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ABSTRACT. We present a particular connection between classical partition combinatorics
and the theory of quiver representations. Specifically, we give a bijective proof of an ana-
logue of A. L. Cauchy’s Durfee square identity to multipartitions. We then use this result
to give a new proof of M. Reineke’s identity in the case of quivers Q of Dynkin type A. Our
identity is stated in terms of the lacing diagrams of S. Abeasis–A. Del Fra, which parame-
terize orbits of the representation space of Q for a fixed dimension vector.
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1. INTRODUCTION

The main goal of this paper is to establish a specific connection between classical parti-
tion combinatorics and the theory of quiver representations. Our motivation is to give an
elementary proof for a family of identities introduced by M. Reineke [Rei10]. The iden-
tities are closely related to cluster algebras (see e.g., work of V. V. Fock–A. B. Goncharov
[FG09] and references therein), wall crossing phenomena (see e.g., the paper [DM16] of
B. Davison–S. Meinhardt as well as the references therein), and Donaldson-Thomas in-
variants and Cohomological Hall Algebras (see, e.g., the work of M. Kontsevich–Y. Soibel-
man [KS11]). This paper is intended to be an initial step towards understanding the rich
combinatorics encoded by advanced dilogarithm identities, such as B. Keller’s identities
[Kel11]. We give a new explanation for M. Reineke’s identities in type A via generating
series arguments.

Following the conventions of [Rim13], we define the quantum dilogarithm series

(1) E(z) =
∞∑
k=0

(−z)kqk
2/2

(1− q)(1− q2) . . . (1− qk)
.
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In each term of (1), the denominator may be written more compactly using the q-shifted
factorial,

(q)k = (1− q)(1− q2) · · · (1− qk).

This has an interpretation in terms of partitions; the reciprocal of (q)k is the generating
series for partitions with at most k parts [And84, Theorem 1.1].

There are many interesting identities among quantum dilogarithms. We highlight the
following, which specializes to the pentagon identity of Rogers’ dilogarithm.

Theorem 1.1 ([Sch53] [FV93], [FK94]). Suppose x and y are formal variables so that yx = qxy.
Then

(2) E(x)E(y) = E(y)E(−q1/2xy)E(x).

M. Reineke extended (2) to give a family of identities, one for each Dynkin quiver ([Rei10],
[Kel11]). The quantum pentagon identity corresponds to the quiver which has two ver-
tices connected by a single edge. In the present work, we show that Theorem 1.1 can
actually be proven using the combinatorial tool of Durfee rectangles. In fact, we give a
proof of M. Reineke’s identity in type A by proving related identities using iterated Dur-
fee rectangles on multipartitions. To state these identities, we first give some necessary
background on quivers.

A quiver, Q = (Q0,Q1) is a directed graph with vertex set Q0 and arrows Q1. Through-
out, we will assume Q has finitely many vertices and identify Q0 with [n] = {1, 2, . . . , n}.
For a ∈ Q1, let h(a) be the head of the arrow and t(a) its tail. The Euler form

χQ : Zn × Zn → Z

is defined by

(3) χQ(d1,d2) =
∑
i∈Q0

d1(i)d2(i)−
∑
a∈Q1

d1(t(a))d2(h(a)).

Define
λQ(d1,d2) = χQ(d2,d1)− χQ(d1,d2).

Write N for the set of nonnegative integers. Following [Rim13], the quantum algebra AQ
is generated over Q(q1/2) by

{zd : d ∈ Nn}
with multiplication given by

zd1zd2 = −q1/2λQ(d1,d2)zd1+d2 .

Reineke’s identities are among quantum dilogarithms evaluated on elements of AQ. To
state them, we require some background regarding quiver representations. We briefly
recall the relevant facts here. For a self contained introduction to quiver representations,
see [Bri08]. Throughout, we take C to be our ground field. A representation V of Q is an
assignment of a vector space Vi to each i ∈ Q0 and a linear transformation

Va : Vt(a) → Vh(a)

for each arrow a ∈ Q1. Each representation V of Q has an associated dimension vector

dV = (dV(1), . . . ,dV(n)) ∈ Nn, where dV(i) = dimVi.
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A morphism T : V → W is a collection of linear transformations (Ti : Vi → Wi)i∈Q0

such that
Th(a)Va = WaTt(a) for every arrow a ∈ Q1.

If each of the Ti’s are isomorphisms, then V and W are isomorphic representations.
A representation is simple if it has no proper sub-representation. A representation is in-

decomposable if it does not admit a nontrivial decomposition as a direct sum of two rep-
resentations. A quiver is Dynkin if its underlying undirected graph is a Dynkin diagram
of type ADE. The representation theory of Dynkin quivers is particularly well behaved;
if Q is Dynkin, it has finitely many isomorphism classes of simple and indecomposable
representations. Furthermore, these classes are uniquely determined by their dimension
vectors.

Theorem 1.2 ([Rei10]). If Q is Dynkin, there exists an ordering on the dimension vectors for the
simple representations α1, . . . , αn and the indecomposable representations β1, . . . , βN so that

(4) E(zα1) · · ·E(zαn) = E(zβ1) · · ·E(zβN
).

Proving Theorem 1.2 is equivalent to showing that for every d ∈ Nn the coefficient of
zd is equal on both sides of the expression (4). This calculation of these coefficients is
carried out in [Rim13]. Here, the identity is restated in terms of the geometry of quiver
representations.

Let Mat(m,n) be the space of m× n matrices. The representation space is

RepQ(d) :=
⊕
a∈Q1

Mat(d(h(a)),d(t(a)).

A matrix in Mat(m,n) determines a map from Cn to Cm. As such, points of RepQ(d) deter-
mine d dimensional representations of Q. Conversely, any d dimensional representation
is isomorphic to some V ∈ RepQ(d). Let

GLQ(d) :=
∏
x∈Q0

GL(d(x)).

GLQ(d) acts on RepQ(d) by base change. Write OQ(d) for the set of orbits in RepQ(d).
Given γ ∈ OQ(d), let codimC(γ) denote the complex codimension of γ in RepQ(d). Pick
any representation V ∈ γ. Then by complete reducibility,

V ∼=
N⊕
i=1

V
⊕mβi
βi

,

where Vβi
is an indecomposable representation so that dim(Vβi

) = βi. In fact, any V′ ∈ γ
has this same irreducible decomposition; the mβi

’s are constant on orbits. So we define
mβi

(γ) to be the multiplicity of Vβi
in the irreducible decomposition of any V ∈ γ.

Theorem 1.3 ([Rim13]). For each dimension vector d = (d(1),d(2), . . . ,d(n)),

(5)
n∏

i=1

1

(q)d(i)
=

∑
γ∈OQ(d)

qcodimC(γ)
N∏
i=1

1

(q)mβi
(γ)

We now restrict our focus to a special case. Assume Q is a type A quiver, i.e. its under-
lying graph is just a path on n vertices. We label the vertices from left to right with the set
{1, 2, . . . , n}. A lacing diagram [ADF80] L is a graph so that:
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(1) the vertices are arranged in n columns labeled 1, 2, . . . , n (left to right) and
(2) the edges between adjacent columns form a partial matching.

A strand is a connected component of L. A strand is of type [i, j] if it starts in column i
and ends in column j. Write

(6) m[i,j](L) = #{strands of type [i, j] in L}.
There is an explicit dictionary between representations of Q and lacing diagrams. Each
lacing diagram may be interpreted as a sequence of partial permutation matrices. This
sequence defines a representation VL ∈ RepQ(d). We do not give the details here, as we are
not concerned with the representations themselves, but merely their dimension vectors.
See [KMS06] for the equioriented case and [BR07] for quivers of arbitrary orientation.

Let L[i,j] be the lacing diagram that has a single strand of type [i, j]. Define V[i,j] := VL[i,j]
.

Each V[i,j] is indecomposable. In fact, up to isomorphism, these are the only indecom-
posable representations of Q. This is a consequence of Gabriel’s theorem. The simple
representations are the special case V[i,i].

The strands in L immediately reveal the irreducible decomposition of VL:

(7) VL ∼=
⊕

1≤i≤j≤n

V
⊕m[i,j](L)
[i,j] .

We associate a dimension vector to L. Write

dim(L) = (dL(1), . . . ,dL(n))

where dL(k) is the number of vertices in column k of L. Equivalently, by counting the
number of strands which use a vertex of column k, we have

(8) dL(k) =
∑

1≤i≤k≤j≤n

m[i,j](L).

Translating from lacing diagrams to representations, we have dim(L) = dim(VL).

Two lacing diagrams are equivalent if they only differ by reordering of vertices within
columns. For example, the lacing diagrams pictured above are all equivalent. Alterna-
tively, we may say

[L] = [L′] if and only if m[i,j](L) = m[i,j](L′) for all 1 ≤ i ≤ j ≤ n.

Therefore, we will write m[i,j]([L]) := m[i,j](L). Using (7), it follows that isomorphism
classes of representations are in bijection with equivalence classes of lacing diagrams:

VL ∼= VL′ if and only if [L] = [L′].

