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Abstract. As an application of the generalized Pontrjagin-Thom construction ([2])

and a theorem of Golubjatnikov [1] here we prove a result on removing Σr singularities
in a certain cobordism class of smooth mappings of positive codimension.

The integer k > 0 will be fixed throughout the paper. Let η : (Rn, 0) −→
(Rn+k, 0) be a smooth map germ. By a suspension of η we mean a germ Ση :
(Rn+v, 0) −→ (R(n+k)+v, 0) defined by (x, u) 7→ (η(x), u) — otherwise we will use
the standard notions and notations of singularity theory, see e.g. [3]. Now consider
stable smooth maps between smooth manifolds of codimension k. For such a map
f : Nm −→ Pm+k we define the submanifolds

η(f) = { y ∈ P | f−1(y) has only one element and the germ of f
at f−1(y) is A-equivalent to a suspension of η },

Σr(f) = { x ∈ N | the germ of f at x is of Thom-Boardman type Σr. }.

Let ηr : (Rr2+rk, 0) −→ (Rr2+rk+k, 0) denote the miniversal unfolding of the germ
ζr : (Rr, 0) −→ (Rr+k, 0) defined by

(x1, . . . , xr) 7→ (x2
1, . . . , x

2
r, x1x2, x1x3, . . . , xr−1xr, 0, . . . , 0),

where there are t := k −
(

r
2

)

0’s at the end. The Thom-Boardman type of ηr is

Σr,0, and, in fact, this is the “simplest” among the germs of codimension k and of
Thom-Boardman type Σr. That is, if f : Nm −→ Pm+k is a map, then the closure
of the submanifold f−1(ηr(f)) ⊂ N contains Σr(f).

Definition 1. If g : Nm −→ Pm+k × R
r is an immersion then the composition

f = prP ◦ g : Nm −→ P × R
r −→ P will be called a prim-Σr map. If, in addition,

f does not have other Σr singularities than ηr, then we will call it a prim-ηr map.
If f does not have Σr points at all, then we call it prim-∅.

The word prim stands for projected immersion, and Σr and ηr refers to types
of the most difficult singularities such a map may have. Now let us fix R

m+k and
consider prim-ηr (prim-Σr, prim-∅) maps of m-manifolds into it. We call two such
map f1 : Nm

1 −→ R
m+k and f2 : Nm

2 −→ R
m+k cobordant if there is an abstract

manifold Wm+1 with boundary N1 ∪ N2 and a prim-ηr (prim-Σr, prim-∅) map
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F : W −→ R
m+k × [0, 1] whose restriction to Ni is fi (i = 1, 2). Cobordism is

clearly an equivalence relation and the set of its classes will be denoted by

Cobm(Rm+k, prim-ηr)
(

Cobm(Rm+k, prim-Σr), Cobm(Rm+k, prim-∅)
)

.

All three sets form a group under the operation of “remote disjoint union”.
The following theorem states that the obvious necessary condition for the real-

ization of a class in Cobm(Rm+k, prim-ηr) with a map with no ηr points at all (so
with no Σr points at all) is also sufficient — in a certain dimension range.

Theorem 2. Let r be even, m < (r+ 1)k+ (r2 − 1), and let f : Nm −→ R
m+k be

a stable prim-ηr map. Then the following conditions are equivalent:
(1) there is a prim-ηr map g : Mn −→ R

n+k cobordant to f with ηr(g) = ∅;
(2) the abstract manifold ηr(f) is nullcobordant.

Proof. The implication (1)⇒(2) is clear. Indeed, if the cobordism between f and
g is given by F : W −→ R

(n+k)+r then the manifold ηr(F ) is a cobordism between
ηr(f) and the emptyset.

For the converse implication we need some notions and results from [2].
Consider the set of stable map germs (R∗, finite set) −→ (R∗+k, 0). The set

of equivalence classes of this set under the equivalence relation generated by A-
equivalence and suspension is called T . There is an obvious hierarchy on T , whose
top element is the class of (k-codimensional) embeddings, and right under this is
the class of immersions with a double point, etc. Let τ be an ascending subset of
T . A map f : Nm −→ Pm+k is called a τ -map if for all y ∈ f(N) the germ of
f at f−1(y) is from τ . For more details and examples see [2]. If for two τ -maps
fi : Ni −→ Pm+k (i = 0, 1) an abstract cobordism W is given between N0 and N1,
as well as a τ -map F : W −→ Pm+k × [0, 1] with F |Ni

= fi × {i}, then we call f0
and f1 cobordant. The set of cobordism classes is denoted by: Cobm(Pm+k; τ).

