PARTITION IDENTITIES AND QUIVER REPRESENTATIONS

RICHARD RIMANYI, ANNA WEIGANDT, AND ALEXANDER YONG

ABSTRACT. We present a particular connection between classical partition combinatorics
and the theory of quiver representations. Specifically, we give a bijective proof of an ana-
logue of A. L. Cauchy’s Durfee square identity to multipartitions. We then use this result
to give a new proof of M. Reineke’s identity in the case of quivers Q of Dynkin type A. Our
identity is stated in terms of the lacing diagrams of S. Abeasis—A. Del Fra, which parame-
terize orbits of the representation space of Q for a fixed dimension vector.
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1. INTRODUCTION

The main goal of this paper is to establish a specific connection between classical parti-
tion combinatorics and the theory of quiver representations. Our motivation is to give an
elementary proof for a family of identities introduced by M. Reineke [Reil0]. The iden-
tities are closely related to cluster algebras (see e.g., work of V. V. Fock-A. B. Goncharov
[FGO9] and references therein), wall crossing phenomena (see e.g., the paper [DM16] of
B. Davison-S. Meinhardt as well as the references therein), and Donaldson-Thomas in-
variants and Cohomological Hall Algebras (see, e.g., the work of M. Kontsevich-Y. Soibel-
man [KS11]). This paper is intended to be an initial step towards understanding the rich
combinatorics encoded by advanced dilogarithm identities, such as B. Keller’s identities
[Kelll]. We give a new explanation for M. Reineke’s identities in type A via generating
series arguments.

Following the conventions of [Rim13], we define the quantum dilogarithm series
(—2)*¢""
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In each term of (1), the denominator may be written more compactly using the g-shifted
factorial,

(@r=01-ag)1—¢") - (1—d").
This has an interpretation in terms of partitions; the reciprocal of (¢), is the generating
series for partitions with at most k parts [And84, Theorem 1.1].

There are many interesting identities among quantum dilogarithms. We highlight the
following, which specializes to the pentagon identity of Rogers” dilogarithm.

Theorem 1.1 ([Sch53] [FV93], [FK94]). Suppose x and y are formal variables so that yx = qxy.
Then

2) E(z)E(y) = E(y)E(—¢"?2y)E(z).

M. Reineke extended (2) to give a family of identities, one for each Dynkin quiver ([Reil0],
[Kell1]). The quantum pentagon identity corresponds to the quiver which has two ver-
tices connected by a single edge. In the present work, we show that Theorem 1.1 can
actually be proven using the combinatorial tool of Durfee rectangles. In fact, we give a
proof of M. Reineke’s identity in type A by proving related identities using iterated Dur-
fee rectangles on multipartitions. To state these identities, we first give some necessary
background on quivers.

A quiver, Q = (Qy, Q1) is a directed graph with vertex set Q, and arrows Q;. Through-
out, we will assume Q has finitely many vertices and identify )y with [n] = {1,2,...,n}.
For a € Qy, let h(a) be the head of the arrow and ¢(a) its tail. The Euler form

0 I"XZI" - T

is defined by

3) o(dy, dg) =Y dy(i)da(i) — »_ duft h(a)).
1€Qo acQn

Define

Ao(dy, ds) = xo(ds, d1) — xo(dy, da).
Write N for the set of nonnegative integers. Following [Rim13], the quantum algebra Ag
is generated over Q(¢'/?) by
{Zd :d e Nn}
with multiplication given by

1/2Aq(d1,d2)

Zd1”dy — —¢ Zdi+dz-

Reineke’s identities are among quantum dilogarithms evaluated on elements of Ag. To
state them, we require some background regarding quiver representations. We briefly
recall the relevant facts here. For a self contained introduction to quiver representations,
see [Bri08]. Throughout, we take C to be our ground field. A representation V of Q is an
assignment of a vector space V; to each i € Q; and a linear transformation

Va : Vt(a) — Vh(a)
for each arrow a € Q;. Each representation V of Q has an associated dimension vector
dy = (d\/(l), . ,dv(n)) € N", where d\/(l) = dimV,.
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A morphism T : V — W is a collection of linear transformations (T; : V; — W,).co,
such that
Th)Va = W, Ty for every arrow a € Q;.
If each of the T,’s are isomorphisms, then V and W are isomorphic representations.

A representation is simple if it has no proper sub-representation. A representation is in-
decomposable if it does not admit a nontrivial decomposition as a direct sum of two rep-
resentations. A quiver is Dynkin if its underlying undirected graph is a Dynkin diagram
of type ADE. The representation theory of Dynkin quivers is particularly well behaved;
if @ is Dynkin, it has finitely many isomorphism classes of simple and indecomposable
representations. Furthermore, these classes are uniquely determined by their dimension
vectors.

Theorem 1.2 ([Reil0]). If Q is Dynkin, there exists an ordering on the dimension vectors for the
simple representations o, . . ., o, and the indecomposable representations [y, . .., Sy so that

4) E(2a1) - E(za,) = E(25,) - - - E(2y)-

Proving Theorem 1.2 is equivalent to showing that for every d € N" the coefficient of
zq is equal on both sides of the expression (4). This calculation of these coefficients is
carried out in [Rim13]. Here, the identity is restated in terms of the geometry of quiver
representations.

Let Mat(m, n) be the space of m x n matrices. The representation space is
Repa(d) i= €D Mat(d(h(a), d(t(a))
acQ

A matrix in Mat(m, n) determines a map from C" to C™. As such, points of Rep,(d) deter-
mine d dimensional representations of Q. Conversely, any d dimensional representation
is isomorphic to some V € Repy(d). Let

Glo(d) := [] GL(d(x)).
z€Qo

GLg(d) acts on Repy(d) by base change. Write Og(d) for the set of orbits in Repy(d).
Given 7 € Og(d), let codime(7) denote the complex codimension of v in Repy(d). Pick
any representation V € 7. Then by complete reducibility,

N
~ Omg;
V= @ Vﬁi )
=1

where Vj, is an indecomposable representation so that dim(Vs,) = ;. In fact, any V' € v
has this same irreducible decomposition; the mg,’s are constant on orbits. So we define
mg, () to be the multiplicity of Vj, in the irreducible decomposition of any V € ~.

Theorem 1.3 ([Rim13]). For each dimension vector d = (d(1),d(2),...,d(n)),

n

1 . N
(5) H — Z qcodlmc(v)H

We now restrict our focus to a special case. Assume Q is a type A quiver, i.e. its under-
lying graph is just a path on n vertices. We label the vertices from left to right with the set
{1,2,...,n}. Alacing diagram [ADF80] L is a graph so that:
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(1) the vertices are arranged in n columns labeled 1,2, ..., n (left to right) and
(2) the edges between adjacent columns form a partial matching.

A strand is a connected component of £. A strand is of type [i, j] if it starts in column i
and ends in column j. Write

(6) my; ;) (L) = #{strands of type [i, j] in L}.

There is an explicit dictionary between representations of Q and lacing diagrams. Each
lacing diagram may be interpreted as a sequence of partial permutation matrices. This
sequence defines a representation V. € Rep,(d). We do not give the details here, as we are
not concerned with the representations themselves, but merely their dimension vectors.
See [KMS06] for the equioriented case and [BR07] for quivers of arbitrary orientation.