Let
CQ(d) = {[L] : dim(L) = d}

denote the set of equivalence classes of d dimensional lacing diagrams. Given
η = [L] ∈ CQ(d), write γη ∈ OQ(d) for the orbit which contains VL. The map η 7→ γη
defines a bijection from CQ(d) → OQ(d).

4



We now associate certain statistics to η. Set parameters

(9) ski (η) = m[i,k−1](η), and

(10) tkj (η) = m[j,k](η) +m[j,k+1](η) + . . .+m[j,n](η).

Let Si denote the ith symmetric group. Fix a sequence of permutations

(11) w = (w(1), . . . , w(n)), where w(i) ∈ Si and w(i)(i) = i.

The partition combinatorics behind Theorem 1.4 below suggests the Durfee statistic:

(12) rw(η) =
∑

1≤i<j≤k≤n

skw(k)(i)(η)t
k
w(k)(j)(η).

With these definitions, we now state our main theorem.

Theorem 1.4 (Quiver Durfee Identity). For d = (d(1), . . . ,d(n)) and w as in (11),

(13)
n∏

k=1

1

(q)d(k)
=

∑
η∈CQ(d)

qrw(η)

n∏
k=1

1

(q)tkk(η)

k−1∏
i=1

[
tki (η) + ski (η)

ski (η)

]
q

.

Here [
i+ j

j

]
q

=
(q)i+j

(q)i(q)j

is the q-binomial coefficient, the generating series for partitions with at most i rows and j
columns [And84, Theorem 3.1]. Indeed, we will show in Lemma 3.1 that each side of (13)
has an interpretation as the generating series of a set of multipartitions. By doing some
algebraic cancellations, Theorem 1.4 implies the following:

Corollary 1.5.

(14)
n∏

i=1

1

(q)d(i)
=

∑
η∈CQ(d)

qrw(η)
∏

1≤i≤j≤n

1

(q)m[i,j](η)

This is our link to Reineke’s identity. In Definition 4.1, we assign each type A quiver a
sequence of permutations wQ. We then show this choice satisfies

Theorem 1.6.
rwQ(η) = codimC(γη).

For type A, Theorem 1.3 follows as a consequence of Corollary 1.5 and Theorem 1.6.
The paper is organized as follows. In Section 2, we recall some background on gen-

erating series. In Section 3, we define sets S and T so that the left hand side of (13) is
a generating series for S and the right hand side is a generating series for T . We give
an explicit bijection between S and T , thus proving Theorem 1.4. By simple algebraic
cancellations, we prove Corollary 1.5. Finally, in Section 4, we prove Theorem 1.6, thus
completing our proof.
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2. GENERATING SERIES FOR PARTITIONS

First we recall some background on generating series. Let A be a set equipped with a
weight function

wtA : A → N.
Suppose

an := |a ∈ A : wt(a) = n| < ∞
for each n. Then the generating series for A is

(15) G(A, q) :=
∑
a∈A

qwtA(a).

Equivalently, by collecting like terms,

(16) G(A, q) =
∞∑
i=0

aiq
i.

Generating series are well behaved under taking products and disjoint unions of sets.
Define

wtA×B(a, b) = wtA(a) + wtB(b).

Then

(17) G(A×B, q) = G(A, q)G(B, q).

For disjoint unions, the generating series is additive:

(18) G(A ⊔B, q) = G(A, q) +G(B, q).

Here, we focus on generating series for multipartitions. A partition is a finite sequence
of weakly decreasing, nonnegative integers

λ = (λ1 ≥ λ2 ≥ . . . ≥ λℓ > 0).

The λi are the parts of λ. Define the length of λ to be ℓ(λ) = ℓ, the number of positive
parts of λ. We represent λ visually by its Young diagram, a collection of boxes arranged
in rows so that the number of boxes in row i equals λi. Each partition has an associated
weight

(19) wt(λ) = |λ| =
ℓ(λ)∑
i=1

λi.

Equivalently, wt(λ) is the total number of boxes in the Young diagram of λ. A multiparti-
tion is simply a tuple of partitions λ = (λ(i))i∈I . We weight λ by defining

wt(λ) =
∑
i∈I

wt(λ(i)).

Let pk = {λ : wt(λ) = k}. Famously due to L. Euler, the generating series for the set of all
partitions is

(20)
∞∑
k=0

pkq
k =

∞∏
i=1

1

1− qi
.
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Throughout, we will be interested in subsets of partitions which have constraints placed
on the total number of rows or columns in their Young diagram. Let

P(i, j) = {λ : ℓ(λ) ≤ i and λ1 ≤ j}.

Here we allow for i or j to be infinite. When i and j are finite,

(21) G(P(i, j), q) =

[
i+ j

i

]
q

.

The generating series for P(∞, k), as well as P(k,∞), is obtained by truncating the prod-
uct in (20):

(22)
1

(q)k
=

k∏
i=1

1

1− qi
.

Write i × j for the rectangular partition with i parts of size j and let R(i, j) = {i × j}.
Immediately from (15),

(23) G(R(i, j), q) = qij.

The following identity is due to Euler:

(24)
1

(q)∞
=

∞∑
j=0

qj
2

((q)j)2
.

We sketch a textbook bijective proof. The Durfee square D(λ) is the largest j × j square
partition that fits inside λ. Draw D(λ) inside of λ so that it is justified against the top
left corner. By cutting λ along the boundary of D(λ), we may divide λ into three smaller
partitions, as pictured below.

7→

This decomposition defines a bijection:

P(∞,∞)
∼−→

∞∪
j=0

R(j, j)× P(j,∞)× P(∞, j).

See [And84, pp 27-28] for details and related identities.
The present work uses a generalization of the Durfee square. Fix r ∈ Z. The Durfee

rectangle D(λ, r) is the largest i× (i+ r) rectangular partition contained in λ. By conven-
tion, we say any 0-width or 0-height rectangle is contained in λ. Equivalently, D(λ, r) is
the rectangle with top left corner positioned at (0, 0) and bottom right corner where the
line x+ y = r intersects the (infinite) boundary line of the partition.

Example 2.1. Let λ = (3, 3, 2, 2, 1). Pictured below are the Durfee rectangles D(λ, r) for
r = −1, 0, 4.
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D(λ,−1) D(λ, 0) D(λ, 4)

Notice that D(λ, 4) = 0× 4 rectangle since the line x+ y = 4 intersects the boundary of λ
at the point (4, 0). �

Decomposing λ using D(λ, r) gives a proof of the following identity of B. Gordon and
L. Houten [GH68, pp. 91-92]:

(25)
1

(q)∞
=

∞∑
i=max{0,−r}

qi(r+i)

(q)i(q)r+i

.

The A2 case of Theorem 1.4 can be proved using a truncated version of (25). We sketch the
explicit connection here. Fix r ≤ k. We can split λ ∈ P(∞, k) into three partitions using
D(λ, r). This defines a bijection

P(∞, k)
∼−→

k−r∪
i=max{0,−r}

R(i, r + i)×P(∞, r + i)× P(i, k − (r + i))

which corresponds to the following identity of generating series:

(26)
1

(q)k
=

k−r∑
i=max{0,−r}

qi(r+i)

(q)r+i

[
k − (r + i) + i

i

]
q

.

We may rephrase (26) in the language of lacing diagrams. Set n = 2 and fix a dimension
vector d = (k − r, k). Choose a d-dimensional lacing diagram L such that m[1,1](L) = i.
Since m[1,1](L)+m[1,2](L) = k−r, necessarily m[1,2](L) = k−r−i. Similarly, m[2,2](L) = r+i.

We reindex the sum in (26) and obtain

(27)
1

(q)d(2)
=

∑
η∈CQ(d)

qm[1,1](η)m[2,2](η)

(q)m[2,2](η)

[
m[1,1](η) +m[2,2](η)

m[1,1](η)

]
q

.

For any η, we have t11(η) = d(1). Dividing both sides of (27) by (q)d(1) and using the
equations (9) and (10) gives

(28)
1

(q)d(1)(q)d(2)
=

1

(q)d(1)

∑
η∈CQ(d)

qs
2
1(η)t

2
2(η)

(q)t22(η)

[
s21(η) + t22(η)

s21(η)

]
q

.

We have d(1) = t11(η) for any η ∈ CQ(d). So we obtain

(29)
1

(q)d(1)(q)d(2)
=

∑
η∈CQ(d)

qs
2
1(η)t

2
2(η)

(q)t11(η)(q)t22(η)

[
s21(η) + t22(η)

s21(η)

]
q

.

This is the n = 2 case of Theorem 1.4.
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For n > 2, the proof of Theorem 1.4 uses multiple Durfee rectangles. This technique is
similar to the Durfee dissections of A. Schilling [SW98]. See also the work of C. Boulet on
successive Durfee rectangles [Bou10]. We also note the resemblance to the Durfee systems
of P. Bouwknegt [Bou02]. Also see the references to loc. cit. for other work on general-
ized Durfee square identities. Our main point of difference is that these identities do not
directly concern lacing diagrams.

