R2].

We will use standard notations of singularity theory, such as: E(n, p) denotes the
vector space of smooth germs (Rn, 0) −→ R

p. If p = 1 then it is an algebra and the
former is a (free) module over it. The unique maximal ideal of E(n) := E(n, 1) will
be denoted by m(n). The groupA = Diff(Rn, 0)×Diff(Rp, 0) acts on m(n)E(n, p)
by the definition (ψ, φ)f = φfψ−1. The stabiliser subgroup of η will be denoted
by AutAη (which would still be an infinite dimensional group if we defined any
reasonable topology on it). Germs in the same orbit are called A-equivalent. The
contact group K also act on E(n, p), the stabiliser of η ∈ E(n, p) is denoted by
AutKη. If η ∈ E(n, p) then θη will denote the vector space of germs of vector fields
along η. The formula θRn stands for θidRn . When passing from the “manifold of
germ” to its “tangent space” θη, it is useful to define the maps tη : θRn −→ θf and
ωη : θRp −→ θf by tη(h) = dη ◦ h and ωη(h) = h ◦ η.

Let H be one of the groups A or K. Motivated by Bochner’s theorem let us call
a subgroup G ≤ AutHη compact if it is conjugate in H to a compact linear group.
Following Jänich [J] Wall proves the following theorem.

Theorem [W]. If η ∈ E(n, p) is finitely determined then any compact subgroup
of AutHη is contained in a maximal such group and any two maximal compact
subgroups are conjugate in AutHη. �
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1. Computation of the maximal compact subgroup

In this section we reduce the “infinite dimensional” problem of computing the
maximal compact subgroup of AutAF to a finite dimensional one, and use this
reduction to determine this maximal compact subgroup in case of singularities of
type Σ1, Σ2,0.

Let F : (Rn, 0) −→ (Rn+k, 0) (k ≥ 0) be an isolated stable map germ. We
call a germ ‘isolated’ if it has the property that it is not A-equivalent to F :
(Rn, x) −→ (Rn+k, F (x)) for any x 6= 0 near 0 ∈ R

m. It is well known that F
is the a miniversal unfolding of a germ f ∈ E(m,m + k) whose differential at 0
vanishes. Let the unfolding dimension be r = n − m. Recall that for two germ
f1, f2 ∈ E(m,m+k) and for their miniversal unfoldings F1, F2, the following holds:
f1 ∼K f2 ⇔ F1 ∼A F2. The following statement can be found in [W], but for
completeness we repeat its proof (in this paper MC will always mean “maximal
compact subgroup of”).

1.1 Theorem. MC AutAF ∼=MC AutKf .

Proof. Let G be a compact subgroup of AutKf . By definition it is conjugate in
K to a (compact) linear group G0, which is therefore also in AutAf0 for a germ
f0 ∈ E(m,m+ k) K-equivalent to f . Now recall that the miniversal unfolding of f0
is

F0 : (Rm × V, 0) −→ R
m+k × V

(x, φ) 7→ (f0(x) + φ(x), φ),

where V = R
r is a complement of tf(θRm) + f∗

m(m + k)θf in m(m)θf . (The
expression φ(x) makes sense since the space θf can be identified with E(m,m+k).)
Observe that G0 has a natural linear action on θf :

(α, β) ·φ := β◦φ◦α−1, (α, β) ∈ G ≤ GLm(R)×GLm+k(R), φ ∈ θf = E(m,m+k).

Remark. The following may help to understand the G action on θf and the invariant
subspaces of it. Think of θf as the tangent space at f to the infinite dimensional
manifold E(m,m + k). Let Kf denote the set of points in E(m,m + k) contact
equivalent to f . This is a “submanifold” of E(m,m + k). As G ≤ K, and fixes
f , it has an action on E(m,m + k) fixing f . The group G will send a germ K-
equivalent to f into another germ K-equivalent to f (because G ≤ K). Therefore
the submanifold Kf is kept invariant. Hence the differential of the G-action which
is again a G-action but now on the tangent space at f (i.e. on θf ) leaves the tangent
space of Kf invariant. It is not hard to identify tf(θRm) + f∗

m(m + k)θf as the
tangent space of Kf in θf . In fact, K is locally a direct product of R and C, and
Rf = tf(θRm), Cf = f∗

m(m+ k)θf .

If V is chosen to be G0-invariant (which is possible since G0 is compact) then
we can define G0-actions on R

m×V and R
m+k×V as follows (x ∈ R

m, y ∈ R
m+k,

φ ∈ V )

(α, β) · (x, φ) := (α(x), (α, β) · φ),

(α, β) · (y, φ) := (β(y), (α, β) · φ).
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This action on the source and the target spaces of F0 makes G a subgroup of
AutAF0:

F0((α, β) · (x, φ)) = F0(α(x), (α, β) · φ) = (f0(α(x)) + (α, β) · φ(α(x)), (α, β) · φ) =

= (β(f0(x)) + (βφα−1)(α(x)), (α, β) · φ) =

= (β(f0(x) + φ(x)), (α, β) · φ) = (α, β) · F0(x, φ).

Here we used that G is linear and that it is a subgroup of AutAf0. Since F ∼A F0,
we have proved that MC AutKf ≤MC AutAF .