Definition 3. The space X is called a classifying space for τ -maps, if for any
closed manifold Pm+k there is a bijection between

Cobm(Pm+k, τ) and [P,X ] = homotopy classes of maps P −→ X .

Now let τ = τ ′∪[η], where τ and τ ′ are ascending subsets of T . Suppose also that
η is the “simplest” in its equivalence class, that is suppose that η : Rn −→ R

n+k

is not the suspension of any other germ — germs having this property are called
isolated. Let G be the maximal compact subgroup of the symmetry group

AutAη = { (ϕ, φ) ∈ Diff(Rn, 0)×Diff(Rn+k, 0) | φ ◦ η ◦ ϕ−1 = η },

with the representations λ1 and λ2 on R
n and R

n+k (both of which can be supposed
to be linear). The vector bundle associated to the universal principal G-bundle
using the representation λi will be denoted by Eλi −→ BG and its disc bundle by
Dλi. The following theorem is proved in [2].

Theorem 4. If Xτ ′ is a classifying space for τ ′-maps then the space Xτ = Xτ ′ ∪ρ

Dλ2 is a classifying space for τ -maps (for some ρ : ∂Dλ2 −→ Xτ ′). �
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Since the one-point-space is a classifying space for ∅-maps, and any other τ
can be build up from ∅ by consecutively adding new [η]’s, the above theorem can
be considered as a construction of a classifying space for τ -maps for all τ . Well,
almost... In fact, to carry out this procedure we need some knowledge of the group
AutAη, its maximal compact subgroup and its representations λ1, λ2. This problem
is also essentially solved in [2], we will come back to these results in the concrete
examples where we need them.

Now turn back to prim-ηr maps to R
m+k. Their cobordism group (defined

above) is not Cobm(Rm+k, τ) for any τ , but one can evidently extend the notion
of classifying space for prim-ηr (as well as prim-Σr and prim-∅) maps. And the
theorem quoted above remains true with a minor modification. For this we need

some notation. The germ ηr : Rr2+kr −→ R
r2+kr+k is of Thom-Boardman type Σr,

so the kernel K of its differential is r-dimensional. Now let Ḡ be the subgroup of
G = MC AutAηr whose induced action on K is trivial. The restriction of λi to Ḡ
will be called λ̄i, and Eλ̄i −→ BḠ (Dλ̄i −→ BḠ) denotes the vector bundle (disc
bundle) associated to the universal principal Ḡ-bundle using the representation λ̄i.
The following theorem is analoguos to Theorem 4. We will not give a proof for it,
since it goes the same way.

Theorem 5. Let X ′ be a classifying space for prim-∅ maps. Then X = X ′ ∪ρ Dλ̄2

is a classifying space for prim-ηr maps (for some ρ : ∂Dλ̄2 −→ X ′). �

Now let us consider a portion of the homotopy exact sequence of the pair (X,X ′):

Cobm(Rm+k, prim-∅) Cobm(Rm+k, prim-ηr)
|| ||

πm+k(X
′)

i∗−→ πm+k(X)
δ

−→ πm+k(X,X ′).

The statement (2)⇒(1) in this terms is the following: if [f ] ∈ Cobm(Rm+k, prim-ηr)
is such that ηr(f) is null-cobordant, then [f ] is in the image of i∗ — or, what is the
same, δ([f ]) = 0. Now let us study the group πm+k(X,X ′). First observe that

a) X ′ is (k − 1)-connected, since πi(X
′) = Cobi−k(S

i, prim-∅) = 0 if i − k < 0;
and

b) the pair (X,X ′) is r2+ rk+k−1-connected, since Hi(X,X ′) = Hi(T λ̄2) = 0
for i = 1, . . . , r2 + rk + k − 1, because rk λ̄2 = r2 + rk + k.

Now, due to the homotopy excision theorem and our dimension restrictions
we have the natural isomorphism πm+k(X,X ′) = πm+k(X/X ′) which latter is
πm+k(T λ̄2). Now we have to analyse the group Ḡ and the representation λ̄2.

Lemma 6.