3. PROOF OF THEOREM 1.4

Throughout this section, fix a dimension vector d = (d(1), . . .d(n)) and a sequence
permutations as in (11):

w = (w(1), . . . , w(n)) with w(i) ∈ Si and wi(i) = i.

Define

(30) S = P(∞,d(1))× . . .× P(∞,d(n)).

Let

(31) R(η) = {µ = (µk
i,j) : µ

k
i,j ∈ R(skw(k)(i)(η), t

k
w(k)(j)(η)), 1 ≤ i < j ≤ k ≤ n}

which consists of a single element, a tuple of rectangles. For ease of notation, we write
skk(η) = ∞ for each k. Let

(32) P (η) = {ν = (νk
i ) : ν

k
i ∈ P(skw(k)(i)(η), t

k
w(k)(i)(η)), 1 ≤ i ≤ k ≤ n}.

Define

(33) T (η) = R(η)× P (η).

Finally, we let

(34) T =
∪

η∈CQ(d)

T (η).

Weight λ = (λ(1), . . . , λ(n)) ∈ S by defining

wtS(λ) =
n∑

k=1

|λ(k)|.

Assign (µ,ν) ∈ T the weight

wtT (µ,ν) =
∑

1≤i<j<k≤n

|µk
i,j|+

∑
1≤i≤k≤n

|νk
i |.

Lemma 3.1. (1) The generating series for S is

G(S, q) =
n∏

k=1

1

(q)d(k)
.

(2) The generating series for T is

G(T, q) =
∑

η∈CQ(d)

qrw(η)

n∏
k=1

1

(q)tkk(η)

k−1∏
i=1

[
tki (η) + ski (η)

ski (η)

]
q

.
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Proof. (1) By (30),
S = P(∞,d(1))× . . .× P(∞,d(n)).

Then,

G(S, q) =
n∏

k=1

G(P(∞,d(k)), q) (by (17))

=
n∏

i=1

1

(q)d(k)
(by (22))

(2) First, observe that

G(R(η), q) =
∏

1≤i<j≤k≤n

G(R(skw(k)(i)(η), t
k
w(k)(j)(η)), q) (by (17) and (31))

=
∏

1≤i<j≤k≤n

q
sk
w(k)(i)

(η)tk
w(k)(j)

(η)
(by (23))

= qrw(η) (by (12))

Now,

G(P (η), q) =
∏

1≤i≤k≤n

G(P(skw(k)(i)(η), t
k
w(k)(i)(η)), q) (by (32))

=
∏

1≤i≤k≤n

G(P(ski (η), t
k
i (η)), q) (by permuting indices)

=
n∏

k=1

G(P(skk(η), t
k
k(η)), q)

k−1∏
i=1

G(P(ski (η), t
k
i (η)), q)

=
n∏

k=1

1

(q)tkk(η)

k−1∏
i=1

[
tki (η) + ski (η)

ski (η)

]
q

(by (22) and (21))

Therefore,

G(T, q) =
∑

η∈CQ(d)

G(T (η), q) (by (18) and (34))

=
∑

η∈CQ(d)

G(R(η)× P (η), q) (by (33))

=
∑

η∈CQ(d)

G(R(η), q)G(P (η), q) (by (17))

=
∑

η∈CQ(d)

qrw(η)

n∏
k=1

1

(q)tkk(η)

k−1∏
i=1

[
tki (η) + ski (η)

ski (η)

]
q

�

We now define the general “cutting” operation we use to map from S to T . Fix two
weakly increasing sequences of nonnegative integers

m = (m0 ≤ m1 ≤ . . . ≤ mkm) and n = (n0 ≤ n1 ≤ . . . ≤ nkn).
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Given a partition λ, let λ(i,j)(m,n) be the partition formed by restricting the Young dia-
gram of λ to rows [mi−1+1,mi] and columns [nj−1+1, nj]. Here, we allow for infinite mkm

and nkn . Immediately from the definition,

(35) λ(i,j)(m,n) ∈ P(mi −mi−1, nj − nj−1).

Furthermore,

(36) λ(i,j)(m,n) ∈ R(mi −mi−1, nj − nj−1)

if and only if the Young diagram of λ has a box in position (mi, nj).
The following lemma describes how the size of D(λ, r) varies as r changes.

Lemma 3.2. Fix λ and suppose r′ ≤ r. If D(λ, r) = s× (s+ r) and D(λ, r′) = s′× (s′+ r′) then

(1) s ≤ s′ and
(2) s′ + r′ ≤ s+ r.

Proof. (1) Suppose s+r′ < 0. We have 0 ≤ s′+r′, since it is the width of D(λ, r′). Therefore,
s ≤ s′. Otherwise, if s+ r′ ≥ 0, the rectangle

s× (s+ r′) ⊆ s× (s+ r) ⊆ λ.

Since D(λ, r′) = s′ × (s′ + r′), we have s ≤ s′.
(2) If s = s′ then

s′ + r′ ≤ s′ + r = s+ r.

Then suppose s < s′. Since s+ 1 ≤ s′ and

D(λ, r′) = s′ × (r′ + s′) ⊆ λ,

we have
(s+ 1)× (r′ + s′) ⊆ λ.

Since D(λ, r) = s× (s+ r), by definition, (s+ 1)× (s+ 1 + r) ̸⊆ λ. And so

s′ + r′ ≤ λs+1 < s+ 1 + r,

i.e. s′ + r′ ≤ s+ r. �

Define a map Ψk : T → P(∞,d(k)) by “gluing” the partitions of T with superscript k
as indicated in Figure 1. Then let Ψ = Ψ1 × . . .×Ψn.

The proposed inverse Φ : S → T is defined as follows. We will recursively define
parameters

tkj (λ) for 1 ≤ j ≤ k ≤ n

by induction on k. Our initial condition is that t11(λ) = d(1). Assume the sequence

tk−1
1 (λ), . . . , tk−1

k−1(λ)

has been previously determined and that

tk−1
j (λ) ≥ 0 for all 1 ≤ j ≤ k − 1.

Let

(37) δki (λ) = D(λ(k),d(k)−
i∑

ℓ=1

tk−1
w(k)(ℓ)

(λ)) for i = 0, . . . , k − 1.

11



tk
w(k)(k)

tk
w(k)(k−1)

tk
w(k)(2)

tk
w(k)(1)

sk
w(k)(1)

sk
w(k)(2)

sk
w(k)(k−1)

· · ·

...

µk
1,k µk

1,k−1 µk
1,2

µk
2,k µk

2,k−1

µk
k−1,k ν

k
k−1

νk
1

νk
2

νk
k

FIGURE 1. Description of the map Ψk : T → S.

Note in particular that δk0(λ) = 0× d(k) for all 1 ≤ k ≤ n. Suppose

(38) δki (λ) = aki (λ)× bki (λ) rectangle.

For ease of indexing, write bkk(λ) = 0. Let

(39) tkw(k)(i)(λ) = bki−1(λ)− bki (λ) for i = 1, . . . , k

We also define

(40) skw(k)(i)(λ) = aki (λ)− aki−1(λ) for i = 1, . . . , k − 1

By the hypothesis, tk−1
j (λ) ≥ 0 for all 1 ≤ j ≤ k − 1. Therefore,

d(k)−
i∑

ℓ=1

tk−1
w(k)(ℓ)

(λ)) ≤ d(k)−
i−1∑
ℓ=1

tk−1
w(k)(ℓ)

(λ)) for all i’s .

Then we may apply Lemma 3.2 to the δki ’s, to obtain sequences

(41) ak(λ) = (ak0(λ) ≤ ak1(λ) ≤ · · · ≤ akk−1(λ) ≤ akk(λ))

with akk(λ) = ∞ and

(42) bk(λ) = (bkk(λ) ≤ bkk−1(λ) ≤ · · · ≤ bk1(λ) ≤ bk0(λ)).

By (41) and (42), the ski (λ)’s and tkj (λ)’s are all nonnegative. Continue until k = n.

We then map λ 7→ (µ,ν) where

µk
i,j = λ(k)(ak(λ),bk(λ))i,k−j+1

12



and

νk
i = λ(k)(ak(λ),bk(λ))i,k−i+1.

In the proof, we will justify this map is well defined, i.e. (µ,ν) ∈ T . This involves
finding a class η(λ) ∈ CQ(d) so that (µ,ν) ∈ T (η(λ)). We define our candidate now.

Definition 3.3. Let η(λ) be the equivalence class of a lacing diagram uniquely defined by:

• m[i,j](η(λ)) = sj+1
i (λ) for 1 ≤ i ≤ j ≤ n− 1;

• m[i,n](η(λ)) = tni (λ) for i = 1 . . . n.

Since each m[i,j](η(λ)) ≥ 0, we have that η(λ) is well defined.