To prove the converse let G be a compact subgroup of AutAF . Then there is
an h ∈ A such that G0 := hGh−1 ≤ GLn+r(R) × GLp+r(R). If F0 = h · F then
G0 ≤ AutAF0 because

(hgh−1)graph F0 = (hg)graph F = h graph F = graph F0

for any g ∈ G. Since G0 is linear and graph F0 is G0-invariant the tangent space
(dF0)0 = T0(graph F0) ⊂ R

n+r × R
p+r is also G0-invariant. It follows that A :=

(dF0)0 ∩ R
n+r × {0} and C := prRp+r ((dF0)0) are also G0-invariant subspaces of

dimensions n and r respectively. Choose G0-invariant complements of A and C in
R
n+r and R

p+r: B and D. Therefore A = R
n, B = R

r, C = R
r, D = R

p. Denote
the map (prD ◦ F0)|A : Rn −→ R

p by f0. It can be proved that F0 is a miniversal
unfolding of f0. Since F0 and F are A-equivalent f0 and f must be K-equivalent.

If we project the group G0 ≤ GL(A) × GL(B) × GL(C) × GL(D) to GL(A) ×
GL(D) — let this projection be π — then the resulting group is clearly in AutAf0.
What we want to show is that this projection is injective on G0, that is we want to
prove that the action of G0 on A and D determines its action on B and C (both are
isomorphic to R

r). It is enough to deal with the action on C, because it (together
with the actions on A and D) determines the action on B.

Let us use the notation Nη = θη/tη(θRn) + η∗(m(p))θη for η ∈ E(n, p) and the
fact that ωη induces isomorphism between θRn/m(p) −→ Nη if η is an isolated
stable singularity. It is also known that the natural map ρf0,F0

: Nf0 −→ NF0
is an

isomorphism.
Now consider the diagram

θRp+r/m(p+ r)θRp+r

ωF0−→ NF0

ρf0,F0←− Nf0 .

There is a naturally defined G0 action on all three spaces involved here: the space
θRp+r/m(p+r)θRp+r is naturally identified with R

p+r ∼= C×D, so it has a G0 action.
Since G0 ≤ AutAF0 it has an action on NF0

described in the proof of the preceding
theorem. The group G0 also operates as A-automorphism group on f0 through
π, so it has an action on Nf0 , too. The discussion before the theorem says that
the map ρf0,F0

is G0-equivariant. The other map ωF0 is trivially G0-equivariant.
Since both maps ωF0 and ρf0,F0

are G0-equivariant isomorphisms we obtain that
the action of G0 on Nf0 determines the action of G0 on C (and D). But the action
on Nf0 depends only on the π-image of G0, so π|G0

is injective.
The end of the proof is a routine: G0 ≤ AutAf0 compact, so G0 ≤ AutKf0

compact. Since f and f0 are K-equivalent, there is a compact subgroup of AutKf
isomorphic (conjugate in K) to G0. As G0

∼= G, the theorem is proved. �
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Now the problem of computing MC AutAF is reduced to the computation of
MC AutKf , which is still “infinite dimensional” in nature. Now our goal is to go
further and embed this group in a (finite dimensional) Lie group.

Let us fix the finitely K-determined germ f ∈ E(m,m+ k) for which df(0) = 0.
Present its local algebra Qf (which is also the local algebra of F ) as

R[[x1, . . . , xm]]/(r1, . . . , rs),

where s−m is minimal (m is also minimal because of the condition on df). Let us
call this minimal s−m the defect of the algebra, and denote it by d = d(Qf ). The
germ f has to be K-equivalent to

g : (Rm, 0) −→ R
s × R

k−d

(x1, . . . , xn) 7→ (r1, . . . , rs, 0, . . . , 0).

Let us denote by h the germ h : (Rm, 0) −→ R
s, (x1, . . . , xm) 7→ (r1, . . . , rs). The

proof of the following lemma is trivial.

1.2 Lemma. MC AutKg ∼=MC AutKh×O(k − d). �

Now we turn to the study of AutKh. Ih will denote the image of h∗m(s)E(m) ≤
E(m) in R[[x1, . . . , xm]].

1.3 Theorem. Let G ≤ AutKh be compact. Then there is a compact subgroup H
of Aut Qh isomorphic to G.

Proof. Without loss of generality we can suppose that G acts linearly on R
m ×R

s,
because if not, then we change h by an appropriate element of K (which linearizes
G).

Now let (ψ, φ) ∈ G ≤ GLm(R) × GLs(R) then ψ acts on R[[x1, . . . , xm]] and it
induces an action

ψ̄ : Qh −→ Qh

on the local algebra Qh. To see this we only have to check that ψ · Ih ⊂ Ih.
Since (ψ, φ) ∈ G we have h(x) = φ ◦ h ◦ ψ−1(x). The matrix φ is invertible, so
Ih = Iψ◦h = ψIh, which means that ψ̄ is well defined.

The map ψ̄ is an automorphism for all (ψ, φ) ∈ G. To see this, we have to
check that it is an injective and surjective homomorphism. All the three of these
properties are easily verified.

Now consider the homomorphism G −→ Aut Qh mapping (ψ, φ) to ψ̄. We are
going to show that it is injective. Suppose that ψ̄ is the identity. Then every
element of Qh is mapped to an element Ih-equivalent to it. Especially [xi] and
[
∑

ψijxj] are Ih equivalent. But Ih is contained in the square of the maximal ideal
of R[[x1, . . . , xm]], so these linear polynomials can only be Ih equivalent if they are
equal. This means that ψ = id.