Let L; j be the lacing diagram that has a single strand of type [4, j]. Define Vj; j ==V, ...
Each V|; ; is indecomposable. In fact, up to isomorphism, these are the only indecom-
posable representations of Q. This is a consequence of Gabriel’s theorem. The simple
representations are the special case V/; ;.

The strands in £ immediately reveal the irreducible decomposition of V:
~ &my; 51(£)
) Ve= P Vi

1<i<j<n

We associate a dimension vector to £. Write
dim(L) = (dg(1),...,ds(n))

where d.(k) is the number of vertices in column k of £. Equivalently, by counting the
number of strands which use a vertex of column &, we have

(8) de(k) = Y myj(L).
1<i<h<j<n

Translating from lacing diagrams to representations, we have dim(£) = dim(V}).

Two lacing diagrams are equivalent if they only differ by reordering of vertices within
columns. For example, the lacing diagrams pictured above are all equivalent. Alterna-
tively, we may say
[£] = [£']if and only if my; (L) = my; ;j(L£) forall 1 <i < j <n.
Therefore, we will write my; ;([£]) := my;;(£). Using (7), it follows that isomorphism
classes of representations are in bijection with equivalence classes of lacing diagrams:
Ve =V if and only if [£] = [£].
Let
Co(d) = {[£] : dim(L) = d}
denote the set of equivalence classes of d dimensional lacing diagrams. Given

n = [£] € Co(d), write 7, € Og(d) for the orbit which contains V.. The map n — ~,
defines a bijection from Co(d) — Og(d).



We now associate certain statistics to 7). Set parameters

©) s¥(n) = myx_1(n), and

(10) t5(n) = mir () + My () + -+ mpa ().
Let S, denote the ith symmetric group. Fix a sequence of permutations
(11) w = (wb, ... w™), where w” € &, and w'¥ (i) = i.

The partition combinatorics behind Theorem 1.4 below suggests the Durfee statistic:

(12) rw(n) = Z St (1) (Moo (1)

1<i<j<k<n
With these definitions, we now state our main theorem.
Theorem 1.4 (Quiver Durfee Identity). Ford = (d(1),...,d(n)) and w as in (11),

(13) M= > o

et (D) neCo(d) et (@i 2y

LT {tf(nl;(rnjf(n)y

q

Here
F +J ] _ (@isy
i1, (@)
is the ¢g-binomial coefficient, the generating series for partitions with at most i rows and j
columns [And84, Theorem 3.1]. Indeed, we will show in Lemma 3.1 that each side of (13)

has an interpretation as the generating series of a set of multipartitions. By doing some
algebraic cancellations, Theorem 1.4 implies the following:

Corollary 1.5.

(14) 11 L S 0 I (;

=

This is our link to Reineke’s identity. In Definition 4.1, we assign each type A quiver a
sequence of permutations wo. We then show this choice satisfies

Theorem 1.6.
Twe(n) = codime (7).

For type A, Theorem 1.3 follows as a consequence of Corollary 1.5 and Theorem 1.6.

The paper is organized as follows. In Section 2, we recall some background on gen-
erating series. In Section 3, we define sets S and T so that the left hand side of (13) is
a generating series for S and the right hand side is a generating series for 7. We give
an explicit bijection between S and T, thus proving Theorem 1.4. By simple algebraic
cancellations, we prove Corollary 1.5. Finally, in Section 4, we prove Theorem 1.6, thus
completing our proof.



2. GENERATING SERIES FOR PARTITIONS

First we recall some background on generating series. Let A be a set equipped with a
weight function

wty: A— N.
Suppose
=la€e A:wt(a) =n| < oo
for each n. Then the generating series for A is
(15) G(A,q) = g
acA

Equivalently, by collecting like terms,

(16) G(A q) =) "
=0

Generating series are well behaved under taking products and disjoint unions of sets.
Define

thxB(a,b) = th(a) + WtB(b).

Then

(17) G(Ax B,q) = G(A,q)G(B,q).
For disjoint unions, the generating series is additive:

(18) G(AUB,q) = G(A,q) + G(B,q).

Here, we focus on generating series for multipartitions. A partition is a finite sequence
of weakly decreasing, nonnegative integers

The \; are the parts of A\. Define the length of A to be /(\) = ¢, the number of positive
parts of \. We represent A visually by its Young diagram, a collection of boxes arranged
in rows so that the number of boxes in row i equals );. Each partition has an associated
weight

(19) =\ = ZA

Equivalently, wt()) is the total number of boxes in the Young diagram of . A multiparti-
tion is simply a tuple of partitions A = (\?)),.;. We weight X by defining

= wt(AD),
icl
Let pr = {\ : wt(\) = k}. Famously due to L. Euler, the generating series for the set of all
partitions is

20 Zp’“qkznl—lqi'




Throughout, we will be interested in subsets of partitions which have constraints placed
on the total number of rows or columns in their Young diagram. Let

Pi,7) ={A:L(\) <iand )\ < j}.
Here we allow for i or j to be infinite. When i and j are finite,

. 1+
@D G(P(i.j).q) :{ Zf’] .
q
The generating series for P(co, k), as well as P(k, 00), is obtained by truncating the prod-

uct in (20):

1 LB
(22) @_Hl_qi.

Write ¢ x j for the rectangular partition with ¢ parts of size j and let R(7,j) = {i x j}.
Immediately from (15),

(23) G(R(i,j)q) = ".
The following identity is due to Euler:

2 @= a7

We sketch a textbook bijective proof. The Durfee square D()\) is the largest j x j square
partition that fits inside A. Draw D(\) inside of A so that it is justified against the top
left corner. By cutting X along the boundary of D(\), we may divide ) into three smaller
partitions, as pictured below.

H
WE
2

This decomposition defines a bijection:
P(00,00) = [ JR(.4) x Pj,00) x P(c0, ).
=0

See [And84, pp 27-28] for details and related identities.

The present work uses a generalization of the Durfee square. Fix r € Z. The Durfee
rectangle D(\,r) is the largest i x (i + r) rectangular partition contained in A\. By conven-
tion, we say any 0-width or 0-height rectangle is contained in A. Equivalently, D(\,r) is
the rectangle with top left corner positioned at (0,0) and bottom right corner where the
line x + y = r intersects the (infinite) boundary line of the partition.

Example 2.1. Let A\ = (3,3,2,2,1). Pictured below are the Durfee rectangles D(\,r) for
r=—1,0,4.



D(),0) D(\,4)

BT )

Notice that D(\,4) = 0 x 4 rectangle since the line = + y = 4 intersects the boundary of A
at the point (4,0). O

Decomposing A using D (A, r) gives a proof of the following identity of B. Gordon and
L. Houten [GH68, pp. 91-92]:

o0 i(r+4)

(25) e

(¢)so i=max{0,—r} (@)i(@)r+i

The A, case of Theorem 1.4 can be proved using a truncated version of (25). We sketch the
explicit connection here. Fix r < k. We can split A € P(c0, k) into three partitions using
D(\,r). This defines a bijection
k—r
P(oo, k) = U R(i,r+1i) x P(oo,r +1i) X P(i,k — (r+1))

t=max{0,—}

which corresponds to the following identity of generating series:

k—r ; ; . .

