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Abstract. We define an elliptic version of the stable envelope of Maulik

and Okounkov for the equivariant elliptic cohomology of cotangent bundles

of Grassmannians. It is a version of the construction proposed by Aganagic
and Okounkov and is based on weight functions and shuffle products. We

construct an action of the dynamical elliptic quantum group associated with

gl2 on the equivariant elliptic cohomology of the union of cotangent bundles of
Grassmannians. The generators of the elliptic quantum groups act as differ-

ence operators on sections of admissible bundles, a notion introduced in this

paper.
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1. Introduction

Maulik and Okounkov [12] have set up a program to realize representation theory
of quantum groups of various kinds on torus equivariant (generalized) cohomology
of Nakajima varieties. A central role is played by the stable envelopes, which are
maps from the equivariant cohomology of the fixed point set of the torus action to
the equivariant cohomology of the variety. Stable envelopes depend on the choice
of a chamber (a connected component of the complement of an arrangement of real
hyperplanes) and different chambers are related by R-matrices of the corresponding
quantum groups. The basic example of a Nakajima variety is the cotangent bundle
of the Grassmannian Gr(k, n) of k-planes in Cn. The torus is T = U(1)n × U(1),
with U(1)n acting by diagonal matrices on Cn and U(1) acting by multiplication on
the cotangent spaces. Then the Yangian Y (gl2) acts on HT (tnk=0T

∗Gr(k, n)) and
the action of generators is described geometrically by correspondences. It turns out
that this representation is isomorphic to the tensor products of n evaluation vector
representations with the equivariant parameters of U(1)n as evaluation points and
the equivariant parameter of U(1) as the deformation parameter of the quantum
group. The choice of a chamber is the same as the choice of an ordering of the factors
in the tensor product. The same holds for the affine quantum universal enveloping

algebra Uq(ĝl2) if we replace equivariant cohomology by equivariant K-theory. As
was shown in [8, 14], the stable envelopes, which realize the isomorphisms, are
given by the weight functions, which originally appeared in the theory of integral
representations of solutions of the Knizhnik–Zamolodchikov equation. Their special
values form transition matrices from the tensor basis to a basis of eigenvectors for
the Gelfand–Zetlin commutative subalgebra.
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The recent preprint [1] of Aganagic and Okounkov suggests that the same pic-
ture should hold for equivariant elliptic cohomology and elliptic dynamical quantum
groups and this is the subject of this paper. The authors of [1] define an elliptic
version of the stable envelopes and show, in the example of the cotangent bundle of
a projective space, stable envelopes corresponding to different orderings are related
to the fundamental elliptic dynamical R-matrices of the elliptic dynamical quantum
group Eτ,y(gl2). Our paper is an attempt to understand the elliptic stable envelope
in the case of cotangent bundles of Grassmannians. In particular we give a precise
description of the space in which the stable envelope takes its values. Our construc-
tion of stable envelopes is based on elliptic weight functions. In the Appendix we
also give a geometric characterization, in terms of pull-backs to the cohomology of
fixed points, in the spirit of [12].

While our work is inspired by [1], we do not know whether the two constructions
are equivalent or not. The interesting project of understanding the exact relation
between our construction and the construction of Aganagic-Okounkov requires more
work.

Compared to equivariant cohomology and K-theory, two new features arise in
the elliptic case. The first new feature is the occurence of an additional variable, the
dynamical parameter, in the elliptic quantum group. It also appears in [1], under
the name of Kähler parameter, in an extended version of the elliptic cohomology of
Nakajima varieties. The second is a general feature of elliptic cohomology: while
T -equivariant cohomology and K-theory are contravariant functors from T -spaces
to supercommutative algebras, and can thus be thought of as covariant functors to
affine superschemes,1 in the elliptic case only the description as covariant functor
to (typically non-affine) superschemes generalizes straightforwardly.

Our main result is a construction of an action of the elliptic quantum group asso-
ciated with gl2 on the extended equivariant elliptic cohomology scheme ÊT (Xn) of
the union Xn = tnk=0Xk,n of cotangent bundles Xk,n = T ∗Gr(k, n) of Grassmanni-
ans. The meaning of this is that we define a representation of the operator algebra of
the quantum group by difference operators acting on sections of a class of line bun-
dles on the extended elliptic cohomology scheme, which we call admissible bundles:
up to a twist by a fixed line bundle, admissible bundles on ÊT (Xk,n) are pull-backs

of bundles on ÊU(n)×U(1)(pt) (by functoriality there is a map corresponding to the
map to a point and the inclusion of the Cartan subalgebra T → U(n)×U(1)). The
claim is that there is a representation of the elliptic quantum group by operators
mapping sections of admissible bundles to sections of admissible bundles.

