A THEOREM ON REMOVING Σ^r SINGULARITIES

R. RIMÁNYI, A. SZŰCS

ABSTRACT. As an application of the generalized Pontrjagin-Thom construction ([2]) and a theorem of Golubjatnikov [1] here we prove a result on removing Σ^r singularities in a certain cobordism class of smooth mappings of positive codimension.

The integer k > 0 will be fixed throughout the paper. Let $\eta : (\mathbb{R}^n, 0) \longrightarrow (\mathbb{R}^{n+k}, 0)$ be a smooth map germ. By a suspension of η we mean a germ $\Sigma \eta : (\mathbb{R}^{n+v}, 0) \longrightarrow (\mathbb{R}^{(n+k)+v}, 0)$ defined by $(x, u) \mapsto (\eta(x), u)$ — otherwise we will use the standard notions and notations of singularity theory, see e.g. [3]. Now consider stable smooth maps between smooth manifolds of codimension k. For such a map $f: N^m \longrightarrow P^{m+k}$ we define the submanifolds

$$\eta(f) = \{ y \in P \mid f^{-1}(y) \text{ has only one element and the germ of } f \\ \text{at } f^{-1}(y) \text{ is } \mathcal{A}\text{-equivalent to a suspension of } \eta \}.$$

$$\Sigma^{r}(f) = \{ x \in N \mid \text{the germ of } f \text{ at } x \text{ is of Thom-Boardman type } \Sigma^{r}. \}$$

Let $\eta_r : (\mathbb{R}^{r^2+rk}, 0) \longrightarrow (\mathbb{R}^{r^2+rk+k}, 0)$ denote the miniversal unfolding of the germ $\zeta_r : (\mathbb{R}^r, 0) \longrightarrow (\mathbb{R}^{r+k}, 0)$ defined by

$$(x_1,\ldots,x_r)\mapsto (x_1^2,\ldots,x_r^2,x_1x_2,x_1x_3,\ldots,x_{r-1}x_r,0,\ldots,0),$$

where there are $t := k - {r \choose 2}$ 0's at the end. The Thom-Boardman type of η_r is $\Sigma^{r,0}$, and, in fact, this is the "simplest" among the germs of codimension k and of Thom-Boardman type Σ^r . That is, if $f : N^m \longrightarrow P^{m+k}$ is a map, then the closure of the submanifold $f^{-1}(\eta_r(f)) \subset N$ contains $\Sigma^r(f)$.

DEFINITION 1. If $g: N^m \longrightarrow P^{m+k} \times \mathbb{R}^r$ is an immersion then the composition $f = pr_P \circ g: N^m \longrightarrow P \times \mathbb{R}^r \longrightarrow P$ will be called a prim- Σ^r map. If, in addition, f does not have other Σ^r singularities than η_r , then we will call it a prim- η_r map. If f does not have Σ^r points at all, then we call it prim- \emptyset .

The word prim stands for projected immersion, and Σ^r and η_r refers to types of the most difficult singularities such a map may have. Now let us fix \mathbb{R}^{m+k} and consider prim- η_r (prim- Σ^r , prim- \emptyset) maps of *m*-manifolds into it. We call two such map $f_1: N_1^m \longrightarrow \mathbb{R}^{m+k}$ and $f_2: N_2^m \longrightarrow \mathbb{R}^{m+k}$ cobordant if there is an abstract manifold W^{m+1} with boundary $N_1 \cup N_2$ and a prim- η_r (prim- Σ^r , prim- \emptyset) map

¹⁹⁹¹ Mathematics Subject Classification. 57R45.

The authors received financial support from OTKA F014906 and T021151, resp.

 $F: W \longrightarrow \mathbb{R}^{m+k} \times [0,1]$ whose restriction to N_i is f_i (i = 1,2). Cobordism is clearly an equivalence relation and the set of its classes will be denoted by

$$Cob_m(\mathbb{R}^{m+k}, \operatorname{prim} \eta_r) \qquad \Big(Cob_m(\mathbb{R}^{m+k}, \operatorname{prim} \Sigma^r), \qquad Cob_m(\mathbb{R}^{m+k}, \operatorname{prim} \emptyset)\Big).$$

All three sets form a group under the operation of "remote disjoint union".

The following theorem states that the obvious necessary condition for the realization of a class in $Cob_m(\mathbb{R}^{m+k}, \operatorname{prim} \eta_r)$ with a map with no η_r points at all (so with no Σ^r points at all) is also sufficient — in a certain dimension range.