1 ¢t [ — (r+14) +1
(26) Ly ke
(Q)k i=max{0,—r} (q)T—H ! q

We may rephrase (26) in the language of lacing diagrams. Set n = 2 and fix a dimension
vector d = (k — r, k). Choose a d-dimensional lacing diagram £ such that m; 1;(£) = .
Since myy (L) +mp 9(L) = k—r, necessarily my; o(£) = k—r—i. Similarly, mp 5 (£) = r+i.

We reindex the sum in (26) and obtain

qm[l 1 (mmz,2)(n) m11) (77) + M2 2] (77)
27) Z { | | '
q

)d(2) (D impa () mpy(n)

neCo(

For any 7, we have ¢{(n) = d(l). Dividing both sides of (27) by (¢)a1) and using the
equations (9) and (10) gives

28) 1 Z qsl n)t?(n)[ (77)2+ t%(n)} '

(D)a)(D)ae) ( ) pecata) (Dam

We have d(1) = t1(n) for any n € Co(d). So we obtain

(29) L _ ¥ g i) {5%(77)+t3(77)}'
(Q)du)(Q)d(Q) neCol(d) (Q)t%(n)(Q)tg(n)

This is the n = 2 case of Theorem 1.4.



For n > 2, the proof of Theorem 1.4 uses multiple Durfee rectangles. This technique is
similar to the Durfee dissections of A. Schilling [SW98]. See also the work of C. Boulet on
successive Durfee rectangles [Boul0]. We also note the resemblance to the Durfee systems
of P. Bouwknegt [Bou02]. Also see the references to loc. cit. for other work on general-
ized Durfee square identities. Our main point of difference is that these identities do not
directly concern lacing diagrams.

3. PROOF OF THEOREM 1.4

Throughout this section, fix a dimension vector d = (d(1),...d(n)) and a sequence
permutations as in (11):

w = (wb, ... w™) with w® € &; and w'(i) = i.
Define
(30) S =P(c0,d(1)) X ... x P(oo,d(n)).
Let
(31) R(n) = {p = (1) = 115 € Rl oy (1)t y () L S i< j < k < n)

which consists of a single element, a tuple of rectangles. For ease of notation, we write

sk(n) = oo for each k. Let

(32) P(n) ={v = () : v € P(shoo (1) Loy (1), 1 <0 < k < m}.
Define
(33) T(n) = R(n) x P(n).
Finally, we let
(34) 7= J T().
neCo(d)

Weight A = (A ... A\(")) € S by defining

weg(A) =Y [AW].
k=1
Assign (pu,v) € T the weight

wer(pov) = Y b+ DD AL

1<i<j<k<n 1<i<k<n

Lemma3.1. (1) The generating series for S is

c(8,9) = [[—

(2) The generating series for T' is

e}



Proof. (1) By (30),

Then,
G(S.q) = [[ G(P(c0,d(k)), q) (by (17))
k=1
L
- by (22
H (@)ae) (by (22))

(2) First, observe that

GRm)a) =[]  GR(skw w0t () a) (by (17) and (31))
1<i<j<k<n
- I ¢oe™ee® (by (23))
1<i<j<k<n
= ¢ (by (12))
Now,
G(P(n),q) = H G(P(Sﬁm(i)(n),tﬁm(i)(n)),Q) (by (32))
1<i<k<n
= [] GPEm),tim). 9 (by permuting indices)
1<i<k<n
n k—1
= [T GPsEm). M), o) [T GPsEm). tin). 0)
k=1 =1
Tl T tf(n)ﬂf(n)}
_g(q)tw) izl[ s; (1) q (by (22) and (21))
Therefore,
G(T,q)= Y G(T(n).q (by (18) and (34))
neCo(d)
= > G(R(n) x Pn),q) (by (33))
ne€Co(d)
= Y G(R(n),q)G(P(n),q) (by (17))
ne€Co(d)
n k—1 k k
— Tw (1) 1 |:tz (77> + S (’I’])} ]
nGCZQ:(d) ! IH (q)t’zi(n) i=1 st (n) q

We now define the general “cutting” operation we use to map from S to 7. Fix two
weakly increasing sequences of nonnegative integers

m=(mog<my <...<my, )andn=(ng<n; <...<ng,).
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Given a partition ), let A(/)(m, n) be the partition formed by restricting the Young dia-
gram of A to rows [m;_; + 1, m;] and columns [n,_; + 1, n;]. Here, we allow for infinite my,,
and ny, . Immediately from the definition,

(35) )\(i’j)(m, n) S P(mz — Mi—1,Mj — nj_1>.
Furthermore,
(36) )\(i’j) (m, n) S R(mz — Mi—1,M5; — TLj_l)

if and only if the Young diagram of A has a box in position (m;, n;).
The following lemma describes how the size of D(\, r) varies as r changes.
Lemma 3.2. Fix \ and suppose v’ < r. If D(\,r) = s X (s+r)and D(\,r") = &' x (s'+71') then
(1) s < s and
2 s+r' <s+r.
Proof. (1) Suppose s+1' < 0. Wehave 0 < s'+1”, since it is the width of D(\, r’). Therefore,
s < s'. Otherwise, if s + 1’ > 0, the rectangle
sxX(s+7r)Csx(s+r)CA
Since D(\,r') = &' x (&' + 1), we have s < §'.
(2) If s = &' then
s+ <s+r=s+r.
Then suppose s < 5. Since s + 1 < s’ and
D\ =58 x (1 +5") C A,
we have
(s+1)x (r+5) C A
Since D(A,r) = s x (s +r), by definition, (s + 1) x (s+ 1+ ) € X\. And so
s +r' <A1 <s+1+r,
ie. s +r <s-+r. O
Define a map ¥, : T' — P(o0,d(k)) by “gluing” the partitions of 7" with superscript &
as indicated in Figure 1. Thenlet ¥ = ¥ x ... x ¥,,.
The proposed inverse ® : S — T is defined as follows. We will recursively define
parameters
"M for1 <j<k<n
by induction on k. Our initial condition is that ¢} (A) = d(1). Assume the sequence
BTN )
has been previously determined and that
k-1 .
t] (A)>0foralll <j<k-—1.
Let

(37) OF(A) = DOW, d(k) = > th5h (V) fori=0,... k—1.
(=1

11



k k k k
tgﬂkm tg}““)(k—) t1_0<k)(2) tw)(l)

k k k k k
SwE | Hik | Ae-1 M1 2 V1
k k k k
Swm ) | M2k | H2,.k-1 Vo

k k
Sw® (k=) | Hr—1,6 k-1

FIGURE 1. Description of the map ¥, : 7' — S.

Note in particular that 6§(X) = 0 x d(k) for all 1 < k < n. Suppose

(38) SF(A) = a¥(X) x bF(\) rectangle.
For ease of indexing, write b} (A) = 0. Let
(39) th X)) = b (A) = bi(A) fori=1,....k

We also define
(40) SZW(@()‘) =afN) —af (N fori=1,... k-1

2

By the hypothesis, t’?_l()\) >0foralll <j <k — 1. Therefore,

k— -7
Z tw<k> e) Zt ) g) )) for all ¢’s .