Example 3.4. Assume w = (1, 12, 123). Fix a dimension vector d = (3, 6, 5) and partitions

λ(1) = (2, 1), λ(2) = (5, 1), and λ(3) = (3, 3, 2, 1, 1).

t11 t21t22

s21

t33 t32 t31

s32

Then δ21(λ) = D(λ(2), 6− 3) = 1× 4 and so t21(λ) = 2, and t22(λ) = 4. From this, we have

δ31(λ) = D(λ(3), 5− 2) = 0× 3 and δ32(λ) = D(λ(3), 5− 2− 4) = 3× 2.

So t31(λ) = 2, t32(λ) = 1, and t33(λ) = 2. This corresponds to η(λ) = [L] where

L =

Alternatively, suppose w = (1, 12, 213). Keeping the same d and λ(i)’s gives

t11 t21t22

s21

t33 t31 t32

s31

s32

As before, δ21(λ) = D(λ(2), 6− 3) = 1× 4. Consequently,

δ31(λ) = D(λ(3), 5− 4) = 2× 3 and δ32(λ) = D(λ(3), 5− 4− 2) = 3× 2.

This yields η(λ) = [L′], where

13



L′ =

�

Immediately from the definitions (9) and (10), we have

(43) tki (η) + ski (η) = tk−1
i (η).

for any η ∈ CQ(d). We show the parameters defined in (39) and (40) satisfy the same
recursion.

Lemma 3.5. tk
w(k)(i)

(λ) + sk
w(k)(i)

(λ) = tk−1
w(k)(i)

(λ) for 1 ≤ i < k ≤ n.

Proof. By (38) and the definition of a Durfee rectangle,

(44) bki (λ)− aki (λ) = d(k)−
i∑

ℓ=1

tk−1
w(k)(ℓ)

(λ).

Applying (39) and (40),

tkw(k)(i)(λ) + skw(k)(i)(λ) = bki−1(λ)− bki (λ) + aki (λ)− aki−1(λ)

= (bki−1(λ)− aki−1(λ))− (bki (λ)− aki (λ))

=

(
d(k)−

i−1∑
ℓ=1

tk−1
w(k)(ℓ)

(λ)

)
−

(
d(k)−

i∑
ℓ=1

tk−1
w(k)(ℓ)

(λ)

)
= tk−1

w(k)(i)
(λ). �

The next lemma collects various properties η(λ). In particular, it justifies our choice in
notation for ski (λ) and tkj (λ).

Lemma 3.6. (1) ski (η(λ)) = ski (λ)
(2) tkj (η(λ)) = tkj (λ)
(3) η(λ)) ∈ CQ(d).

Proof. (1) This is immediate from Definition 3.3.
(2) By Lemma 3.5,

tki (λ) = tk+1
i (λ) + sk+1

i (λ).

Iterating, we obtain

tki (λ) = tk+2
i (λ) + sk+2

i (λ) + sk+1
i (λ)

= . . .

= tni (λ) +
n∑

ℓ=k+1

sℓi(λ)

= tni (η(λ)) +
n∑

ℓ=k+1

sℓi(η(λ)) (by Definition 3.3)

14



= m[i,n](η(λ)) +
n∑

ℓ=k+1

m[i,ℓ−1](η(λ)) (by (10) and (9))

= tki (η(λ)) (by (10)).

(3) For each k,

d(k) = bk0(λ)− bkk(λ)

=
k∑

i=1

bki−1(λ)− bki (λ) (by (39))

=
k∑

i=1

tkw(k)(i)(λ)

=
k∑

i=1

tki (λ) (permute the terms of the sum)

=
k∑

i=1

tki (η(λ)) (by part (2))

=
∑

1≤i≤k≤j≤n

m[i,j](η(λ)) (by (10)

By (8), we have η(λ) ∈ CQ(d). �
Theorem 3.7. Ψ : T → S is a weight-preserving bijection, i.e., wtT (µ,ν) = wtS(Ψ(µ,ν)).

Proof. Ψ is weight-preserving: That wtT (µ,ν)) = wtS(Ψ(µ,ν)) is clear since Ψ preserves the
total number of boxes.
Ψ is well-defined: If dim(η) = (d(1), . . . ,d(n)) then

d(k) =
k∑

i=1

n∑
j=k

m[i,j](η) =
k∑

i=1

tki (η) for k = 1, . . . , n.

Therefore, Ψk(µ,ν) has parts of size at most d(k) for each k, i.e. Ψk(µ,ν) ∈ P(∞,d(k))
for each k. Therefore, Ψ(µ,ν) ∈ S.
Φ is well-defined:

By (35),

λ(k)(ak(λ),bk(λ))i,k−j+1 ∈ P(aki (λ)− aki−1(λ), b
k
j−1(λ)− bkj (λ)).

By (40) and (39),

sw(k)(i)(η(λ)) = aki (λ)− aki−1(λ) and tkw(k)(j)(η(λ)) = bkj−1(λ)− bkj (λ).

Therefore,
λ(k)(ak(λ),bk(λ))i,k−j+1 ∈ P(skw(k)(i)(η(λ)), t

k
w(k)(j)(η(λ))).

By definition,
νk
i = λ(k)(ak(λ),bk(λ))i,k−i+1

15



and so
νk
i ∈ P (skw(k)(i)(η(λ)), t

k
w(k)(i)(η(λ)))

as desired.
Similarly, by (35),

µk
i,j = λ(k)(ak(λ),bk(λ))i,k−j+1

and so
µk
i,j ∈ P(sw(k)(i)(η(λ)), t

k
w(k)(j)(η(λ))).

Since δki (λ) ⊂ λ(k), the box (aki (λ), b
k
i (λ)) ∈ λ(k). Likewise, since δkk−j+1(λ) ⊂ λ(k), we have

(akk−j+1(λ), b
k
k−j+1(λ)) ∈ λ(k).

Therefore, (aki (λ), bkk−j+1(λ)) ∈ λ(k) So, in fact, by (36),

µk
i,j ∈ R(sw(k)(i)(η(λ)), t

k
w(k)(j)(η(λ))).

Therefore, Φ(λ) ∈ T (η(λ)) ⊆ T .
Ψ ◦ Φ = Id:

Φ acts by cutting the λ(k)’s into various pieces and Ψ glues these shapes together into
their original configurations. So for every λ ∈ S, we have Ψ(Φ(λ)) = λ.
Φ ◦Ψ = Id:

Fix (µ,ν) ∈ T . Then in particular, (µ,ν) ∈ T (η) for some η ∈ CQ(d). Let λ := Ψ(µ,ν).
We must argue η = η(λ). If so, Φ(Ψ(µ,ν)) = (µ,ν).

Since (µ,ν) ∈ T (η), each Ψk(µ,ν) contains a rectangle

(45) ϵkj =

(
j∑

i=1

skw(k)(i)(η)

)
×

(
k∑

i=j+1

tkw(k)(i)(η)

)
for all 1 ≤ j < k as in Figure 1.

By definition, dim(η) = d. Then it follows

k∑
i=j+1

tkw(k)(i)(η) = d(k)−

(
j∑

i=1

tkw(k)(i)(η)

)
.

As in (43), tki (η) + ski (η) = tk−1
i (η). So substituting we have

(46)
k∑

i=j+1

tkw(k)(i)(η) = d(k)−
j∑

i=1

tk−1
wk(i)

(η) +

j∑
i=1

skw(k)(i)(η).

Substitution of (46) into (45) yields

ϵkj = s× (s+ d(k)−
j∑

i=1

tk−1
wk(i)

(η))

contained in λ(k). Here, s =
∑j

i=1 s
k
i (η). In particular, by construction, the bottom right

corner of ϵkj intersects the boundary of λ(k) (see Figure 1), i.e. s is the maximum value for
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which ϵkj ⊆ λ(k). So by the definition of a Durfee rectangle,

ϵkj = D(λ(k),d(k)−
j∑

i=1

tk−1
wk(i)

(η)).

By (37) and Claim 3.6 part (2),

δkj (λ) = D(λ(k),d(k)−
j∑

i=1

tk−1
wk(i)

(η(λ)).

We seek to show δkj (λ) = ϵkj for all 1 ≤ j < k ≤ n. Our argument is by induction on k.
By definition, t11(η) = d(1) = t11(η(λ)). Then

δ21(λ) = D(λ(2),d(2)− t11(η))

= D(λ(2),d(2)− t11(η(λ))

= ϵ21,

so the Durfee rectangles agree. Assume δk−1
j (λ) = ϵk−1

j for all 1 ≤ j < k − 1. Then in
particular, tk−1

i (η) = tk−1
i (η(λ)) for all 1 ≤ i ≤ k − 1.

(47)
j∑

i=1

tk−1
wk(i)

(η) =

j∑
i=1

tk−1
wk(i)

(η(λ)),

it follows that δkj = ϵkj since both are Durfee rectangles defined by the same parameter.
Hence, δkj = ϵkj . Therefore,

ski (η) = ski (η(λ)) for all 1 ≤ i < k ≤ n

and
tki (η) = tki (η(λ)) for all 1 ≤ i ≤ k ≤ n.

Hence η = η(λ). �

We now conclude the proof of Theorem 1.4.

Proof. By Theorem 3.7, S and T are in weight preserving bijection. Therefore,

G(S, q) = G(T, q).