It remains to show that φ is also the identity. Usually, if the action of an element
of AutAh is given on the source space, then the action of the same element on the
target space is not determined. It is determined only on prRs(graph h) — and
therefore on the linear space Wh := span prRs(graph h) it generates. However we
prove that in our case Wh = R

s. Suppose that Wh is smaller than R
s. Then h has

the form (after appropriate coordinate changes):

(x1, . . . , xm) 7→ (r′ , . . . , r′ , 0),
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which means that Qh can be presented as

R[[x1, . . . , xm]]/(r
′
1, . . . , r

′
s−1)

which contradicts to the condition that the defect of Qh is d = s −m. Therefore
the map (ψ, φ) 7→ ψ̄ is injective so we have proved the theorem. �

Putting all these together we have the following

1.4 Theorem. If F : Rn −→ R
n+k (k ≥ 0) is an isolated stable singularity then

MC AutAF ≤MC Aut QF ×O(k − d),

where d is the defect of its local algebra. �

The problem of finding the maximal compact subgroup of a Lie group (such as
Aut QF ) is theoretically easy. On the other hand, computations can turn very
long and difficult, since the algebras at hand are high dimensional even for the
singularity types Σ1, Σ2,0. The following idea “restricts the size” of our groups.

For a commutative, finite dimensional R-algebra Q with the maximal ideal m
the associated graded algebra is the vector space

G(Q) := Q/m ⊕ m/m2 ⊕ m
2/m3 ⊕ . . .

with the multiplication induced by the one on Q. In addition to considering the
automorphisms of G(Q) we can consider its graded automorphisms, i.e. those which
keep the above direct sum decomposition. Let their group be AutgrG(Q).

1.5 Lemma. MC Aut Q ≤MC AutgrG(Q).

Proof. If φ ∈ Aut Q then it induces linear automorphism on m
l/ml+1, and there-

fore a linear automorphism φ̄ on G(Q). It is readily checked that φ̄ is actually a
graded algebra automorphism: φ̄ ∈ AutgrQ. Its kernel consists of unipotent upper
triangular elements, which can not belong to a compact subgroup (except the id),
so the map φ 7→ φ̄ restricted to any compact subgroup is injective. �

The forgetful map AutgrG(Q) −→ GL(m/m2) is clearly injective. So we have
that MC Aut Q ≤ O(m/m2). Let us remark that for a singularity F of Thom-
Boardman type Σr the dimension of m/m2 is r (it is identified with ker dF ).

Some other interesting statements about Aut Q and its relation to Aut G(Q)
can be found in [GS]. They turn out to be useful in concrete computations.

Examples

The aim of this section is to compute the maximal compact subgroup of the
A-automorphism group of some stable germs. This means that we will compute
AutAF as an abstract group and its representations λ1 and λ2 in the source and
in the target spaces for all stable singularities Rn −→ R

n+k(k ≥ 0) of type Σ1 and
Σ2,0.

Note that if the germ F : (Rn+t, 0) −→ R
p+t has the form (x, u) 7→ (h(x), u),

then AutAF ∼= AutAh × O(t). Therefore it is enough to deal with isolated singu-
larities.
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Notation. In what follows ρl will always mean the usual representation of O(l) on
R
l. For the groups O(2) and Da (dihedral group) ρ

w
2 will mean the two-dimensional

representation which maps

(

cosα − sinα
sinα cosα

)

to

(

coswα − sinwα
sinwα coswα

)

and

(

1 0
0 −1

)

to itself. Three one-dimensional representations of the dihedral

groups will also be needed. Let the dihedral group D2a be presented as < f, t|fa =
t2 = 1, tft = f2a−1 >. The following define 1-dimensional representations of Da:

λ : f 7→ −1, t 7→ −1 κ : f 7→ −1, t 7→ 1 τ : f 7→ 1, t 7→ −1.

Moreover, ε and θ will mean the non-trivial representations of Z2 (two letters are
needed when Z2 × Z2 are concerned). If one of the defined representations are
written as a representation of a group O(l)×H, Dm ×H, Z2 ×H then they really
mean to be a composition of that representation with the projection to O(l), D2a

or Z2.

For all codimension k and for all r ∈ {1, 2, . . .} there is an isolated stable sin-
gularity Fr,k of type Σ1. The one corresponding to r and k (the “isolated Morin
singularity of type Σ1r in codimension k”) has local algebra QFr,k

= R[[x]]/(xr+1)

(defect=0), so it is the miniversal unfolding of fr,k : (R, 0) −→ R
k+1, x 7→

(xr+1, 0, . . . , 0).
The above argument shows the following theorem (which has already been proved

by [Sz3] using a different, geometric approach).

1.6 Theorem. MC AutAFr,k = O(1)×O(k), λ1 = µ1 ⊕ µV , λ2 = µ2 ⊕µV , where

µ1 := ρ1, µ2 := ρr+1
1 ⊕ ρk, µV :=





∑2r
l=r+2 ρ

⊗l
1



⊕




∑r
i=1 ρk⊗ ρ

⊗i
1



. �

Now we turn to Σ2,0 germs. Mather proved in [M2] that there are five infinite
sequences of algebras corresponding to Σ2,0 singularity types:

Ia,b R[[x, y]] / (xy, xa + yb) b ≥ a ≥ 2
IIa,b R[[x, y]] / (xy, xa − yb) b ≥ a ≥ 2 both even
IIIa,b R[[x, y]] / (xy, xa, yb) 3 ≤ b ≥ a ≥ 2
IVa R[[x, y]] / (x2 + y2, xa) a ≥ 3
Va R[[x, y]] / (x2 + y2, xa, yxa−1) a ≥ 2

(For convenience III2,2 of Mather is renamed as V2 here, since — considering
symmetries — III2,2 is closer to the Va sequence.)