Then we may apply Lemma 3.2 to the 6/’s, to obtain sequences

(41) a"(A) = (a5(A) < af(A) < -+ < af_ (A) < af(N))
with af(A) = oo and
(42) b (A) = (B (A) S Uiy () < -+ S VEN) < bG(N)).-

By (41) and (42), the s}'(X)’s and t§(X)’s are all nonnegative. Continue until & = n.
We then map A — (u, v) where

T LICUCNRSICY e
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and
vi = AP (@"(X), b (A))i kit

7

In the proof, we will justify this map is well defined, i.e. (u,v) € T. This involves
finding a class n(A) € Co(d) so that (p,v) € T'(n(A)). We define our candidate now.

Definition 3.3. Let n(A) be the equivalence class of a lacing diagram uniquely defined by:

o muj(n(A) =s"" N forl1<i<j<n-—1;
o mpn(n(A) =N fori=1...n.

Since each my; j1(n(A)) > 0, we have that n(X) is well defined.
Example 3.4. Assume w = (1,12, 123). Fix a dimension vector d = (3,6, 5) and partitions
A =(2,1),A® = (5,1), and \® = (3,3,2,1,1).

t 5 4 ty t5 1)

Then 62(A) = D(A®,6 — 3) = 1 x 4 and so t3(A\) = 2, and t(\) = 4. From this, we have
3N =D 5-2)=0x3and 63(A\) = D(A®,5 -2 —4) =3 x 2.
So t3(A) =2, t3(A) = 1, and ¢3(A) = 2. This corresponds to n(A) = [£] where

b 54 t5 1 13

As before, 6?(A) = D(A® 6 — 3) = 1 x 4. Consequently,
BN =DAY 5-4)=2x3and 63(A) = D(A\®,5 -4 —-2) =3 x 2.
This yields n(A) = [£'], where

13



£'=/:

*—o—o

Immediately from the definitions (9) and (10), we have

(43) ti(n) + si(n) = ;" (n).
for any n € Cg(d). We show the parameters defined in (39) and (40) satisfy the same
recursion.

Lemma 3.5. £ ), () + s (A) = tk<k1) J(A) forl<i<k<n

R (i )<
Proof. By (38) and the definition of a Durfee rectangle

(44) bE(N) — af Z i

Applying (39) and (40),
tui (N + S (X) = 01(A) = 0i(X) + ai(A) —ai 4 (N)
= (b1 (A) — a3 (N) = (BF(A) — af (X))

- (a0t ) - (a0~ ot )

=t ) (A). O

w(®) (4)

The next lemma collects various properties n(\). In particular, it justifies our choice in
notation for s§(A) and t¥(X).

Lemma3.6. (1) s¥(n(\)) = sF(A)
@) (n(N) = 5N
(3) n(A) € Co(d).

Proof. (1) This is immediate from Definition 3.3.

(2) By Lemma 3.5,
A =17 + 57N,
Iterating, we obtain
A =172 (N) + 572 + 57 ()

=t (n(A)) + Z sin(N) (by Definition 3.3)

14



=m n] Z M e— 1] (by (10) and (9))

=17 (n(N)) (by (10)).

(3) For each k,
d(k) = b’“()\) —bE(N)

= Zb —bi(A (by (39))

= Z tw<k)( )(A)

= Z () (permute the terms of the sum)
k
=D _tm) (by part (2))
= > m(nN) (by (10)
1<i<k<j<n
By (8), we have n(\) € Co(d). O

Theorem 3.7. U : T — S is a weight-preserving bijection, i.e., wtr(p,v) = wtg(¥(w,v)).

Proof. W is weight-preserving: That wt(p, v)) = wtg(¥(p, v)) is clear since ¥ preserves the
total number of boxes.

U is well-defined: If dim(n) = (d(1),...,d(n)) then
k n
d(k) => "3 my(n Ztk )fork=1,.
i=1 j—=k

Therefore, W, (p, v) has parts of size at most d(k) for each k, i.e. Vy(pu,v) € P(oo,d(k))
for each k. Therefore, U(pu,v) € S.

® is well-defined:

By (35),

AB @5 (X), bH(N))isji1 € Plal(N) — aly (X), bE_ () — bE(N)).
By (40) and (39),
Swtr iy (N(N) = af(A) = ai_ (N) and £ 9 ) (N(X)) = B (A) = B (A).
Therefore,
G (@A), BEA) )1 € P50y (M), o (nOA):
By definition,
Vf = )\(k)(ak(A% bk(}‘))i,k—i—i-l
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and so
v € P(sy (0(N), thw i (1(N)))
as desired.
Similarly, by (35),
iy =AM (@ (X), b (A))i—jin
and so
pi; € P(Sw(k)(i)(n()‘))vtfu(k)(j) (n(A)))-

Since 0¥ (A) C A®), the box (af(A),bf(X)) € A®. Likewise, since d;_;,;(A) C A*¥), we have

(ai—j—i-l()‘)? bg—j—i—l()‘)) e AW,
Therefore, (af(X),bf_;.1(X)) € A So, in fact, by (36),

15 € R(5,000) (NN)), o, ((N))-
Therefore, ®(X) € T'(n(A)) C T.
Uod=1Id:

® acts by cutting the A#’s into various pieces and ¥ glues these shapes together into
their original configurations. So for every A € S, we have U(®(X)) = A.

boW =1Id:

Fix (pu,v) € T. Then in particular, (u,v) € T(n) for some n € Co(d). Let A := ¥(p, v).
We must argue n = n(X). If so, ©(V(p,v)) = (u, v).

Since (p,v) € T(n), each ¥y (p, v) contains a rectangle

J k
(45) € = (Z Sﬁ,w)(i)(ﬁ)) X <Z tﬁ;%)@(ﬁ))

i=1 i=j+1
forall 1 < j < k asin Figure 1.
By definition, dim(n) = d. Then it follows

Z tfv(k)(i) (n) =d(k) — (Z tﬁ,(k)@)(ﬁ)) .

i=j11
Asin (43), t¥(n) + sf(n) = t§7'(n). So substituting we have
J

k J
(46) Z tfu(k)(i) (n) =d(k) - Z tﬁl(ﬂ-) (n) + Z Si(k)(i)(n)-

i=j+1 i=1

Substitution of (46) into (45) yields

J
e =5 x (s+d(k) =Y _th (n)
=1

contained in A*). Here, s = S°7_, s*(n). In particular, by construction, the bottom right

=11

corner of ¢! intersects the boundary of A*) (see Figure 1), i.e. s is the maximum value for
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which € € A®). So by the definition of a Durfee rectangle,

J
e = DB, d(k) =Y ikl ()
=1

By (37) and Claim 3.6 part (2),

¥ (X) = D(\®.d Zt

We seek to show 6F(X) = €¥ forall 1 < j < k < n. Our argument is by induction on k.
By definition, ¢1(n) = d(1) = ¢1(n(X)). Then
0t(A) = D(A®,d(2) - t1(n))
= D(A\?,d(2) - t;(n(N))

_ 2
= €],

so the Durfee rectangles agree. Assume 6 '(A) = ¢i ™' forall 1 < j < k — 1. Then in
particular, () = t:"1(n(\)) forall 1 <i < k —

J J
(47) Z tﬁ;(li) (77) = Z tﬁ] (11) (77(}‘))

=1 i=1

it follows that 0¥ = ¥ since both are Durfee rectangles defined by the sane parameter.
Hence, 6% = €¥. Therefore,

sk(n) = sF(n(X)) forall 1 <i <k <n

7

and
th(n) = tF (X)) forall 1 <i <k <n.
Hence n = n(\). O

We now conclude the proof of Theorem 1.4.