Applying Lemma 3.1 gives the result. �

Example 3.8. Let n = 3 and d = (1, 2, 1) and w = (1, 12, 123). Then

rw(η) = (s21(η)t
2
2(η)) + (s31(η)t

3
2(η) + s31(η)t

3
3(η) + s32(η)t

3
3(η))

and

G(P (η), q) =
1

(q)t11(η)

1

(q)t22(η)

[
t21(η) + s21(η)

s1(η)2

]
q

1

(q)t33(η)

[
t31(η) + s31(η)

s31(η)

]
q

[
t32(η) + s32(η)

s32(η)

]
q

.

The table below gives the equivalence classes for d = (1, 2, 1) and their corresponding
terms on the right hand side of (13).
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η = [L] (skj (η)) (tkj (η)) G(T (η), q)[ ] 2 1 j/k
1 2

2 0 3

3 2 1 j/k
1 1

2 0 2
1 0 0 3

q4
(

1
(q)1

)(
1

(q)2

)(
1

(q)1

)
= q4

(1−q)3(1−q2)

[ ] 2 1 j/k
0 2

1 1 3

3 2 1 j/k
1 1

1 1 2
1 0 0 3

q2
(

1
(q)1

)(
1

(q)1

)(
1

(q)1

)
= q2

(1−q)3

[ ] 2 1 j/k
1 2

1 0 3

3 2 1 j/k
1 1

2 0 2
0 1 0 3

q2
(

1
(q)1

)(
1

(q)2

)([
2
1

]
q

)
= q2

(1−q)3

[ ] 2 1 j/k
0 2

0 1 3

3 2 1 j/k
1 1

1 1 2
0 1 0 3

q
(

1
(q)1

)(
1

(q)1

)
= q

(1−q)2

[ ] 2 1 j/k
0 2

1 0 3

3 2 1 j/k
1 1

1 1 2
0 0 1 3

(
1

(q)1

)(
1

(q)1

)
= 1

(1−q)2

We then verify,

G(T, q) =
q4

(1− q)3(1− q2)
+

q2

(1− q)3
+

q2

(1− q)3
+

q

(1− q)2
+

1

(1− q)2

=
1

(1− q)3(1− q2)
(q4 + 2q2(1− q2) + q(1− q)(1− q2) + (1− q)(1− q2))

=
1

(q)1(q)2(q)1
= G(S, q).

�

We now give the proof of Corollary 1.5.

Proof. By (43),

(48) tki (η) + ski (η) = tk−1
i (η).

Furthermore by (9) and (10),

ski (η) = m[i,k−1](η) and tni (η) = m[i,n](η).

Thus,
n∏

k=1

1

(q)tkk(η)

k−1∏
i=1

[
tki (η) + ski (η)

ski (η)

]
q

=
n∏

k=1

1

(q)tkk(η)

k−1∏
i=1

(q)tki (η)+ski (η)

(q)tki (η)(q)ski (η)

=
n∏

k=1

1

(q)tkk(η)

k−1∏
i=1

(q)tk−1
i (η)

(q)tki (η)(q)ski (η)
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=

(
n∏

k=1

1

(q)tkk(η)

k−1∏
i=1

(q)tk−1
i (η)

(q)tki (η)

)(
n∏

k=1

k−1∏
i=1

1

(q)ski (η)

)

=

(
n∏

k=1

k∏
i=1

1

(q)tki (η)

)(
n∏

k=2

k−1∏
i=1

(q)tk−1
i (η)

)(
n∏

k=1

k−1∏
i=1

1

(q)ski (η)

)

=

(
n∏

k=1

k∏
i=1

1

(q)tki (η)

)(
n−1∏
k=1

k∏
i=1

(q)tki (η)

)(
n∏

k=1

k−1∏
i=1

1

(q)ski (η)

)

=

(
n∏

i=1

1

(q)tni (η)

)(
n∏

k=1

k−1∏
i=1

1

(q)ski (η)

)

=

(
n∏

i=1

1

(q)m[i,n](η)

)(
n∏

k=1

k−1∏
i=1

1

(q)m[i,k−1](η)

)

=
∏

1≤i≤j≤n

1

(q)m[i,j](η)

. �

The proof of Theorem 3.7 implies an enriched form of Theorem 1.4. Let

(a; q)k = (1− a)(1− aq)(1− aq2) · · · (1− aqk−1).

For η ∈ CQ(d), let uj(η) be the number of strands that terminate at column j in some
(equivalently any) lace diagram L ∈ η. That is,

(49) uj(η) =

j∑
i=1

sj+1
i (η).

Corollary 3.9 (of Theorem 3.7).

(50)
n∏

k=1

1

(qz; q)d(k)
=

∑
η∈CQ(d)

qrw(η)

n∏
k=1

zuk−1(η)
1

(qz; q)tkk(η)

k−1∏
i=1

[
tki (η) + ski (η)

ski (η)

]
q

.

Proof. The lefthand side of (50) is the generating series for S with respect to the weight
that uses q to mark the number of boxes and z to mark length of the partitions involved.
Now, suppose λ = (λ(1), . . . , λ(n)) ∈ S. Under the indicated decomposition in Figure 1,

ℓ(λ(k)) = ℓ(νk
k ) +

k−1∑
i=1

skw(k)(i)(η(λ)) = ℓ(νk
k ) + uk−1(η(λ)),

where the second equality holds by (49) and reordering terms. The corollary follows
immediately from this and Theorem 3.7 combined. �

Theorem 1.4 is the z = 1 case of Corollary 3.9. By analysis as in Section 2, we obtain as
a special case this Durfee rectangle identity:

1

(qz; q)k
=

k−r∑
i=max{0,−r}

ziqi(r+i)

(qz; q)r+i

[
k − (r + i) + i

i

]
q

.

From Corollary 3.9 one can deduce an enriched form of Theorem 1.3.
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4. PROOF OF THEOREM 1.6

Assume Q is a type A quiver. Label its vertices from left to right with the numbers
1, 2, . . . , n. Write ai for the arrow whose left endpoint is vertex i. Let I be the set of
intervals in Q, i.e.

I = {[i, j] : i ≤ j and i, j ∈ [n]}.
We associate a sequence of permutations to Q as follows:

Definition 4.1. Let w(1)
Q = 1 and w

(2)
Q = 12. For i ≥ 3 let ι be the natural inclusion from Si−1

to Si and let w(i−1)
0 denote the longest permutation in Si−1. Set

w
(i)
Q =

{
ι(w

(i−1)
Q ) if ai−2 and ai−1 point in the same direction

ι(w
(i−1)
Q w

(i−1)
0 ) if ai−2 and ai−1 point in opposite directions.

Write wQ := (w
(1)
Q , . . . , w

(n)
Q ). By construction, wQ is of the form (11).

Example 4.2. Let Q be the quiver pictured below.

1 2 3 4 5 6

a1 a2 a3 a4 a5

Then wQ = (1, 12, 123, 3214, 32145, 541236). �

Definition 4.1 is our link between codimC(γη) and the Durfee statistic. The outline
of the proof of Theorem 1.6 is as follows. We start by defining two subsets of I × I,
BoxStrands(w) and ConditionStrands(Q). In Proposition 4.3, we show that

rw(η) =
∑

(I,J)∈BoxStrands(w)

mI(η)mJ(η).

Proposition 4.10 states

codimC(γη) =
∑

(I,J)∈ConditionStrands(Q)

mI(η)mJ(η).

In Proposition 4.13, we show

BoxStrands(wQ) = ConditionStrands(Q).

Combining these propositions completes the proof.

Given a sequence w = (w(1), . . . , w(n)) which satisfies (11), define

(51) BoxStrands(w) = {([w(k)(i), k − 1], [w(k)(j), ℓ]) : 1 ≤ i < j ≤ k ≤ ℓ ≤ n)} ⊆ I × I.

To define ConditionStrands(Q), we consider pairs of intervals (I, J) ∈ I × I of the fol-
lowing three types:

(I) I = [w, x− 1] and J = [x, z] with w < x ≤ z

x z

w x− 1
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(II) I = [w, y] and J = [x, z] with w < x ≤ y < z and the arrows ax−1 and ay point in
the same direction, e.g.,

x z

w y

(III) I = [x, y] and J = [w, z] with w < x ≤ y < z and the arrows ax−1 and ay point in
different directions, e.g.,

w z

x y

With this, we let

(52) ConditionStrands(Q) = {(I, J) : (I, J) satisfies (I), (II), or (III)}.

The set BoxStrands(w) has an immediate connection to the Durfee statistic rw(η).

Proposition 4.3.

rw(η) =
∑

(I,J)∈BoxStrands(w)

mI(η)mJ(η).

Proof. By (12),

rw(η) =
∑

1≤i<j≤k≤n

skw(k)(i)(η)t
k
w(k)(j)(η).