1.7 Theorem. If F is an isolated singularity of type Σ2,0 then MC AutAF and
its representations λ1 = µ1 ⊕ µV , λ2 = µ1 ⊕ µV are given by

F MC Aut F µ1 µ2

Ia,b, IIa,b 2 ≤ a < b both even D2 ×O(k) ρ2 τ ⊕ 1⊕ ρk
Ia,b 2 < a odd, 2 ≤ b even Z2 ×O(k) 1⊕ ε ε⊕ 1⊕ ρk
Ia,b 2 < a < b both odd Z2 ×O(k) 2ε 1⊕ ε⊕ ρk
Ia,a 2 < a odd D2 ×O(k) ρ2 1⊕ κ⊕ ρk
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Ia,a 2 ≤ a even D4 ×O(k) ρ2 λ⊕ 1⊕ ρk
IIa,a 2 < a even D4 ×O(k) ρ2 λ⊕ κ⊕ ρk
II2,2 O(2)×O(k) ρ2 ρ22 ⊕ ρk
IIIa,a 2 < a even D4 ×O(k − 1) ρ2 λ⊕ 1⊕ κ⊕ ρk−1

IIIa,a 2 < a odd D4 ×O(k − 1) ρ2 λ⊕ ρ2 ⊕ ρk−1

IIIa,b 2 ≤ a < b Z2 × Z2 ×O(k − 1) ε⊕ θ (ε⊗ θ)⊕ εa ⊕ θb ⊕ ρk−1

IVa 3 ≤ a D2a ×O(k) ρ2 1⊕ κ⊕ ρk
Va 2 ≤ a O(2)×O(k − 1) ρ2 1⊕ ρa2 ⊕ ρk−1

F µV

Ia,b, IIa,b 2 ≤ a < b both even
[

a
2ρ2 ⊕

b−a
2 λ⊕ a+b−4

2 1
]

⊗ (1⊕ ρk)⊕ ρk
Ia,b 2 < a odd, 2 ≤ b even

[

b
2ε⊕

2a+b−4
2 1

]

⊗ (1⊕ ρk)⊕ ρk
Ia,b 2 < a < b both odd a+b−2

2 (1⊕ ε)⊗ (1⊕ ρk)⊕ (ε⊗ ρk)

Ia,a 2 < a odd a−1
2 (ρ2 ⊕ ρ22)⊗ (1⊕ ρk)⊕ (λ⊗ ρk)

Ia,a 2 ≤ a even
[

a
2ρ2 ⊕

a−2
2 (1⊕ κ)

]

⊗ (1⊕ ρk)⊕ (κ⊗ ρk)

IIa,a 2 < a even
[

a
2ρ2 ⊕

a−2
2 (1⊕ κ)

]

⊗ (1⊕ ρk)⊕ (ρk)

II2,2 ρ32 ⊕ (ρ2 ⊕ 1)⊗ ρk
IIIa,a 2 < a even

[

a
2ρ2 ⊕

a−2
2 (1⊕ κ)

]

⊗ [1⊕ 1⊕ ρk−1]

IIIa,a 2 < a odd a−1
2

[

2ρ2 ⊕ ρ22 ⊕ ρ
4
2 ⊕ (ρ2 ⊕ 1⊕ κ)⊗ ρk−1

]

IIIa,b 2 ≤ a < b
⊕a−1

j=1

[

εa+j ⊕ εj ⊗ (θb ⊕ ρk−1)
]

⊕

⊕
⊕b−1

j=1

[

θb+j ⊕ θj ⊗ (εa ⊕ ρk−1)
]

IVa 3 ≤ a (
⊕a−1

j=1 ρ
j
2)⊗ (1⊕ ρk)⊕ (λ⊗ ρk)

Va 2 ≤ a
⊕a−1

j=1 (ρ
a−j
2 ⊕ ρa+j2 )⊕ (

⊕a−1
j=1 ρ

j
2)⊗ ρk−1

Remark 1. It is well known that for a Thom-Boardman type Σr, the structure
group of the normal bundle in the source (λ1) is isomorphic to Hom(ker, coker),
where ker is the kernel bundle (in our notation µ1) and coker is the cokernel bundle
(in our notation µ2). For k = 0 type I2,2 and II2,2 are the simplest singularities
and for k > 0 it is V2. So the identity Hom(µ1, µ2) ∼= µ1 ⊕ µV should hold for
them. Using the fact that ρ2 ⊗ ρ32

∼= ρ2 ⊕ ρ22 it can be seen from the above that
they really hold.

Remark 2. The singularities Ia,b, IIa,b are equivalent over the complex field. There-
fore it seems interesting that while they usually behave similarly, their symmetries
are characteristicly different for a = b = 2: one is discrete (×O(k)) and the other
is continuous (×O(k)).

Remark 3. Some differential topological applications can already be drawn, without
the generalized Pontrjagin-Thom construction of [RSz]. Let φ :Mm −→ Nm+k be
a stable smooth map between smooth manifolds and let η(φ) be the submanifold of
M consisting those points ofM where the germ of φ is (A-equivalent to a suspension
of) η. If for an η for all g ∈ MC AutAη we have that det λ1(g) > 0 then η(φ) is
co-orientable. (These are exactly the singularities occuring in the Vassiliev complex
of right-left singularity theory if homology is considered with integer coefficients.)
For example if a and k are both even then the submanifold Va(φ) is always co-
orientable. Another interesting fact is that while for k = 0 the submanifolds I2,2(φ)
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and II2,2(φ) are always co-orientable, their image in N is always co-orientable in
case of II2,2, but not necessarily co-orientable for I2,2. Some more results on the
orientability of singularity submanifolds in the source and in the target spaces can
be found in [R1].