Proof. By Theorem 3.7, S and T are in weight preserving bijection. Therefore,
G(S,q) = G(T,q).
Applying Lemma 3.1 gives the result. O
Example 3.8. Letn =3 and d = (1,2,1) and w = (1,12, 123). Then
rw(n) = (si(t3() + (sTE(n) + s1(n)t3(n) + s2(n)t3(n))

and

1 1 [t3(n) +si(n) L [e3(n) +si(n)] [t3(n) + s3(n)
G(P(m’”‘<q>ti<n><q>tg<m[ 52 (n)? L<q>tg<m[ ) H () }

The table below gives the equivalence classes for d = (1,2, 1) and their corresponding
terms on the right hand side of (13).
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n = [L] (s%(n)) (tf(n)). G(T(n),q)
2 1k 3 2 1|j/k
e o o 1 2 1 1 q4<L>(L><1): q
2 0 3 20 2 ()1 (9)2 (9)1 (1—q)3(1—¢?)
) 100/ 3
. 2 1]/ 32 117/k
— || 0] 2 oo | 2@ (@) @) =
L 1l 3 1 1] 2 T\ @ ) \@ ) \@n T—a°
) 100/ 3
- 2 1]/ 3 2 1|7/k
e ol o | (an) (@) (1,) = o
R Lol 3 2 0] 2 T \n ) \@:) \lly) = T—o7
) 010]| 3
] L2 1k 32 1|j/k
AN 0l 2 1)1 q< 1 ) (L) _ 4
0 1! 3 1 1] 2 (g)1 (@)1 (1—q)?
) ) 01 0| 3
g2 1k |22
——| | 0] 2 ik (@) (@) = o
1 0l 3 1 1| 2 (91 (@)1 (1—q)?
] 00 1| 3
We then verity,
4 2 2
q q q q 1
G(T,q) =

(—l-¢ 0-¢ (-0 0-a (-0

S - q)31(1 —A 0 20+l - 91— ) + (1 -1 - )
1

~ (@i(@:(0n

= G(5,9)-

We now give the proof of Corollary 1.5.

Proof. By (43),

(48) ti () + s; () = 15~ (n).
Furthermore by (9) and (10),

s¥(n) = myp—1(n) and 7 (n) = My (1)

Thus,
- [tm +si-“<n)] 7 1T _(Detestn
i} (Q)tg(n) i1 s;(n) ¢ ko1 (Q)t’,g(n) i1 (Q)tf(n)(Q)sf(m
L = (Q)tffl(n)
- g (@Detmy 11 (@D (D st
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it )

The proof of Theorem 3.7 implies an enriched form of Theorem 1.4. Let

(a:q)e = (1 —a)(1 —aq)(1 — ag”) -~ (1 — ag"™").

For n € Cg(d), let u;(n) be the number of strands that terminate at column j in some
(equivalently any) lace diagram £ € n. That is,

(49) ui(n) = si(n).

Corollary 3.9 (of Theorem 3.7).

n

1 . MR () + sk
) J[——= 3 qrwm)leukl(m ! H{tz(ni’j(n)z(n)]'

e (@5 @awy | = Pt (025 @)ty 17 .

Proof. The lefthand side of (50) is the generating series for S with respect to the weight
that uses ¢ to mark the number of boxes and z to mark length of the partitions involved.
Now, suppose A = (AL ... A™) € S. Under the indicated decomposition in Figure 1,

EOO) = €0) + 3 sy (V) = £08) + s (V)

where the second equality holds by (49) and reordering terms. The corollary follows
immediately from this and Theorem 3.7 combined. ([l

Theorem 1.4 is the z = 1 case of Corollary 3.9. By analysis as in Section 2, we obtain as
a special case this Durfee rectangle identity:

L ’“Z Zigir+) [k—(r+i)+z’]
(g L (4% i .

From Corollary 3.9 one can deduce an enriched form of Theorem 1.3.
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4. PROOF OF THEOREM 1.6

Assume Q is a type A quiver. Label its vertices from left to right with the numbers
1,2,...,n. Write q; for the arrow whose left endpoint is vertex i. Let Z be the set of
intervals in O, i.e.

Z=A[i,jl:i<jandi,j € [n]}.

We associate a sequence of permutations to Q as follows:

Definition 4.1. Let w(l) 1 and wQ = 12. For 7 > 3 let ¢ be the natural inclusion from &,_;
to 6, and let wo U denote the longest permutation in &,_;. Set

©

@ L(wg_l)) if a,_ and a;_, point in the same direction
L(w(éfl) wy 71)) if a;,_» and a@;_, point in opposite directions.

Write wg := (w(Q), . wQ ) By construction, wg is of the form (11).
Example 4.2. Let Q be the quiver pictured below.
a, Qg a3 G4 Qs
1 2 3 4 5 6
Then wo = (1,12, 123, 3214, 32145, 541236). O

Definition 4.1 is our link between codimc(7,) and the Durfee statistic. The outline
of the proof of Theorem 1.6 is as follows. We start by defining two subsets of 7 x Z,
BoxStrands(w) and ConditionStrands(Q). In Proposition 4.3, we show that

o) = ) mu(m)my(n).
(I,J)€EBoxStrands(w)
Proposition 4.10 states
codime(7y,) = Z mr(n)mz(n).
(I,J)€ConditionStrands(Q)
In Proposition 4.13, we show
BoxStrands(wg) = ConditionStrands(Q).
Combining these propositions completes the proof.
Given a sequence w = (w(V), ... w™) which satisfies (11), define
(51) BoxStrands(w) = {([w®(i),k —1],[w®(j),4]) 1 <i<j<k<l<n)}CIxT.

To define ConditionStrands(Q), we consider pairs of intervals (I, J) € Z x Z of the fol-
lowing three types:

D) I=wx—1and J = [z,z] withw <z <z
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() I = [w,y]and J = [z, 2] with w < z < y < z and the arrows a,_; and a, point in
the same direction, e.g.,

w Yy

Ep— *>o--0
o--o>0------ °
T z

(I) I = [z,y] and J = [w, z] with w < z < y < z and the arrows a,_; and a, point in
different directions, e.g.,

z Y
®o--0
*-————- o> o --0<o-——-—- -®
w z
With this, we let
(52) ConditionStrands(Q) = {(/,J) : (I,J) satisfies (I), (II), or (III)}.

The set BoxStrands(w) has an immediate connection to the Durfee statistic ry (7).

Proposition 4.3.

rw(n) = > my(n)m(n).

(I,J)€EBoxStrands(w)

Proof. By (12),
rw(n) = Z 32(/@)(,‘) (ﬁ)tﬁ,(m(j)(??)-

1<i<j<k<n

Using (9) and (10), we have:

rw(n) = Z m[w(k>(i),k—1}(n) (

1<i<j<k<n

= Z m[w(k)(i),k—l](n)m[w(k)(j),é} (n)

1<i<j<k<t<n

= >, my(n)my(n). u

(I,J)€EBoxStrands(w)

We now recall some more facts from the representation theory of quivers. Write Hom(V, W)
for the space of morphisms from V to W. Given V and W an extension of V by W is a short
exact sequence of morphisms

0O—-W-—=E—=V-—=D0.