THEOREM 2. Let r be even, $m < (r+1)k + (r^2 - 1)$, and let $f : N^m \longrightarrow \mathbb{R}^{m+k}$ be a stable prim- η_r map. Then the following conditions are equivalent:

- (1) there is a prim- η_r map $g: M^n \longrightarrow \mathbb{R}^{n+k}$ cobordant to f with $\eta_r(g) = \emptyset$;
- (2) the abstract manifold $\eta_r(f)$ is nullcobordant.

PROOF. The implication $(1) \Rightarrow (2)$ is clear. Indeed, if the cobordism between f and g is given by $F: W \longrightarrow \mathbb{R}^{(n+k)+r}$ then the manifold $\eta_r(F)$ is a cobordism between $\eta_r(f)$ and the emptyset.

For the converse implication we need some notions and results from [2].

Consider the set of stable map germs $(\mathbb{R}^*, \text{finite set}) \longrightarrow (\mathbb{R}^{*+k}, 0)$. The set of equivalence classes of this set under the equivalence relation generated by \mathcal{A} equivalence and suspension is called T. There is an obvious hierarchy on T, whose top element is the class of (k-codimensional) embeddings, and right under this is the class of immersions with a double point, etc. Let τ be an ascending subset of T. A map $f : N^m \longrightarrow P^{m+k}$ is called a τ -map if for all $y \in f(N)$ the germ of f at $f^{-1}(y)$ is from τ . For more details and examples see [2]. If for two τ -maps $f_i : N_i \longrightarrow P^{m+k}$ (i = 0, 1) an abstract cobordism W is given between N_0 and N_1 , as well as a τ -map $F : W \longrightarrow P^{m+k} \times [0, 1]$ with $F|_{N_i} = f_i \times \{i\}$, then we call f_0 and f_1 cobordant. The set of cobordism classes is denoted by: $Cob_m(P^{m+k}; \tau)$.

DEFINITION 3. The space X is called a classifying space for τ -maps, if for any closed manifold P^{m+k} there is a bijection between

$$Cob_m(P^{m+k}, \tau)$$
 and $[P, X] = homotopy classes of maps $P \longrightarrow X$.$

Now let $\tau = \tau' \cup [\eta]$, where τ and τ' are ascending subsets of T. Suppose also that η is the "simplest" in its equivalence class, that is suppose that $\eta : \mathbb{R}^n \longrightarrow \mathbb{R}^{n+k}$ is not the suspension of any other germ — germs having this property are called isolated. Let G be the maximal compact subgroup of the symmetry group

$$Aut_{\mathcal{A}}\eta = \{ (\varphi, \phi) \in Diff(\mathbb{R}^n, 0) \times Diff(\mathbb{R}^{n+k}, 0) \mid \phi \circ \eta \circ \varphi^{-1} = \eta \},\$$

with the representations λ_1 and λ_2 on \mathbb{R}^n and \mathbb{R}^{n+k} (both of which can be supposed to be linear). The vector bundle associated to the universal principal *G*-bundle using the representation λ_i will be denoted by $E\lambda_i \longrightarrow BG$ and its disc bundle by $D\lambda_i$. The following theorem is proved in [2].

THEOREM 4. If $X\tau'$ is a classifying space for τ' -maps then the space $X\tau = X\tau' \cup_{\rho} D\lambda_2$ is a classifying space for τ -maps (for some $\rho : \partial D\lambda_2 \longrightarrow X\tau'$). \Box

Since the one-point-space is a classifying space for \emptyset -maps, and any other τ can be build up from \emptyset by consecutively adding new $[\eta]$'s, the above theorem can be considered as a construction of a classifying space for τ -maps for all τ . Well, almost... In fact, to carry out this procedure we need some knowledge of the group $Aut_A\eta$, its maximal compact subgroup and its representations λ_1, λ_2 . This problem is also essentially solved in [2], we will come back to these results in the concrete examples where we need them.

Now turn back to prim- η_r maps to \mathbb{R}^{m+k} . Their cobordism group (defined above) is not $Cob_m(\mathbb{R}^{m+k}, \tau)$ for any τ , but one can evidently extend the notion of classifying space for prim- η_r (as well as prim- Σ^r and prim- \emptyset) maps. And the theorem quoted above remains true with a minor modification. For this we need some notation. The germ $\eta_r : \mathbb{R}^{r^2+kr} \longrightarrow \mathbb{R}^{r^2+kr+k}$ is of Thom-Boardman type Σ^r , so the kernel K of its differential is r-dimensional. Now let \overline{G} be the subgroup of $G = MC \operatorname{Aut}_A \eta_r$ whose induced action on K is trivial. The restriction of λ_i to \overline{G} will be called $\overline{\lambda}_i$, and $E\overline{\lambda}_i \longrightarrow B\overline{G}$ $(D\overline{\lambda}_i \longrightarrow B\overline{G})$ denotes the vector bundle (disc bundle) associated to the universal principal \overline{G} -bundle using the representation $\overline{\lambda}_i$. The following theorem is analoguos to Theorem 4. We will not give a proof for it, since it goes the same way.