As an example we show the proof of the theorem for the singularity type Va. Let
us use the shorthand notations: z = x+iy, Re zk = xk−

(

k
k−2

)

xk−2y2+. . . , Im zk =
(

k
1

)

xk−1y −
(

k
3

)

xk−3y3 + . . . , α = e2πi/a. Then the ideal I = (x2 + y2, xa, yxa−1)

is equal to (x2 + y2, Re za, Im za) = m
a + (x2 + y2). The algebra Q = R[[x, y]]/I

is isomorphic to G(Q), it has defect 1, and the group MC Autgr G(Q) is the
maximal possible: O(2). Therefore G =MC AutAF = O(2)×O(k− 1). The map
f : R2 −→ R

k+2 can be chosen to have the form

z 7→ (|z|2, za, 0, . . . , 0),

and clearly µ1 =‘multiplication by α’, µ2 = 1⊕‘multiplication by αa’⊕ρk, i.e. µ1 =
ρ2, µ2 = 1⊕ ρa2 ⊕ ρk−1. A G-invariant complement V of tf(θR2) + f∗

m(k + 2)θf if
m(2)θf is generated by the following maps:

z 7→ (0, Re zj , Im zj , 0, . . . , 0)

z 7→ (0, Re izj , Im izj , 0, . . . , 0)

z 7→ (0, Re zj , Im zj , 0, . . . , 0)

z 7→ (0, Re izj , Im izj , 0, . . . , 0)























for j = 1, . . . , a− 1

z 7→ (0, 0, 0, Re zj , 0, . . . , 0), . . . , z 7→ (0, . . . , 0, Re zj)

z 7→ (0, 0, 0, Im zj , 0, . . . , 0), . . . , z 7→ (0, . . . , 0, Im zj)

}

for j = 1, . . . , a− 1

The representation of G on the first block is ρa−j2 ⊕ ρa+j2 and on the second it is

ρj2 ⊗ ρk−1. �

2. The contractibility of AutAη/G

In this section we prove the generalized contractibility property (explained be-
low) of AutAF / MC AutAF . Here we change the notation from F to η to empha-
size that results in this section are valid not only for stable germs but for finitely
determined ones, too.

LetM be a differentiable manifold with boundary and let G be a subgroup of A.
Call a map q : M −→ A/G differentiable if M can be covered by open sets U , on
which q can be represented by pairs of local diffeomorphisms (U ×R

n −→ U ×R
n

and U × R
p −→ U × R

p) (in fact germs at the zero section), which map all the
fibres u× R

n and u× R
p into themselves.

2.1 Definition. Let G be a subgroup of AutAη. We call AutAη/G contractible if
for every smooth manifold M with boundary, any differentiable map q : ∂M −→
AutAη/G can be extended to a differentiable map M −→ AutAη/G.

Let Diff(M ×R
n) denote the group of diffeomorphism germs of M ×R

n at the
zero-section.
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In the sequel we will use the following characterisation of finitely determined
germs (see e.g. [M1 Lemma 2, p. 149]): if f ∈ E(n, p) is finitely determined then

(1) m(n)kE(n, p) ⊂ (tf)(m(n)2E(n)n) + (ωf)(m(p)2E(p)p)

for k large enough. The following proposition is an analogue of the main lemma
in [J; p. 150] (where it is stated for function germs instead of map germs) but the
proof here is a bit more complicated.

Let us fix a finitely determined map germ η : (Rn, 0) −→ (Rp, 0).

2.2 Proposition. There exists an l ∈ N large enough for which the following holds.
If M is an r-dimensional manifold with boundary and f, g : M × R

n −→ M × R
p

are map germs at M × 0 with the following properties

f ◦ prM = prM ◦ f, g ◦ prM = prM ◦ g,

f |∂M×Rn = g|∂M×Rn ,

jl(f |u×Rn) = jl(g|u×Rn) = jlη for all u ∈M,

then there exist (ψ, φ) ∈ Diff(M ×R
n)×Diff(M ×R

p) such that g = φ◦ f ◦ψ−1

and
ψ|∂M×Rn = id φ|∂M×Rn = id

j1(ψ|u×Rn) = id j1(φ|u×Rp) = id

for all u ∈M .

Proof. Instead of constructing only ψ and φ we prove the existence of two one-
parameter families of diffeomorphisms.

Let F :M ×R
n ×R −→M ×R

p ×R be the map germ at M × 0×R defined by

(u, x, t) 7→ (u, (1− t)f(u, x) + tg(u, x), t).

From now on u = (ui), x = (xi), y = (yi) and t will always denote coordinates of
M , Rn, Rp and R respectively; and e.g. Fy will denote the composition prRp ◦ F .

We will construct two flows, i.e. families of curves. The first family contains
curves γu,x : [0, 1] −→ M × R

n × R (for all u ∈ M , x ∈ R
n) starting in (u, x, 0)

and ending somewhere in M ×R
n × 1. Suppose also that the 3rd (t) coordinate of

γu,x(t) is t. The second family contains similar curves δu,y : [0, 1] −→M ×R
p ×R.

We want these two flows to be “compatible” with F , that is

(2) F (γu,x(τ)) = δf(u,x)(τ).

Putting τ = 1 we see that the maps ψ :M ×R
n −→M ×R

n, (u, x) 7→ γu,x(1), and
φ :M × R

p −→M × R
p, (u, y) 7→ δu,y(1) satisfy g = φ ◦ f ◦ ψ−1.

We will define the two flows by their systems of differential equations. This will
assure that ψ and φ are diffeomorphisms (at least near M × 0). We will also pay
attention to the other conditions on ψ and φ.

Suppose therefore that we are given two vector field germs: X :M ×R
n×R −→

R
n and Y :M × R

p × R −→ R
p satisfying

(3)

n
∑ ∂Fyj

∂xi
(u, x, t)Xi(u, x, t) +

∂Fyj
∂t

(u, x, t) = Yj(F (u, x, t)) j = 1, . . . , p
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(4) X |M×0×R = 0 Y |M×0×R = 0

(5)
∂X

∂xi
(u, 0, t) = 0 i = 1, . . . , n

∂Y

∂yj
(u, 0, t) = 0 j = 1, . . . , n

(6) X |∂M×Rn×R = 0 Y |∂M×Rp×R = 0.