Ḡ = O(t) λ̄2 = r · ρt ⊕ (r2 − r + r

(

r + 1

2

)

) · 1,

where t = k−
(

r
2

)

, ρt is the standard t-dimensional representation of O(t), and 1 is
the trivial 1-dimensional representation.

Proof of Lemma 6. First we recall from [2] some results about the maximal
compact automorphism group of ηr:

MC AutAηr = MC AutKζr ≤ Aut Qζr ×O(k − d) =
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= MC Aut R[[x1, . . . , xr]]/(x
2
1, . . . , x

2
r, x1x2, . . . , xr−1xr)×O(k−t) = O(r)×O(t),

where Qζr is the local algebra of ζr and d is its defect. In fact O(r)×O(t) acts as
an A-equivalence group (and therefore as an K-equivalence group) of ζr, so there
there is equation instead of ≤ in the formula. So G = O(r)×O(t).

To determine Ḡ ≤ G and the representation λ̄2 we recall some more notions
and results from [2] and [4]. Since the germ ηr is a miniversal unfolding of ζr with
dζr(0) = 0, therefore ηr is A-equivalent to

R
r × V −→ R

r+k × V

(x, φ) 7→ (x+ φ(x), φ),

where V is a complement of the subspace tζr(θr)+ζ∗r (m(r+k))θζr in the vector space
θζr . Since G actually acts as an A automorphism, so it has representations α and β
on R

r and R
r+k respectively. The group G also acts on θζr by (α, β) ·φ = β◦φ◦α−1

— leaving tζr(θa) + ζ∗r (m(a + k))θζr invariant. If V is chosen to be G-invariant
(G compact, so it is possible) then G also acts on V . Let this action be γ. A
theorem in [2] proves that the maximal compact subgroup of AutAηr is G with
the representations λ1 := α ⊕ γ, λ2 := β ⊕ γ on the source (Rr × V ) and target
(Rr+k × V ) spaces, respectively.

Now observe that α is ρr ◦ prO(r), where ρr is the standard r-dimensional repre-
sentation of O(r). Observe also that the kernel of dηr is (the tangent space to) Rr,
so the subgroup Ḡ ≤ G must be O(t). If we choose V to be spanned by

(x1, . . . , xr) 7→ (0, . . . , 0, xi, 0, . . . , 0) i = 1, . . . , r
the coordinate is j = 1, . . . , r, i 6= j

(x1, . . . , xr) 7→ (0, . . . , 0, xi, 0, . . . , 0) i = 1, . . . , r
the coordinate is j = r + 1, . . . , r + k,

then V will be O(r)×O(t)-invariant, and using the definition of α, β, γ above we
can compute

α|Ḡ = r · 1 β|Ḡ = ρt ⊕ (

(

r

2

)

+ r) · 1 γ|Ḡ = r · ρt ⊕ (r(r − 1) + r

(

r

2

)

) · 1,

which proves the lemma. �

Now, according to the original Thom-construction, the group πm+k(T λ̄2) is iso-
morphic to the cobordism group of embeddings of closed m − r2 − rk-manifolds
into R

m+k with a fixed splitting of the normal bundle to the direct sum of r + 1
isomorphic t-dimensional bundles and a trivial bundle. If the dimension n−r2−rk
of the embedded manifold is smaller than t (which holds in the dimension range
of the Thoerem) then these bundles are already stable normal bundles, so the

group πm+k(T λ̄2) is isomorphic to the group Ω
(r+1)γ
m−r2−rk

defined by Golubjatnikov1

1the notation N
(r+1)γ

m−r2−rk
would be perhap better
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in [1]. Golubjatnikov also proves that in case r + 1 is odd then the forgetful map

Ω
(r+1)γ
m−r2−rk

−→ Nm−r2−rk to the abstract cobordism group is an isomorphism.

Putting all these together we see that πm+k(X,X ′) ∼= Nm−r2−rk, and it is easy
to see that the image of δ([f ]) in Nm−r2−rk is the abstract cobordism class of ηr(f).
Since ηr(f) is null-cobordant, we have proved the theorem. �

Remark. In fact, the dimension restriction m < (r+1)k+(r2− 1) in the theorem
implies that a stable map Nm −→ R

m+k does not have any other singularities of
type Σr than ηr. Therefore the condition “f : Nm −→ R

m+k is a stable prim-
ηr map” can be weakened as “f : Nm −→ R

m+k is a stable prim-Σr map”; so
Theorem 2 can actually be considered as a theorem on removing Σr singularities.
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