Using (9) and (10), we have:

rw(η) =
∑

1≤i<j≤k≤n

m[w(k)(i),k−1](η)

(
n∑

ℓ=k

m[w(k)(j),ℓ](η)

)
=

∑
1≤i<j≤k≤ℓ≤n

m[w(k)(i),k−1](η)m[w(k)(j),ℓ](η)

=
∑

(I,J)∈BoxStrands(w)

mI(η)mJ(η). �

We now recall some more facts from the representation theory of quivers. Write Hom(V,W)
for the space of morphisms from V to W. Given V and W an extension of V by W is a short
exact sequence of morphisms

0 → W → E → V → 0.

Two extensions are equivalent if the following diagram commutes:

0 W E V 0

0 W E′ V 0

∼
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Write Ext1(V,W) for the space of extensions of V by W up to equivalence. Hom(V,W) and
Ext1(V,W) are finite dimensional vector spaces. Recall the Euler form, defined by

χQ(d1,d2) =
∑
i∈Q0

d1(i)d2(i)−
∑
a∈Q1

d1(t(a))d2(h(a)).

We often use the abbreviation

χQ(V,W) := χQ(dimV,dimW).

The Euler form satisfies the following:

(53) χQ(V,W) = dimHom(V,W)− dimExt1(V,W),

(see [Bri08, Corollary 1.4.3]).
Given I ∈ I, let VI be an irreducible representation indexed by I . Let

(54) Vη =
⊕
I∈I

V
⊕mI(η)
I .

Each point in the orbit γη ⊆ RepQ(d) is isomorphic to Vη. The codimension of γη may be
expressed in terms of extensions of Vη. This is Voigt’s lemma (see [Rin80, Lemma 2.3]):

Lemma 4.4 (Voigt).
codimC(γη) = dimExt1(Vη,Vη).

Here, we give an alternate expression for codimC(γη) in terms of the Euler form. Define

U = {(I, J) : χQ(VI ,VJ) < 0}.

Lemma 4.5.
codimC(γη) =

∑
(I,J)∈U

mI(η)mJ(η)(−χQ(VI ,VJ)).

Proof. By [Rei01], Section 2, there exists a total order on I so that

(55) Hom(VI ,VJ) and Ext1(VJ ,VI) = 0 whenever I < J and I ̸= J .

Indecomposables for Dynkin quivers have no nontrivial self extensions, that is,

Ext1(VI ,VI) = 0 for all I ∈ I,
[Bri08, Theorem 2.4.3]. So dimExt1(VI ,VJ) = 0 whenever I ≥ J .

Writing
Vη =

⊕
I∈I

V
⊕mI(η)
I

as a direct sum of indecomposables, we have

Ext1(Vη,Vη) ∼=
⊕

(I,J)∈I×I

Ext1(VI ,VJ)
⊕mI(η)mJ (η).

Then
codimC(γη) = dimExt1(Vη,Vη) =

∑
(I,J)∈I×I

mI(η)mJ(η)dimExt1(VI ,VJ).

Since Ext1(Vη,Vη) vanishes when I ≥ J ,

codimC(γη) =
∑

(I,J):I<J

mI(η)mJ(η)dimExt1(VI ,VJ),
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(see [Rim13]). Combining (53) and (55) gives

codimC(γη) =
∑

(I,J):I<J

mI(η)mJ(η)(−χQ(VI ,VJ)).(56)

Using the ordering on I and (53), it follows that

(57) if I < J , then χQ(VI ,VJ) ≤ 0 and χQ(VJ ,VI) ≥ 0.

Since Q is a Dynkin quiver, if I = J , then χQ(VI ,VJ) > 0 [Bri08]. Thus we may reindex
the sum, taking only those (I, J) for which χQ(VI ,VJ) < 0. Therefore,

codimC(γη) =
∑

(I,J)∈U

mI(η)mJ(η)(−χQ(VI ,VJ)).

�
Lemma 4.6. Fix intervals I and J . If [x, y] ⊆ I, J then

(58)
y∑

i=x

dI(i)dJ(i)−
y−1∑
i=x

dI(t(ai))dJ(h(ai)) = 1

Proof. Since [x, y] ⊆ I, J , dI(i) = dJ(i) = 1 for all i ∈ [x, y]. Therefore,

(59)
y∑

i=x

dI(i)dJ(i) = y − x+ 1.

Regardless of the orientation of ai, if i ∈ [x, y − 1] then t(ai), h(ai) ∈ [x, y]. Because
[x, y] ⊆ I, J , we have dI(t(ai)) = dJ(h(ai)) = 1. So

(60)
y−1∑
i=x

dI(t(ai))dJ(h(ai)) = (y − 1)− (x+ 1).

Subtracting (60) from (59) gives (58). �

Let
StrandPairs = {(I, J) = ([x1, x2], [y1, y2]) ∈ I × I : x2 ≤ y2}.

From (51) and the definitions (I)-(III), it follows that

ConditionStrands(Q) ⊂ StrandPairs.

Lemma 4.7. Let (I, J) ∈ StrandPairs. Then

(I, J) ∈ ConditionStrands(Q) ⇐⇒ χQ(VI ,VJ) < 0 or χQ(VJ ,VI) < 0.

Moreover, if χQ(VI ,VJ) < 0, then χQ(VI ,VJ) = −1 and likewise χQ(VJ ,VI) < 0 implies
χQ(VJ ,VI) = −1.

Proof. Since we have assumed Q is a type A quiver, we have

(61) χQ(d1,d2) =
n∑

i=1

d1(i)d2(i)−
n−1∑
i=1

d1(t(ai))d2(h(ai)).

Given an interval I , write dI for the dimension vector of VI . By (61), we have

χQ(VI ,VJ) = χQ(dI ,dJ) =
n∑

i=1

dI(i)dJ(i)−
n−1∑
i=1

dI(t(ai))dJ(h(ai)).
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We analyze this expression repeatedly throughout our argument.
(⇒) By direct computation, we will show if (I, J) ∈ ConditionStrands(Q) then

χQ(VI ,VJ) = −1 or χQ(VJ ,VI) = −1,

which is the last assertion of the claim.
Case 1: (I, J) = ([w, x− 1], [x, z]) is of type (I).
Subcase i: ax−1 points to the right.

χQ(VI ,VJ) =
n∑

i=1

dI(i)dJ(i)−
n−1∑
i=1

dI(t(ai))dJ(h(ai))

= −
n−1∑
i=1

dI(t(ai))dJ(h(ai)) (since I ∩ J = ∅)

= −dI(t(ax−1))dJ(h(ax−1))

= −dI(x− 1)dJ(x)

= −1

Subcase ii: ax−1 points to the left.
Let Qop be the quiver obtained by reversing the direction of all arrows in Q. Then

χQ(dJ ,dI) = χQop(dI ,dJ). Therefore,

χQ(VJ ,VI) = χQ(dJ ,dI) = χop
Q (dI ,dJ) = −1

by Subcase 1.i.
Case 2: (I, J) = ([w, y], [x, z]) is of type (II).
Subcase i: ax−1 and ay point to the right.

χQ(VI ,VJ) =

y∑
i=x

dI(i)dJ(i)−
y∑

i=x−1

dI(t(ai))dJ(h(ai))

=

(
y∑

i=x

dI(i)dJ(i)−
y−1∑
i=x

dI(t(ai))dJ(h(ai))

)
− dI(t(ax−1))dJ(h(ax−1))

− dI(t(ay))dJ(h(ay))

= 1− dI(t(ax−1))dJ(h(ax−1))− dI(t(ay))dJ(h(ay)) (Lemma 4.6)
= 1− dI(x− 1)dJ(x)− dI(y)dJ(y + 1)

= −1

Subcase ii: ax−1 and ay point to the left.
χQ(VJ ,VI) = −1 by the Qop argument, as in Subcase 1.i.

Case 3: (I, J) = ([x, y], [y, z]) is of type (III).
Subcase i: ax−1 points right and ay points left.

χQ(VI ,VJ) =

y∑
i=x

dI(i)dJ(i)−
y∑

i=x−1

dI(t(ai))dJ(h(ai))
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=

(
y∑

i=x

dI(i)dJ(i)−
y−1∑
i=x

dI(t(ai))dJ(h(ai))

)
− dI(t(ax−1))dJ(h(ax−1))

− dI(t(ay))dJ(h(ay))

= 1− dI(t(ax−1))dJ(h(ax−1))− dI(t(ay))dJ(h(ay)) (Lemma 4.6)
= 1− dI(x− 1)dJ(x)− dI(y − 1)dJ(y)

= −1

Subcase ii: ax−1 points left and ay points right.
χQ(VJ ,VI) = −1 by the Qop argument, as in Subcase 1.i.
Thus we have shown whenever (I, J) ∈ ConditionStrands(Q),

χQ(VI ,VJ) = −1 or χQ(VJ ,VI) = −1.

(⇐) Let (I, J) = ([x1, x2], [y1, y2]) ∈ StrandPairs and first assume χQ(VI ,VJ) < 0.
Case 1: I ∩ J = ∅. Then dI(i) = 0 or dJ(i) = 0 for all i ∈ [1, n] and so

χQ(dI ,dJ) = −
n−1∑
i=1

dI(t(ai))dJ(h(ai)).