Then let us consider the trajectories of the differential equations

X̄ :M × R
n × R −→ TM × TRn × TR, (u, x, t) 7→ (0, X(u, x, t), 1),

Ȳ :M × R
p × R −→ TM × TRp × TR, (u, x, t) 7→ (0, Y (u, x, t), 1).

These trajectories exist at least in a neighbourhood of M × 0× R, because of (4).
The equation (3) is just the condition of X̄ being the derivative of a flow satisfying
(2). The maps ψ, φ assigned to the trajectories as above will have the properties

ψ|∂M×Rn = id φ|∂M×Rp = id

j1(ψ|u×Rn) = id j1(φ|u×Rp) = id,

because of (6) and (5).
It means that we reduced the problem of finding ψ and φ to the existence of X

and Y satisfying (3)–(6). It is enough to prove the existence of X and Y locally
(near a point inM×[0, 1]) and to use partition of unity to “add up” these solutions.

(I) First we solve the local problem near a point (u, t) ∈ int M × [0, 1]. In this
case condition (6) is vacuous and the others can be summarized in the condition:





∂Fyj
∂t

(u, x, t)




j=1,... ,p
∈
〈




∂Fy1
∂xi

, . . . ,
∂Fyp
∂xi



 i = 1, . . . , n
〉

E(r+n+1)
m(n)2+

+F ∗





m(p)2E(r + p+ 1)




p

.

A coordinate of the left hand side is however

∂Fyj
∂t

(u, x, t) = gyj (u, x)− fyj (u, x) ∈ m(n)l+1E(r + n+ 1)

(because f and g have the same l-jets in every fiber), so it is enough to show that

(7) m(n)l+1E(r+n+1)p ⊂ (tF )




m(n)2E(r+n+1)n


+(ωF )




m(p)2E(r+p+1)p




(on the right hand side we just used the definition of tF and ωF ). We know that
the finite determinacy of the germ η implies a very similar equation (see (1)):

(8) m(n)kE(n)p ⊂ (tη)


m(n)2E(n)n


+ (ωη)


m(p)2E(p)p


.
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The rest of the proof is showing (7) with the aid of (8). First we have to compare
the corresponding terms on the right hand side of (7) and (8), that is to control the
non-commutativity of the following diagram:

E(n)n
tη
−→ E(n)p

ωη
←− E(p)p





y





y





y

E(r + n+ 1)n
tF
−→ E(r + n+ 1)p

ωF
←− E(r + p+ 1)p,

where the vertical arrows are just the natural inclusions (which we will omit from
the formulas). This is done in the following two lemmas.

2.3 Lemma. If h ∈ E(p)p then ωF (h)− ωη(h) ∈ m(n)l+1E(r + n+ 1)p.

Proof. The jth coordinate of ωF (h)− ωη(h) is hj(Fy(u, x, t))− hj(η(x)). We will
show that it is in m(n)l+1E(r + n + 1). Let hj be written in the form p(y) + q(y)
where p is a polynomial of degree l and q ∈ m(p)l+1. Then

hj(Fy(u, x, t))− hj(η(x)) =


p(Fy(u, x, t))− p(η(x))


+ q(Fy(u, x, t))− q(η(x)).

The second and third terms are in m(n)l+1E(r+ n+ 1) so it remains to show that
the first term is there too. It is no restriction to consider only the case when p is
a monomial. We will use induction on the degree of p. If p is a constant, then the
statement is evident. If the degree is bigger, we can write p = yip

′(y) for some i
and a monomial p′ with smaller degree. In this case

p(Fy(u, x, t))− p(η(x)) = Fyi(u, x, t)p
′(Fy(u, x, t))− ηi(x)p

′(η(x)) =

= p′(η(x))


Fyi(u, x, t)− ηi(x)


+ Fyi(u, x, t)


p′(Fy(u, x, t))− p
′(η(x))



,

and the elements in both brackets are in m(n)l+1E(r+n+1), the first by definition
and the second by the induction hypotheses. �

2.4 Lemma. If h ∈ E(n)n then tF (h)− tη(h) ∈ m(n)lE(r + n+ 1)p.

Proof. The jth coordinate of tF (h) − tη(h) is
∑n
i=1(

∂Fyj

∂xi
(u, x, t) − ∂ηj

∂xi
(x))hi(x).

This must be in m(n)lE(r+ n+ 1) since Fyj (u, x, t)− ηj(x) is in m(n)l+1E(r+ n+
1). �

Now let us denote by U the intersection

(ωη)−1


tη(m(n)2E(n)n) +m(n)kE(n)p


 ∩ m(p)2E(p)p.

This is an E(p)-submodule of E(p)p. Let V be the E(r + p + 1)-submodule of
E(r + p + 1)p generated by the image of U under the natural inclusion E(p)p −→
E(r + p+ 1)p.

Now we claim that the following equality holds:

ωF (V ) + tF




m(n)2E(r + n+ 1)n


+m(n)km(r + n+ 1)l−kE(r + n+ 1)p =

(9) = tF


m(n)2E(r + n+ 1)n


+m(n)kE(r + n+ 1)p.
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To prove the ⊂ part, it is enough to show that ωF (U) ⊂ the right hand side,
since the right hand side is an E(r + p + 1)-submodule. Let v ∈ U — so v =
(ωη)−1(tη(ξ) + ζ) where ξ ∈ m(n)2E(n)n and ζ ∈ m(n)kE(n)p. Then

ωF (v) =


ωF (v)− ωη(v)


+


tη(ξ)− tF (ξ)


+ ζ + tF (ξ).