Two extensions are equivalent if the following diagram commutes:

> W > E >V
Lk
> W > E/ > V

0 > 0

)
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Write Ext'(V, W) for the space of extensions of V by W up to equivalence. Hom(V, W) and
Ext'(V, W) are finite dimensional vector spaces. Recall the Euler form, defined by

Xo(di, dg) = Y di(i)da(i) — > di(t(a))da(h(a)).
1€Qo acQn

We often use the abbreviation
Xo(V, W) := xo(dimV, dimW).
The Euler form satisfies the following:
(53) xo(V,W) = dimHom(V, W) — dimExt*(V, W),
(see [Bri08, Corollary 1.4.3]).
Given I € 7, let V; be an irreducible representation indexed by I. Let

(54) V, = @ V?m[(n)_

Iel

Each point in the orbit v, C Repy(d) is isomorphic to V,. The codimension of ~, may be
expressed in terms of extensions of V,. This is Voigt’s lemma (see [Rin80, Lemma 2.3]):

Lemma 4.4 (Voigt).
codime(y,) = dimExt'(V,, V).
Here, we give an alternate expression for codime(7y,) in terms of the Euler form. Define
U ={(I.J) : xo(Vr.V.) < 0}.

Lemma 4.5.
codime(y,) = Y mu(m)my(n)(—=xe(Vr, V).

(I,J)eU
Proof. By [Rei01], Section 2, there exists a total order on Z so that
(55) Hom(V;, V) and Ext!(V;,V;) = 0 whenever I < J and I # J.
Indecomposables for Dynkin quivers have no nontrivial self extensions, that is,
Ext!'(Vy,V;) =0forall I € Z,
[Bri08, Theorem 2.4.3]. So dimExt'(V;, V) = 0 whenever I > J.

Writing
vV, =P vy
Iez
as a direct sum of indecomposables, we have
Eth(Vn, Vn) ~ @ Eth (VI7 VJ)GBmz(n)mJ(n)'
(I,J)EIXT
Then
codime(7,) = dimExt!(V,,,V,) = > my(n)my(n)dimExt" (V;, V).
(1,J)€TXT
Since Ext'(V,,V,) vanishes when I > J,
codime(y,) = Z mr(n)my(n)dimExt' (V;, Vy),

(I,J):I1<J
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(see [Rim13]). Combining (53) and (55) gives

(56) codime(y,) = > mu()my(n)(—=xo(Vi, V.)).
(I,):I<J]

Using the ordering on 7 and (53), it follows that
(57) if I < J, then XQ(V],VJ) < 0 and XQ(VJ,V[) > 0.

Since Q is a Dynkin quiver, if I = J, then xo(V;,V;) > 0 [Bri08]. Thus we may reindex
the sum, taking only those (I, J) for which xo(V;,V,) < 0. Therefore,

codime(v,) = Y mu(m)mu(n)(—=xe(Vr, V).
(1,J)eU

Lemma 4.6. Fix intervals I and J. If [x,y] C I, J then

(58) Z d,(7)d,(7) Z d;(t(a;))ds(h(a;)) =1
Proof. Since [x,y] C I,J,d (i) =d,(i) = 1 forall i € [z, y]. Therefore,
(59) zy:dl(i)dj(i) =y—z+1L

Regardless of the orientation of a;, if i € [z,y — 1] then t(a;), h(a;) € [z,y]. Because
[z,y] C I,J, wehave d;(t ( i) =dy(h(a;)) = 1. So

(60) de (a)ds(h(a;)) = (y = 1) = (= + 1).
Subtracting (60) from (59) gives (58). O
Let

StrandPairs = {(I,J) = ([x1, 22, [y1,y2]) € Z X T : x5 < yo}.
From (51) and the definitions (I)-(III), it follows that

ConditionStrands(Q) C StrandPairs.

Lemma 4.7. Let (I, J) € StrandPairs. Then
(I,J) € ConditionStrands(Q) <= xo(Vr,Vy) <0o0rxo(V,,Vy) <O.

Moreover, if xo(Vi,Vy) < 0, then xo(Vi,V,) = —1 and likewise xo(Vs,Vr) < 0 implies
xo(Vy, Vi) = —

Proof. Since we have assumed Q is a type A quiver we have

(61) o(dy,dy) = Zdl (1)dy (i) Zdl a;))da(h(a;)).

Given an interval I, write d; for the dimension vector of V;. By (61), we have

xo(Vr,Vy) = xol(dr, dy) = Zdl (4)d.s(2) Zdl a;))d(h(a;)).
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We analyze this expression repeatedly throughout our argument.
(=) By direct computation, we will show if (I, .J) € ConditionStrands(Q) then

xo(Vr,Vy) = —lorxo(V,, Vi) = —
which is the last assertion of the claim.
Case 1: (I,J) = (Jw,x — 1], [, 2]) is of type (I).
Subcase i: a,_; points to the right.

o(Vr,Vy) = Zdl )d(4) Zd (t(ai))ds(h(a;))

=— Zd[(t((li))d](h(ai)) (since I N J = 0)

= —d;(t(az-1))ds(h(az-1))

= —d;(z — 1)d;(z)

=1
Subcase ii: a,_; points to the left.

Let Q° be the quiver obtained by reversing the direction of all arrows in Q. Then
Xo(dy,d;) = xoer(dy, dy). Therefore,
xo(V7, Vi) = xo(ds, df) = xg'(dr,dy) = -1

by Subcase 1.i.
Case 2: (I,J) = ([w,y], [z, 2]) is of type (II).
Subcase i: a,_; and a, point to the right.

VI7VJ de dJ Zdl Clz dJ Clz))

i=x—1

(Zdl )d(7) Zdl a;))d;(h az))>_dl(t(%1))dJ<h(ax1>>

_dl( ( y))dJ(h( y))
=1 — dy(t(a_1))dy(h(as_.)) — d;(t(a,))ds(h(a,)) (Lemma 4.6)
=1- d[(l’ — 1)d]($) — d[(y)d](y + 1)
=1

Subcase ii: a,_; and a, point to the left.

xo(Vs, Vi) = —1 by the Q°° argument, as in Subcase 1.i.
Case 3: (1, J) = ([x,y], [y, #]) is of type (III).
Subcase i: a,_; points right and a, points left.

V]7VJ Zdl dJ Zdl Clz dJ ))

i=x—1
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<Zd1 )d.s (i) Zdl (a;))ds(h )))_dI(t<az—1))dJ<h(az—1>>

—d;(t(a,))ds(h(a y))
=1—d;(t(az—1))ds(h(az—1)) — d;(t(ay))d;(h(a,)) (Lemma 4.6)
=1-d;(z—1)d,(z) —ds(y — 1)d,(y)
— -1
Subcase ii: a,_; points left and a, points right.
xo(Vy, Vi) = —1by the Q°° argument, as in Subcase 1.i.
Thus we have shown whenever (1, .J) € ConditionStrands(Q),

XQ(V[,V]) = —1or XQ(V],V[) = —1.

(<) Let (I, J) = ([x1,x2), [y1,y2]) € StrandPairs and first assume xo(V,V,) < 0.
Case1: INJ =0. Thend;(i) =0ord,(i) =0 foralli € [1,n] and so

n—1

Xo(dr,dy) == ds(t(a;))d,(h(a:)).

i=1
Since xo(d;,d;) < 0 there must exist an arrow a; with ¢(a;) € [z, z2] and h(a;) € [y1, ya].
Then i = x4, a; points to the right, and y; = z2 + 1. This implies (I, J) is of type (I).