THEOREM 5. Let X' be a classifying space for prim- \emptyset maps. Then $X = X' \cup_{\rho} D\bar{\lambda}_2$ is a classifying space for prim- η_r maps (for some $\rho : \partial D\bar{\lambda}_2 \longrightarrow X'$). \Box

Now let us consider a portion of the homotopy exact sequence of the pair (X, X'):

$$\begin{array}{ccc} Cob_m(\mathbb{R}^{m+k}, \operatorname{prim} \bullet \emptyset) & Cob_m(\mathbb{R}^{m+k}, \operatorname{prim} \bullet \eta_r) \\ & & & || \\ \pi_{m+k}(X') & \xrightarrow{i_*} & \pi_{m+k}(X) & \xrightarrow{\delta} & \pi_{m+k}(X, X'). \end{array}$$

The statement $(2) \Rightarrow (1)$ in this terms is the following: if $[f] \in Cob_m(\mathbb{R}^{m+k}, \operatorname{prim} \eta_r)$ is such that $\eta_r(f)$ is null-cobordant, then [f] is in the image of i_* — or, what is the same, $\delta([f]) = 0$. Now let us study the group $\pi_{m+k}(X, X')$. First observe that

- a) X' is (k-1)-connected, since $\pi_i(X') = Cob_{i-k}(S^i, \text{prim-}\emptyset) = 0$ if i-k < 0; and
- b) the pair (X, X') is $r^2 + rk + k 1$ -connected, since $H^i(X, X') = H^i(T\bar{\lambda}_2) = 0$ for $i = 1, \ldots, r^2 + rk + k - 1$, because $rk \ \bar{\lambda}_2 = r^2 + rk + k$.

Now, due to the homotopy excision theorem and our dimension restrictions we have the natural isomorphism $\pi_{m+k}(X, X') = \pi_{m+k}(X/X')$ which latter is $\pi_{m+k}(T\bar{\lambda}_2)$. Now we have to analyse the group \bar{G} and the representation $\bar{\lambda}_2$.

LEMMA 6.

$$\bar{G} = O(t)$$
 $\bar{\lambda}_2 = r \cdot \rho_t \oplus (r^2 - r + r \binom{r+1}{2}) \cdot 1,$

where $t = k - {r \choose 2}$, ρ_t is the standard t-dimensional representation of O(t), and 1 is the trivial 1-dimensional representation.

PROOF OF LEMMA 6. First we recall from [2] some results about the maximal compact automorphism group of η_r :

$$MC Aut_{\mathcal{A}}\eta_r = MC Aut_{\mathcal{K}}\zeta_r \leq Aut Q_{\zeta_r} \times O(k-d) =$$

$$= MC Aut \mathbb{R}[[x_1, \dots, x_r]] / (x_1^2, \dots, x_r^2, x_1 x_2, \dots, x_{r-1} x_r) \times O(k-t) = O(r) \times O(t),$$

where Q_{ζ_r} is the local algebra of ζ_r and d is its defect. In fact $O(r) \times O(t)$ acts as an \mathcal{A} -equivalence group (and therefore as an \mathcal{K} -equivalence group) of ζ_r , so there there is equation instead of \leq in the formula. So $G = O(r) \times O(t)$.

To determine $G \leq G$ and the representation λ_2 we recall some more notions and results from [2] and [4]. Since the germ η_r is a miniversal unfolding of ζ_r with $d\zeta_r(0) = 0$, therefore η_r is \mathcal{A} -equivalent to

$$\mathbb{R}^r \times V \longrightarrow \mathbb{R}^{r+k} \times V$$
$$(x, \phi) \mapsto (x + \phi(x), \phi),$$

where V is a complement of the subspace $t\zeta_r(\theta_r) + \zeta_r^*(\mathfrak{m}(r+k))\theta_{\zeta_r}$ in the vector space θ_{ζ_r} . Since G actually acts as an \mathcal{A} automorphism, so it has representations α and β on \mathbb{R}^r and \mathbb{R}^{r+k} respectively. The group G also acts on θ_{ζ_r} by $(\alpha, \beta) \cdot \phi = \beta \circ \phi \circ \alpha^{-1}$ — leaving $t\zeta_r(\theta_a) + \zeta_r^*(\mathfrak{m}(a+k))\theta_{\zeta_r}$ invariant. If V is chosen to be G-invariant (G compact, so it is possible) then G also acts on V. Let this action be γ . A theorem in [2] proves that the maximal compact subgroup of $Aut_{\mathcal{A}}\eta_r$ is G with the representations $\lambda_1 := \alpha \oplus \gamma, \lambda_2 := \beta \oplus \gamma$ on the source $(\mathbb{R}^r \times V)$ and target $(\mathbb{R}^{r+k} \times V)$ spaces, respectively.