Since χQ(dI ,dJ) < 0 there must exist an arrow ai with t(ai) ∈ [x1, x2] and h(ai) ∈ [y1, y2].
Then i = x2, ai points to the right, and y1 = x2 + 1. This implies (I, J) is of type (I).
Case 2: Assume I ∩ J ̸= ∅. Since we assume x2 ≤ y2

I ∩ J = [x1, x2] ∩ [y1, y2] = [z, x2]

where z ∈ {x1, y1}. Then

χQ(dI ,dJ) =
n∑

i=1

dI(i)dJ(i)−
n−1∑
i=1

dI(t(ai))dJ(h(ai))

=

x2∑
i=z

dI(i)dJ(i)−
x2∑

i=z−1

dI(t(ai))dJ(h(ai)) (Lemma 4.6)

= 1− dI(t(az−1))dJ(h(az−1))− dI(t(ax2))dJ(h(ax2)).

Since χQ(dI ,dJ) < 0, we must have

dI(t(az−1)) = dJ(h(az−1)) = dI(t(ax2)) = dJ(h(ax2)) = 1.

Therefore,

(62) t(az−1), t(ax2) ∈ I = [x1, x2]

and

(63) h(az−1), h(ax2) ∈ J = [y1, y2].

If an arrow ai points to the right, then h(ai) = i+ 1 and t(ai) = i. If ai points left, h(ai) = i
and t(ai) = i + 1. We proceed by analyzing the direction of ax2 and az−1 . First consider
ax2 . If ax2 points left, then t(ax2) = x2 + 1 and so x2 + 1 ∈ [x1, x2], which is a contradiction.
Therefore, we may assume ax2 points right.

Now consider the direction of az−1.
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If az−1 points to the right, then t(az−1) = z − 1 ∈ [x1, x2] by (62) and so z > x1. Since
z ∈ {x1, y1}, we must have z = y1.

z = y1 y2

x1 x2

Therefore (I, J) is of type (II).
If az−1 points left, now we have by (63) h(az−1) = z − 1 ∈ [y1, y2]. Therefore z − 1 > y1

and so z ̸= y1 which implies z = x1. Hence we have:

y1 y2

z = x1 x2

So (I, J) is of type (III).
By near identical arguments, χQ(dJ ,dI) < 0 when

(1) az−1 and ax2 both point left, z = y1, and x2 < y2; i.e., (I, J) is of type (II)
(2) az−1 points right, ax2 points left, z = x1 and x2 < y2 so (I, J) is of type (III).

�

In particular, we have the following corollary.

Corollary 4.8. If χQ(VI ,VJ) < 0 then χQ(VI ,VJ) = −1

Proof. If (I, J) ∈ StrandPairs, this is immediate by Lemma 4.7. Otherwise, (J, I) ∈
StrandParis. Then by Lemma 4.7 (J, I) ∈ ConditionStrands(Q). As such,

χQ(VI ,VJ) = −1.

�

Recall U = {(I, J) : χQ(VI ,VJ) < 0}. We let

U1 = {(I, J) = ([x1, x2], [y1, y2]) : (I, J) ∈ U and x2 ≤ y2}, and

U2 = {(I, J) = ([x1, x2], [y1, y2]) : (I, J) ∈ U and x2 > y2}.
Trivially,

(64) U = U1 ⊔ U2

Let
Ũ2 = {(J, I) : (I, J) ∈ U2}.

Lemma 4.9. ConditionStrands(Q) = U1 ⊔ Ũ2.
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Proof. If (I, J) ∈ Ũ2, then (J, I) ∈ U2 ⊂ U and so χQ(VJ ,VI) < 0. Therefore χQ(VI ,VJ) ≥ 0

and hence (I, J) ̸∈ U . So (I, J) ̸∈ U1. Therefore, U1 ∩ Ũ2 = ∅.
(⊆) If (I, J) ∈ ConditionStrands(Q), by Lemma 4.7, χQ(VI ,VJ) < 0 or χQ(VJ ,VI) < 0.

In the first case, from the definition, (I, J) ∈ U1. In the second case, again by definition,
(J, I) ∈ U2, which implies (I, J) ∈ Ũ2.

(⊇) We have U1, Ũ2 ⊆ StrandPairs. Thus by Lemma 4.7, U1, Ũ2 ⊆ ConditionStrands(Q).
�

Proposition 4.10.

codimC(γη) =
∑

(I,J)∈ConditionStrands(Q)

mI(η)mJ(η).

Proof. If (I, J) ∈ U , then χQ(VI ,VJ) < 0. Applying Corollary 4.8, χQ(VI ,VJ) = −1. Then
by Lemma 4.5,

codimC(γη) =
∑

(I,J)∈U

mI(η)mJ(η)(−χQ(VI ,VJ))

=
∑

(I,J)∈U

mI(η)mJ(η)

Therefore, applying (64)

codimC(γη) =
∑

(I,J)∈U1

mI(η)mJ(η) +
∑

(I,J)∈U2

mI(η)mJ(η)

=
∑

(I,J)∈U1

mI(η)mJ(η) +
∑

(I,J)∈Ũ2

mI(η)mJ(η)

=
∑

(I,J)∈ConditionStrands(Q)

mI(η)mJ(η) (Lemma 4.9),

as claimed. �

Our final goal is to show BoxStrands(wQ) = ConditionStrands(Q). We start with a
lemma.

Lemma 4.11. All elements of BoxStrands(wQ) and ConditionStrands(Q) may be written in
the form:

(65) (I, J) = ([x, k − 1], [y, ℓ]), with x ̸= y, k ≤ ℓ.

Proof. If
([w

(k)
Q (i), k − 1], [w

(k)
Q (j), ℓ]) ∈ Boxstrands(wQ),

then
w

(k)
Q (i) ̸= w

(k)
Q (j) and k ≤ ℓ.

Hence, by setting x = w
(k)
Q (i) and y = w

(k)
Q (j), we are done.

Now suppose
([x1, x2], [y1, y2]) ∈ ConditionStrands(Q).

By definition (I)-(III), x1 ̸= y1 and x2 < y2. So set x = x1, y = y1, k = x2 + 1 and ℓ = y2. �
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With Lemma 4.11 in mind, to prove Boxstrands(wQ) = ConditionStrands(Q), it is
enough to show given (I, J) of the form in (65),

(I, J) ∈ BoxStrands(wQ) ⇐⇒ (I, J) ∈ ConditionStrands(Q).

We first handle the special case when I and J are disjoint.

Lemma 4.12. Let (I, J) be as in (65) and suppose I ∩ J = ∅. Then (I, J) ∈ BoxStrands(wQ) if
and only if (I, J) ∈ ConditionStrands(Q).

Proof. If (I, J) ∈ ConditionStrands(Q), then by the disjointness hypothesis it must be of
type (I), i.e.

(I, J) = ([x, k − 1], [k, ℓ]).

Now, since x ≤ k − 1 and w
(k)
Q ∈ Sk with w

(k)
Q (k) = k, there exists i < k such that

w
(k)
Q (i) = x. So

([x, k − 1], [k, ℓ]) = ([w
(k)
Q (i), k − 1], [w

(k)
Q (k), ℓ]) ∈ BoxStrands(wQ).

Conversely, assume

(I, J) = ([w
(k)
Q (i), k − 1], [w

(k)
Q (j), ℓ]) ∈ BoxStrands(wQ)

and I ∩ J = ∅. Then w
(k)
Q (j) > k − 1 which means w(k)

Q (j) = k and j = k by the definition
of w(k)

Q . Furthermore, w(k)
Q (i) ≤ k − 1 since i < j = k. So

(I, J) = ([w
(k)
Q (i), k − 1], [k, ℓ])

is of type (I), and hence in ConditionStrands(Q). �

We now show:

Proposition 4.13. BoxStrands(wQ) = ConditionStrands(Q).

Proof. Let (I, J) be as in (65). We seek to show

(I, J) ∈ BoxStrands(wQ) ⇐⇒ (I, J) ∈ ConditionStrands(Q).

We will proceed by induction on k. In the base case k = 2, we must have x = 1 and so
y ≥ 2. As such, I ∩ J = ∅ and so we are done by Lemma 4.12. Fix k > 2 and assume the
claim holds for k − 1. That is, given a pair of intervals ([x′, k − 2], [y′, ℓ′]) so that x′, y′ and
ℓ′ satisfy x′ ̸= y′ and k − 1 ≤ ℓ′ we have
(66)
([x′, k − 2], [y′, ℓ′]) ∈ BoxStrands(wQ) ⇐⇒ ([x′, k − 2], [y′, ℓ′]) ∈ ConditionStrands(Q).

Now let (I, J) be as in (65), i.e.,

(I, J) = ([x, k − 1], [y, ℓ]), with x ̸= y, k ≤ ℓ.

Again, by Lemma 4.12, if I ∩ J = ∅ we are done, so assume I ∩ J ̸= ∅. Then y < k.
Now, since 1 ≤ x, y ≤ k, there exist i and j such that

1 ≤ i, j ≤ k with x = w(k)(i) and y = w(k)(j).