Case 2: Assume I N J # (). Since we assume x5 < ¥
INJ = [z1,22] N [y1, y2] = [2, 2]
where z € {z1,y:}. Then

o(ds,dy) = Zdl ) (i) Zdl a;))ds(h(a;))

_Zd, )dy(4) Z d;(t(a;))dy(h(a;)) (Lemma 4.6)

= 1 — ds(t(as—1))ds(h(a.-1)) — dr(t(az,))ds(h(az,)).
Since yo(d;,d;) < 0, we must have

d;(t(a.-1)) = ds(h(a:1)) = di(t(ar,)) = d;j(h(as,)) = 1.

Therefore,

(62) t(as—1),t(az,) € I = |21, x9)
and

(63) h(a.-1), h(az,) € J = [y1, yo.

If an arrow a; points to the right, then h(a;) = i + 1 and ¢(a;) = i. If a; points left, h(a;) =i
and t(a;) = i + 1. We proceed by analyzing the direction of a,, and a,_; . First consider
ag,. If a,, points left, then ¢(a,,) = v2 4+ 1 and so x2 + 1 € [z1, 25, which is a contradiction.
Therefore, we may assume a,, points right.

Now consider the direction of a,_;.
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If a,_; points to the right, then t(a,_1) = z — 1 € [21,22] by (62) and so z > x;. Since
z € {x1,y1}, we must have z = y;.

T i)
[P o --0
®o-->0------ °
2= Y2

Therefore (I, J) is of type (II).

If a,_; points left, now we have by (63) h(a,—1) = z — 1 € [y1, y2]. Therefore z — 1 > y;
and so z # y; which implies z = z;. Hence we have:

Z=T1 X9

®o--0
®------ > o --0<0----—- -*
Y1 Y2

So (1, J) is of type (III).
By near identical arguments, xo(d;,d;) < 0 when

(1) a,—; and a,, both point left, z = y;, and =, < y; i.e., (I, J) is of type (II)
(2) a,_; points right, a,, points left, z = x; and x2 < y2 so (I, J) is of type (III).

In particular, we have the following corollary.

Corollary 4.8. If xo(Vr,V,) < 0then xo(Vi,V,) = —1

Proof. If (I,J) € StrandPairs, this is immediate by Lemma 4.7. Otherwise, (J,I) €
StrandParis. Then by Lemma 4.7 (J, ) € ConditionStrands(Q). As such,

xo(Vi,Vy) =—1.

Recall U = {(I,J) : xo(Vr,V,) < 0}. We let
Uy ={,J) = ([x1, 2], [y1,92]) : (I,J) € Uand 23 < 3}, and
Uy ={(,J) = ([w1, 2], [y1,92]) : (I, J) € U and x5 > 5 }.
Trivially,
(64) U - Ul (] UQ
Let
UQ == {(J,]) . ([, J) S UQ}

Lemma 4.9. ConditionStrands(Q) = U; U 5;
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Proof. If (I,.J) € Uy, then (J,I) € Uy C U and s0 xo(V,,V;) < 0. Therefore yq(Vy,V,) > 0
and hence (I, J) ¢ U. So (I, J) ¢ U,. Therefore, U; N Uy = ().

(C)If (I,J) € ConditionStrands(Q), by Lemma 4.7, xo(V;, V) < 0or xo(V,, Vi) < 0.
In the first case, from the definition, (1, /) € U;. In the second case, again by definition,
(J,I) € Uy, which implies (I, J) € Us.

(D) We have Uy, /[j; C StrandPairs. Thusby Lemma4.7, Uy, /[j; C ConditionStrands(Q).
O

Proposition 4.10.
codime(y,) = Z my(n)m.;(n).

(I,J)EConditionStrands(Q)

Proof. If (1, J) € U, then xo(Vy, V) < 0. Applying Corollary 4.8, xo(V;,V,;) = —1. Then
by Lemma 4.5,

codime(y,) = Z mr(nmy(n)(—=xa(Vr, V)

(I,7)eU

= Y mu(n)my(n)

(I,J)eU

Therefore, applying (64)
codime(y,) = > mu(mmy(n) + D mi(n)m,(n)

(I,J)eUs (I,J)eU2
= > mumms)+ D mi(n)yms(n)
(I,1)eln (I,)eUs
= Z my(n)my(n) (Lemma 4.9),

(I,J)€ConditionStrands(Q)

as claimed. 0

Our final goal is to show BoxStrands(wg) = ConditionStrands(Q). We start with a
lemma.

Lemma 4.11. All elements of BoxStrands(wg) and ConditionStrands(Q) may be written in
the form:

(65) (I1,J) =[x,k — 1), [y, 0]), withx #y, k < L.

Proof. 1f
([ (i), k — 1], [w®(j),/]) € Boxstrands(wyg),
then
w (@) # w$)(j) and k < £,

Hence, by setting x = w(Qk)(z') and y = w(Qk) (7), we are done.

Now suppose
([x1, z2], [y1,y2]) € ConditionStrands(Q).

By definition (I)-(Ill), 21 # y; and 23 < y2. Sosetx =z, y =y, k =22+ 1land { = y,. O
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With Lemma 4.11 in mind, to prove Boxstrands(wg) = ConditionStrands(Q), it is
enough to show given (1, J) of the form in (65),

(I,J) € BoxStrands(wg) <= ([, J) € ConditionStrands(Q).

We first handle the special case when I and J are disjoint.

Lemma 4.12. Let (I, J) be as in (65) and suppose I N J = (). Then (I, J) € BoxStrands(wg) if
and only if (I, J) € ConditionStrands(Q).

Proof. If (I, J) € ConditionStrands(Q), then by the disjointness hypothesis it must be of
type (I), i.e.
(Iv J) = ([l’, k— 1]7 [k>€])

Now, since z < k — 1 and w(Qk) € 6, with w(Qk)(k;) = k, there exists i < k such that
w(Qk) (1) = . So
([, k = 1], [k, 4]) = ([w& (D), k = 1], [wg (k). {]) € BoxStrands(wa).

Conversely, assume

(1,J) = ([wd (@), k — 1], [ (j), £]) € BoxStrands(wo)
and I NJ = (. Then w (j) > k — 1 which means w(Q (j) = k and j = k by the definition
of wQ) Furthermore, wQ (z) —1lsincei < j =k. So
(1)) = ([wg (), b = 1], [k, 1])
is of type (I), and hence in ConditionStrands(Q). O

We now show:

Proposition 4.13. BoxStrands(wg) = ConditionStrands(Q).

Proof. Let (I, J) be as in (65). We seek to show

(I,J) € BoxStrands(wg) <= (/,J) € ConditionStrands(Q).
We will proceed by induction on £. In the base case k = 2, we must have z = 1 and so
y > 2. Assuch, I N J = () and so we are done by Lemma 4.12. Fix k¥ > 2 and assume the
claim holds for £ — 1. That is, given a pair of intervals ([2/, k — 2|, [¢/, ¢']) so that 2/, 3’ and
(' satisfy 2’ # v’ and k — 1 < ¢’ we have
(66)
([2',k — 2], [y, ¢]) € BoxStrands(wg) < ([z/,k —2],[¢/,¢']) € ConditionStrands(Q).