Now observe that α is $\rho_r \circ pr_{O(r)}$, where ρ_r is the standard *r*-dimensional representation of O(r). Observe also that the kernel of $d\eta_r$ is (the tangent space to) \mathbb{R}^r , so the subgroup $\overline{G} \leq G$ must be O(t). If we choose V to be spanned by

$$(x_1, \dots, x_r) \mapsto (0, \dots, 0, x_i, 0, \dots, 0)$$
 $i = 1, \dots, r$
the coordinate is $j = 1, \dots, r, i \neq j$

$$(x_1, \dots, x_r) \mapsto (0, \dots, 0, x_i, 0, \dots, 0)$$

the coordinate is $j = r + 1, \dots, r + k$,

then V will be $O(r) \times O(t)$ -invariant, and using the definition of α , β , γ above we can compute

$$\alpha|_{\bar{G}} = r \cdot 1 \qquad \beta|_{\bar{G}} = \rho_t \oplus \left(\binom{r}{2} + r\right) \cdot 1 \qquad \gamma|\bar{G} = r \cdot \rho_t \oplus \left(r(r-1) + r\binom{r}{2}\right) \cdot 1,$$

which proves the lemma. \Box

Now, according to the original Thom-construction, the group $\pi_{m+k}(T\bar{\lambda}_2)$ is isomorphic to the cobordism group of embeddings of closed $m - r^2 - rk$ -manifolds into \mathbb{R}^{m+k} with a fixed splitting of the normal bundle to the direct sum of r + 1isomorphic t-dimensional bundles and a trivial bundle. If the dimension $n - r^2 - rk$ of the embedded manifold is smaller than t (which holds in the dimension range of the Thoerem) then these bundles are already stable normal bundles, so the group $\pi_{m+k}(T\bar{\lambda}_2)$ is isomorphic to the group $\Omega_{m-r^2-rk}^{(r+1)\gamma}$ defined by Golubjatnikov¹

¹the notation $\mathfrak{N}_{m-r^2-rk}^{(r+1)\gamma}$ would be perhap better

in [1]. Golubjatnikov also proves that in case r + 1 is odd then the forgetful map $\Omega_{m-r^2-rk}^{(r+1)\gamma} \longrightarrow \mathfrak{N}_{m-r^2-rk}$ to the abstract cobordism group is an isomorphism.

Putting all these together we see that $\pi_{m+k}(X, X') \cong \mathfrak{N}_{m-r^2-rk}$, and it is easy to see that the image of $\delta([f])$ in \mathfrak{N}_{m-r^2-rk} is the abstract cobordism class of $\eta_r(f)$. Since $\eta_r(f)$ is null-cobordant, we have proved the theorem. \Box

REMARK. In fact, the dimension restriction $m < (r+1)k + (r^2 - 1)$ in the theorem implies that a stable map $N^m \longrightarrow \mathbb{R}^{m+k}$ does not have any other singularities of type Σ^r than η_r . Therefore the condition " $f : N^m \longrightarrow \mathbb{R}^{m+k}$ is a stable prim- η_r map" can be weakened as " $f : N^m \longrightarrow \mathbb{R}^{m+k}$ is a stable prim- Σ^r map"; so Theorem 2 can actually be considered as a theorem on removing Σ^r singularities.

References

- 1. V. P. Golubjatnikov, Bordism rings with split normal bundles II. (in Russian), Sibirskij Matematitscheskij Zhurnal t. 30, no. 5. 42–48 (1989).
- 2. R. Rimányi, A. Szűcs, Pontrjagin-Thom-type Construction for Maps with Singularities, to appear in 'Topology'.
- C. T. C. Wall, Lectures on C[∞]-Stability and Classification, in: Proc. of Liverpool Singularities — Symposium I, Springer-Verlag (1971).
- C. T. C. Wall, A Second Note on Symmetry of Singularities, Bull. London Math. Soc., 12 347–354 (1980).

ELTE, DEPT. OF ANALYSIS, MÚZEUM KRT. 6–8, BUDAPEST, HUNGARY 1088 *E-mail address*: rimanyi@cs.elte.hu

ELTE, DEPT. OF ANALYSIS, MÚZEUM KRT. 6–8, BUDAPEST, HUNGARY 1088 *E-mail address*: szucsandras@ludens.elte.hu