So from (51)

(67) (I, J) = ([w
(k)
Q (i), k − 1], [w

(k)
Q (j), ℓ]) ∈ BoxStrands(wQ) ⇐⇒ i < j.
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Throughout, when x ≤ k − 2 we write I ′ := [x, k − 2]. We will break the argument into
two main cases.
Case 1: ak−2 and ak−1 point in the same direction.

By definition, w(k)
Q = ι(w

(k−1)
Q ). Then if x ≤ k − 2, it follows that

(I ′, J) = ([x, k − 2], [y, ℓ])

= ([wk−1
Q (i), k − 2], [wk−1

Q (j), ℓ])

and so

(68) (I ′, J) ∈ BoxStrands(wQ) if and only if i < j.

We have four possible subcases, based on the relative values of x and y.
Subcase i: x < y = k − 1.

(I, J) is of type (II), and hence (I, J) ∈ ConditionStrands(Q). Furthermore, note that

(I ′, J) = ([x, k − 2], [k − 1, ℓ])

is of type (I), and so in ConditionStrands(Q). The intervals for (I ′, J) and (I, J) look like
this:

x k − 2

k − 1 ℓ

x k − 1

k − 1 ℓ .

By the inductive hypothesis (66), (I ′, J) ∈ BoxStrands(wQ). By (68), i < j. Therefore, by
(67), (I, J) ∈ BoxStrands(wQ).

Therefore, (I, J) is in both ConditionStrands(Q) and BoxStrands(wQ).
Subcase ii: x < y < k − 1.

(I, J) ∈ BoxStrands(wQ) ⇐⇒ i < j by (67)

⇐⇒ (I ′, J) ∈ BoxStrands(wQ) by (68)

⇐⇒ (I ′, J) ∈ ConditionStrands(Q) by (66)
⇐⇒ ax−1 points in the same direction as ak−2

⇐⇒ ax−1 points in the same direction as ak−1

⇐⇒ (I, J) ∈ ConditionStrands(Q).

The following picture depicts (I ′, J) and (I, J) respectively when (I ′, J) and (I, J) are in
ConditionStrands(Q).

y ℓ

x k − 2

y ℓ

x k − 1

Subcase iii: y < x = k − 1.
Pictured below are the intervals I and J .
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y ℓ

x

Since y < x and this case assumes ak−2 and ak−1 point in the same direction, (I, J) cannot
be of type (III) and is not in ConditionStrands(Q). Since

w
(k)
Q = ιw

(k−1)
Q and w

(k−1)
Q (k − 1) = k − 1,

it follows that i = k − 1. Since

y = w
(k)
Q (j) = w

(k−1)
Q (j) < k − 1,

it follows that i > j, and so by (67)

(I, J) ̸∈ BoxStrands(wQ).

Therefore, (I, J) is in neither ConditionStrands(Q) nor BoxStrands(wQ).
Subcase iv: y < x < k − 1.

(I, J) ∈ BoxStrands(wQ) ⇐⇒ i < j by (67)

⇐⇒ (I ′, J) ∈ BoxStrands(wQ) by (68)

⇐⇒ (I ′, J) ∈ ConditionStrands(Q) by (66)
⇐⇒ ax−1 points in the opposite direction as ak−2

⇐⇒ ax−1 points in the opposite direction as ak−1

⇐⇒ (I, J) ∈ ConditionStrands(Q).

Below are (I ′J) and (I, J) respectively, in the case (I ′, J), (I, J) ∈ ConditionStrands(Q).

y ℓ

x k − 2

y ℓ

x k − 1

Case 2: ak−2 and ak−1 point in opposite directions.
By definition,

w
(k)
Q = ι(w

(k−1)
Q w

(k−1)
0 ).

If x ≤ k − 2, and y ≤ k − 1 it follows that

(I ′, J) = ([x, k − 2], [y, ℓ])

= ([w
(k−1)
Q (k − i), k − 2], [w

(k−1)
Q (k − j), ℓ])

and so

(69) (I ′, J) ∈ BoxStrands(wQ) if and only if k − i < k − j if and only if i > j.

Subcase i: x < y = k − 1.
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x k − 2

k − 1 ℓ

x k − 1

k − 1 ℓ

Since ak−2 and ak−1 point in opposite directions, (I, J) ̸∈ ConditionStrands(Q). The as-
sumption y = k−1 implies (I ′, J) ∈ ConditionStrands(Q). By (66) (I ′, J) ∈ BoxStrands(wQ).
Since x, y < k, we have

x = w
(k)
Q (i) = w

(k−1)
Q (k − i) and y = w

(k)
Q (j) = w

(k−1)
Q (k − j).

Then k − i < k − j, so i > j and (I, J) ̸∈ BoxStrands(wQ), by (67).
Hence (I, J) is neither in ConditionStrands(Q) nor BoxStrands(wQ).

Subcase ii: x < y < k − 1.

(I, J) ∈ BoxStrands(wQ) ⇐⇒ i < j by (67)

⇐⇒ (I ′, J) ̸∈ BoxStrands(wQ) by (69)

⇐⇒ (I ′, J) ̸∈ ConditionStrands(Q) by (66)
⇐⇒ ay−1 points in the opposite direction as ak−2

⇐⇒ ay−1 points in the same direction as ak−1

⇐⇒ (I, J) ∈ ConditionStrands(Q).

Below, we have (I ′, J) ̸∈ ConditionStrands(Q) and (I, J) ∈ ConditionStrands(Q).

y ℓ

x k − 2

y ℓ

x k − 1

Subcase iii: y < x = k − 1. Here (I, J) looks like:

y ℓ

x

Since Case 2 assumes ak−2 and ak−1 point in opposite directions, (I, J) is type (II) and so
in ConditionStrands(Q). Now,

k − 1 = x = w
(k)
Q (i) = w

(k−1)
Q (k − i)

which implies i = 1. Then j > i, so (I, J) ∈ BoxStrands(wQ). So (I, J) is both in
ConditionStrands(Q) and BoxStrands(wQ).
Subcase iv: y < x < k − 1.

(I, J) ∈ BoxStrands(wQ) ⇐⇒ i < j by (67)

⇐⇒ (I ′, J) ̸∈ BoxStrands(wQ) by (69)

⇐⇒ (I ′, J) ̸∈ ConditionStrands(Q) by (66)
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⇐⇒ ax−1 points in the same direction as ak−2

⇐⇒ ax−1 points the opposite direction as ak−1

⇐⇒ (I, J) ∈ ConditionStrands(Q).

Pictured below are (I ′, J) and (I, J), in the case that (I ′, J) ̸∈ ConditionStrands(Q) and
(I, J) ∈ ConditionStrands(Q).

y ℓ

x k − 2

y ℓ

x k − 1

Thus, we have BoxStrands(wQ) = ConditionStrands(Q). �

.

Proof of Theorem 1.6.

rwQ(η) =
∑

(I,J)∈BoxStrands(wQ)

mI(η)mJ(η) (by Proposition 4.3)

=
∑

(I,J)∈ConditionStrands(Q)

mI(η)mJ(η) (by by Proposition 4.13)

= codimC(γη) (by Proposition 4.10)

�

We conclude by giving our proof of Reineke’s identity for type A quivers.

Proof of Theorem 1.3 (in type A). The map η 7→ γη defines a bijection from CQ(d) to OQ(d).
Since Q is type A, there is a bijection between {β1, . . . , βN} and I. Furthermore, whenever
I 7→ βi, we have mI(η) = mβi

(γη). Then starting from Corollary 1.5, we have
n∏

i=1

1

(q)d(i)
=

∑
η∈CQ(d)

qrwQ (η)
∏

1≤i≤j≤n

1

(q)m[i,j](η)

=
∑

η∈CQ(d)

qcodimC(γη)
N∏
i=1

1

(q)mβi
(γη)

=
∑

γ∈OQ(d)

qcodimC(γ)
N∏
i=1

1

(q)mβi
(γ)

�
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[Rim13] R. Rimányi. On the cohomological Hall algebra of Dynkin quivers. arXiv:1303.3399, 2013.
[Rin80] C. M. Ringel. The rational invariants of the tame quivers. Inventiones mathematicae, 58(3):217–239,

1980.
[Sch53] M.-P. Schutzenberger. Une interpretation de certaines solutions de l’equation fonctionnelle-

f(x+y)= f(x)f(y). Comptes Rendus Hebdomadaires des Seances de l’Academie des Sciences, 236(4):352–
354, 1953.

[SW98] A. Schilling and S. O. Warnaar. Supernomial coefficients, polynomial identities and q-series. The
Ramanujan Journal, 2(4):459–494, 1998.

DEPARTMENT OF MATHEMATICS, THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL, CB #3250,
PHILLIPS HALL, CHAPEL HILL, NC 27599

E-mail address: rimanyi@email.unc.edu

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN, URBANA, IL
61801

E-mail address: weigndt2@uiuc.edu, ayong@uiuc.edu

33