Now let (1, J) be as in (65), i.e.,
(I1,J) = ([x,k — 1], [y, €]), withz £y, k < (.
Again, by Lemma 4.12, if I N J = () we are done, so assume I N J # (). Theny < k.
Now, since 1 < z,y < k, there exist i and j such that
1<i,j<kwithz =w®™ (i) and y = w®(j).
So from (51)
(67) (I,J) = ([w$ (@), k — 1], [wS(§), £]) € BoxStrands(wg) <= i < j.
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Throughout, when © < k — 2 we write [’ := [z, k — 2]. We will break the argument into
two main cases.

Case 1: ax_s and a;_; point in the same direction.
By definition, w(Qk) = L(w(Qk _1)). Then if < k — 2, it follows that
(L', J) = ([z,k = 2], [y, 4])
= ([wq (@), k — 2], [w& (), 4)
and so

(68) (I', J) € BoxStrands(wg) if and only if i < j.

We have four possible subcases, based on the relative values of z and y.
Subcasei:z <y =k — 1.
(I, J)is of type (II), and hence (/, J) € ConditionStrands(Q). Furthermore, note that
([Iv J) = ([z,k = 2], [k — 1,{])

is of type (I), and so in ConditionStrands(Q). The intervals for (I, J) and (7, J) look like
this:

x k—2 x k—1

®---—-—--—--- ® ®---—-—--—--- >0
®---—------ ® *—>e - - - ®
k—1 14 k—1 t

By the inductive hypothesis (66), (I’, J) € BoxStrands(wg). By (68), i < j. Therefore, by
(67), (I,J) € BoxStrands(wy).

Therefore, (1, J) is in both ConditionStrands(Q) and BoxStrands(wg).
Subcaseii: z <y < k — 1.
(I,J) € BoxStrands(wg) <= i< j by (67)
(I', J) € BoxStrands(wg) by (68)
(I',J) € ConditionStrands(Q) by (66)

a;—1 points in the same direction as aj_s

(I,J) € ConditionStrands(Q).

<~
<~
=
<= a,_; points in the same direction as aj_
=
I',J) and (I, J) respectively when (I’, J) and (/, J) are in

The following picture depicts (

ConditionStrands(Q).
x k—2 x E—1
®--—---- o> o --o ®---—--- oo --0o>o
®-->0------ o o -o>0 >0 -0
Yy 14 Yy 14

Subcaseiii: y < z = k — 1.

Pictured below are the intervals [ and J.
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Since y < z and this case assumes a;_; and aj;_; point in the same direction, (I, J) cannot
be of type (III) and is not in ConditionStrands(Q). Since

w(Qk) = Lw(Qk_l) and w(Qk_l)(k -1)=k—-1,
it follows that i = k£ — 1. Since
y=wg () =ws () <k-1,
it follows that i > j, and so by (67)
(I,J) ¢ BoxStrands(wyg).
Therefore, (1, J) is in neither ConditionStrands(Q) nor BoxStrands(wg).
Subcaseiv: y <z <k — 1.
(I,J) € BoxStrands(wg) <= i< j by (67)
(I', J) € BoxStrands(wg) by (68)
(I',J) € ConditionStrands(Q) by (66)
a,_1 points in the opposite direction as aj_s
a,—1 points in the opposite direction as aj_4
(I,J) € ConditionStrands(Q).

rreey

Below are (I'J) and (I, J) respectively, in the case (I’, /), (I, ) € ConditionStrands(Q).

T k—2 T k—1
®--—---- ° ®--—---- oo
o--0<e0------ *—>e - - -* o--0<0------ o—>eo >0 -9
Y 14 Y 14

Case 2: a,_, and a;,_; point in opposite directions.
By definition,
w(Qk) = L(wg_l)w(()k_l)).
Ifx <k-—2,and y <k — 1 it follows that
(1/7 ‘]) = ([l‘, k— 2]7 [:%ED
= (fwg (b =)k =2, [wg ™k = 5),)
and so

(69) (I', J) € BoxStrands(wg) if and only if k — i < k — j if and only if i > j.

Subcasei:z <y =k — 1.
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Since ay_» and a;_; point in opposite directions, (/,.J) ¢ ConditionStrands(Q). The as-
sumption y = k—1implies (I, J) € ConditionStrands(Q). By (66) (I’,.J) € BoxStrands(wyg).
Since x,y < k, we have

z=wd (@) =wd V(k—i)and y = wh () = wS ™V (k - 7).

Thenk —i <k —j,soi> jand (I, J) € BoxStrands(wg), by (67).

Hence (I, J) is neither in ConditionStrands(Q) nor BoxStrands(wy).
Subcaseii: z <y < k — 1.

(I,J) € BoxStrands(wg) <= i < j by (67)

(I', J) & BoxStrands(wg) by (69)
(I', J) ¢ ConditionStrands(Q) by (66)
a,—1 points in the opposite direction as a;_-
a,—1 points in the same direction as aj_;
(I,J) € ConditionStrands(Q).

rreey

Below, we have (I’, J) ¢ ConditionStrands(Q) and (I, J) € ConditionStrands(Q).

T k—2 T k-1

®------ <o --0 - -~ <o --0>0
o--)>0----—- ° o--0)>0<o--0
Y 14 Y 14

x

°
®------ o> <0--—--- °
Y 14

Since Case 2 assumes a;_» and a;_; point in opposite directions, (1, J) is type (II) and so
in ConditionStrands(Q). Now,

k—1=2=wd () =wl (k1)

which implies ¢ = 1. Then j > i, so (I,J) € BoxStrands(wg). So (I,.J) is both in
ConditionStrands(Q) and BoxStrands(wy).

Subcaseiv: y < x < k — 1.
(I,J) € BoxStrands(wg) <= i < j by (67)
<= (I',J) ¢ BoxStrands(wg) by (69)
<= (I',J) ¢ ConditionStrands(Q) by (66)
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<= a,_1 points in the same direction as a;_5
<= a,_1 points the opposite direction as a;_;
<= (I,J) € ConditionStrands(Q).

Pictured below are (I’, J) and (I, J), in the case that (I’, J) ¢ ConditionStrands(Q) and
(I,J) € ConditionStrands(Q).

x k—2 x E—1
®------ ° ®------ oo
o--0>0----—- oo ---—- . o--0>0----—- >0 <o -0
Y l Yy l
Thus, we have BoxStrands(wg) = ConditionStrands(Q). O

Proof of Theorem 1.6.

Two (1) = Z my(n)my(n) (by Proposition 4.3)
(I,J)€EBoxStrands(wg)
= Z mr(n)my(n) (by by Proposition 4.13)
(I,J)EConditionStrands(Q)
= codimg () (by Proposition 4.10)

We conclude by giving our proof of Reineke’s identity for type A quivers.

Proof of Theorem 1.3 (in type A). The map n — ~, defines a bijection from Co(d) to Og(d).
Since Q is type A, there is a bijection between { /i, ..., By } and Z. Furthermore, whenever
I — B;, we have my(n) = mg, (7,]). Then starting from Corollary 1.5, we have

- TWQ ;
R

i=1 \AOeeq(a) 1<i<j<n /™3 (M)
_ Z codime () H
neCo(d) it (@ms, )
N
_ Z codimc (y H
€00 (d) it (D, )
[
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