According to the lemmas above the element in the first bracket is in m(n)l+1E(r+
n+1)p and the element in the second bracket is in m(n)lE(r+n+1)p. So (choosing
l bigger than k) we have

ωF (v) ∈ m(n)E(r + n+ 1)p + tF


m(n)2E(r + n+ 1)n


,

which implies LHS ⊂ RHS in (9).
Now it has to be shown that LHS ⊃ RHS in (9). The only thing to be proved is

that m(n)kE(r + n+ 1)p is part of the LHS. Let ρ ∈ m(n)kE(r + n+ 1)p, then

ρ(u, x, t) = xk[h0(x) + s1(t, u)h1(x) + s2(t, u)h2(x) + . . .+ sl−k(t, u)hl−k(u, x, t)],

where si(t, u) is a polynomial in t, u1, . . . , ur of degree i, and the hi’s are smooth
maps Rn −→ R

p for i < l − k and hl−k is a smooth map R
r+n+1 −→ R

p. The last
term is in the LHS of (9) by definition and since the LHS of (9) is closed to the
multiplication by t and u, it is enough to show that xkh0(x) ∈ LHS of (9).

Because of (8) we can write xkh0(x) in the form tη(ξ) + ωη(ζ) for some ξ ∈
m(n)2E(n)n and ζ ∈ m(p)2E(p)p. Therefore

xkh0(x) =


tη(ξ)− tF (ξ)


+


ωη(ζ)− ωF (ζ)


+ tF (ξ) + ωF (ζ),

and the elements in the two brackets are inm(n)lE(r+n+1) and m(n)l+1E(r+n+1)p

respectively (see the two lemmas above), and the remaining two terms are also in
the LHS of (9) by definition. So the proof of (9) is complete.

Having the formula (9) we now want to prove (7). This will be a so called
Nakayama-type argument — although it needs a more sophisticated lemma than
that of Nakayama, namely the following.

2.5 Lemma [M1; p. 135]. Let G : (Rn, 0) −→ (Rp, 0) be a smooth map germ.
Suppose A is a finitely generated E(p)-module; B and C are E(n)-modules (C is
finitely generated); β : B −→ C is an E(n)-module homomorphism and α : A −→ C
is a homomorphism over G∗ : E(p) −→ E(n). Let a be the dimension of the vector
space A/m(p)A over R. Then

α(A) + β(B) + (G∗(m(p)) +m(n)a+1)C = C

implies
α(A) + β(B) = C.

Remark. The proof of this lemma is based on the Nakayama-lemma and the Mal-
grange preparation theorem.
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A trivial consequence of this lemma is the following. Using the same notation
as above, if D ⊂ C satisfies

(10) α(A) + β(B) +D = C

and

(11) D ⊂ (G∗(m(p)) +m(n)a+1)C,

then

(12) α(A) + β(B) = C.

We will use this lemma with the following substitutions:

G := F A := V
B := m(n)2E(r + n+ 1)n D := m(n)km(r + n+ 1)l−kE(r + n+ 1)p

C := tF (m(n)2E(r + n+ 1)n) +m(n)kE(r + n+ 1)p

α := ωF β := tF

We have to check (10) and (11). In fact (10) is exactly (9) which we have just
proved, and (11) is

m(n)km(r + n+ 1)l−kE(r + n+ 1)p ⊂

⊂


F ∗(m(r+p+1))+m(r+n+1)a+1






tF (m(n)2E(r+n+1)n)+m(n)k+E(r+n+1)p


.

If we chose l at least a+k+1 then this is clearly true (see the product of the second
terms in both brackets). Therefore we have (12) in our situation, which is exactly
(7) what we wanted to prove.

(II) Now we want to solve the same local problem as in (I) but near a point in
∂M × [0, 1]. It will turn out that this problem can be reduced to the case studied
in (I).

Indeed, extend F from R
r
+×R

n×R −→ R
r
+×R

p×R to Rr×Rn×R −→ R
r×Rp×R

still satisfying the conditions required for F in the theorem. This time we have to
show that





∂Fy1
∂t

, . . . ,
∂Fyp
∂t



 ∈
〈




∂Fy1
∂xi

, . . . ,
∂Fyp
∂xi



 | i = 1, . . . , n
〉

E(r+n+1)
m(n)2m(1)+

(13) +F ∗




m(p)2m(1)E(r + p+ 1)




p

.

(Note that m(1) here refers to the ideal generated by the first local coordinate u1
of M , where the boundary ∂M is defined by the equation u1 = 0.) Because of
condition (6) now the left hand side is in m(1)m(n)l+1E(r+n+1)p, so it is enough
to show that this submodule is part of the right hand side of (13). If we multiply
the inclusion (7) by m(1) we get

m(1)m(n)l+1E(r+n+1)p ⊂
〈




∂Fy1
∂x

, . . . ,
∂Fyp
∂x



 | i = 1, . . . , n
〉

m(n)2m(1)+
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(14) +m(1)F ∗




m(p)2E(r + p+ 1)




p

.

So it is enough to prove that

m(1)F ∗




m(p)2E(r + p+ 1)




p

⊂ F ∗




m(p)2m(1)E(r + p+ 1)




p

,

which is clearly true, since a coordinate of the left hand side can be written in the
form of u1F

2
y (u, x, t)h(u, x, t) and a coordinate of the right hand side has the form

F 2
y (u, x, t) Fu1

(u, x, t) h(u, x, t) — but Fu1
(u, x, t) = u1 and therefore these two sets

are in fact equal.
The proof of the proposition is complete. �

Denote by Al the Lie group of l-jets of the elements of A, and put

Alη = { z = (z1, z2) ∈ A
l | z2 ◦ j

lη ◦ z−1
1 = jlη }.

From the proof of the theorem above it is also clear that for l large enough the
image of a maximal compact subgroup of AutAη under the map jl is a maximal
compact subgroup (in the classical sense) of Alη. In fact, if η is well chosen from its
A-equivalence class then the maximal compact subgroup G of AutAη is linear, so
j1(G) = G. From now on we will assume that η has this property.

2.6 Theorem. If η is finitely determined and G ≤ AutAη is a maximal compact
subgroup then AutAη/G is contractible.

Proof. What we have to show is that a differentiable map f : ∂M −→ AutAη/G
extends to a differentiable map f̄ : M −→ AutAη/G. Consider the following
commutative diagram

AutAη
jl

−→ Alη




y

π





yπl

AutAη / G
jl
−→ Alη / G.

There is a section σl of πl and it induces a section σ of π. It is easy to check that
π and σ are differentiable — in the sense that for a differentiable map q1 : N −→
AutAη the composition π ◦ q1 is also differentiable, and for a differentiable map
q2 : N −→ AutAη/G the composition σ ◦ q2 is also differentiable.

We want to prove that the differentiable map k = σ ◦f : ∂M −→ AutAη extends
to a map k̄ : M −→ AutAη. This implies the theorem since the composition of
f̄ = π ◦ k̄ will extend f .

The composition g = jl ◦ f extends to ḡ : M −→ Alη/G since G is a maxi-
mal compact subgroup (in the classical sense) of a Lie group, so the quotient is
contractible. Composing g and ḡ with σl we get maps h and h̄. It is clear that
jl ◦ k = h, our task is to construct k̄ such that jl ◦ k̄ = h̄. We will do it in two
steps. First we extend k in a bigger group then AutAη. Namely, let

Ajlη := { ψ = (ψ1, ψ2) ∈ A | j
lψ ∈ Alη } ⊃ AutAη.

We will construct a map k′ :M −→ Ajlη which extends k and satisfies jl ◦ k′ = h̄.
This is equivalent to the following problem: we seek diffeomorphism germs atM×0

F1 :M × R
n −→M × R

n,
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and
F2 :M × R

p −→M × R
p

if they are given in ∂M×Rn and ∂M×Rp, and their l-jets are given everywhere. We
show the existence of F1, the existence of F2 can be proved in the same way. First
we show an F1 locally and then use partition of unity to “add up” these solutions.
The local problem near a point in int M is trivial (let F1 coincide with the given
l-jet), and for a coordinate function of F1 the local problem near a point in ∂M is
the following. Given a polynomial P of degree l in the variables x1, . . . , xn with
coefficients from E(r) and a function α0 : Rr−1+n −→ R such that

jlxα0 = P (0, u2, . . . , ur, x1, . . . , xn)

(as usual the coordinates of Rn are denoted by x and the local coordinates of M
are denoted by u and ∂M is given by u1 = 0) a function α : Rr+n −→ R is needed
with the properties that

α|u1=0 = α0,

jlxα = P (u1, . . . , ur, x1, . . . , xn).

The following function satisfies these conditions

α(u, x) = α0(u2, . . . , ur, x)− P (0, u2, . . . , ur, x) + P (u1, . . . , ur, x).

So we proved the existence of k′. The next step is to prove the existence of k̄. Let
the map k′ be represented by the pair (F1, F2) of diffeomorphism germs (ofM ×R

n

and M × R
p respectively). If the fibrewise map germs a, b : (M × R

n,M) −→
(M × R

p,M) are defined by

prRp ◦ a = η ◦ prRn

prRp ◦ F2 ◦ b = η ◦ prRn ◦ F1,

then clearly a ◦ F1 = F2 ◦ b. Further a and b coincide over ∂M and their l-jets
coincide over the whole M . So they satisfy the conditions of the proposition above,
and therefore there exist diffeomorphism germs ψ and φ (of M × R

n and M × R
p

respectively) such that a ◦ ψ = φ ◦ b.
If we denote F1 ◦ ψ by ψ̄ and F2 ◦ φ by φ̄ then the pair (ψ̄, φ̄) : M −→ AutAη

represents k, because

a ◦ ψ̄ = a ◦ F1 ◦ ψ = F2 ◦ b ◦ ψ = F2 ◦ φ ◦ b = φ̄ ◦ b.

The proof of the theorem is complete. �
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[FR] L. Fehér, R. Rimányi: Thom polynomials with integer coefficients, preprint,
www.cs.elte.hu/analysis/rimanyi/cikkek

[GS] F. Guil-Ansensio, M. Saorin: The group of automorphisms of a commutative
algebra, Math. Z. 219, 31–48 (1995)

[J] K. Jänich: Symmetry Properties of Singularities of C∞-Functions, Math. Ann.
238, 147–156, 1978



17

[M1] J. Mather: Stability of C∞ mappings: III. Finitely Determined Map-Germs,
Publ. Math. IHES 35, 127–156, 1968

[M2] J. Mather: Stability of C∞ mappings: VI. The Nice Dimensions, in: Proc.
Liverpool Sing. Symposium I., LNM 192 pp. 207–253, 1970

[PW] A. A. du Plessis, L. C. Wilson: Right symmetry of mappings, in: Singularity
Theory and its Appl., Warwick 1989 Part I. eds. D. Mond, J. Montaldi, LNM
1462 pp. 258–275, 1991
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[R2] R. Rimányi: Thom polynomials, symmetries and incidences of singularities, to
appear in Inv. Math.
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