This paper may be considered as an elliptic version of the paper [17] where
analogous constructions are developed for the rational dynamical quantum group
Ey(gl2).

Notation. For a positive integer n, we set [n] = {1, . . . , n}. It K is a subset of
[n] we denote by |K| its cardinality and by K̄ its complement. Throughout the
paper we fix τ in the upper half plane and consider the complex elliptic curve

1The reader may safely ignore the super prefixes, as we only consider spaces with trivial odd
cohomology, for which one has strictly commutative algebras
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E = C/(Z + τZ). The odd Jacobi theta function

θ(z) =
sin πz

π

∞∏
j=1

(1− qje2πiz)(1− qje−2πiz)

(1− qj)2
, q = e2πiτ , (1)

is normalized to have derivative 1 at 0. It is an entire odd function with simple
zeros at Z + τZ, obeying θ(z + 1) = −θ(z) and

θ(z + τ) = −e−πiτ−2πizθ(z).

Acknowledgments. We thank Nora Ganter and Mikhail Kapranov for explana-
tions on equivariant elliptic cohomology. G.F. was supported in part by the National
Centre of Competence in Research “SwissMAP — The Mathematics of Physics” of
the Swiss National Science Foundation. R.R. was supported by the Simons Founda-
tion grant #523882. A.V. was supported in part by NSF grant DMS-1362924 and
Simons Foundation grant #336826. We thank the Forschungsinstitut für Mathe-
matik at ETH Zurich and the Max Planck Institut für Mathematik, Bonn, where
part of this work was done, for hospitality.

2. Dynamical R-matrices and elliptic quantum groups

2.1. Dynamical Yang–Baxter equation. Let h be a complex abelian Lie al-
gebra and V an h-module with a weight decomposition V = ⊕µ∈h∗Vµ and finite
dimensional weight spaces Vµ. A dynamical R-matrix with values in Endh(V ⊗ V )
is a meromorphic function (z, y, λ) 7→ R(z, y, λ) ∈ Endh(V ⊗ V ) of the spectral
parameter z ∈ C, the deformation parameter y ∈ C and the dynamical parameter
λ ∈ h∗, obeying the dynamical Yang–Baxter equation

R(z, y, λ− yh(3))(12)R(z + w, y, λ)(13)R(w, y, λ− yh(1))(23) (2)

= R(w, y, λ)(23)R(z + w, y, λ− yh(2))(13)R(z, y, λ− yh(3))(12)

in End(V ⊗ V ⊗ V ) and the inversion relation

R(z, y, λ)(12)R(−z, y, λ)(21) = Id, (3)

in End(V ⊗V ). The superscripts indicate the factors in the tensor product on which
the endomorphisms act non-trivially and h is the element in h∗ ⊗ End(V ) defined
by the action of h: for example R(z, y, λ − yh(3))(12) acts as R(z, y, λ − yµ3) ⊗ Id
on Vµ1

⊗ Vµ2
⊗ Vµ3

.

Example 2.1. [3] Let h ' CN be the Cartan subalgebra of diagonal matrices in
glN (C). Let V = ⊕Ni=1Vεi the vector representation with weights εi(x) = xi, x ∈ h
and one-dimensional weight spaces. Let Eij be the N ×N matrix with entry 1 at
(i, j) and 0 elsewhere. The elliptic dynamical R-matrix for glN is2

R(z, y, λ) =

N∑
i=1

Eii ⊗ Eii +
∑
i 6=j

α(z, y, λi − λj)Eii ⊗ Ejj∑
i6=j

β(z, y, λi − λj)Eij ⊗ Eji,

2We use the convention of [5]. This R-matrix is obtained from the one introduced in [3] by
substituting y = −2η and replacing z by −z
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where

α(z, y, λ) =
θ(z)θ(λ+ y)

θ(z − y)θ(λ)
, β(z, y, λ) = −θ(z + λ)θ(y)

θ(z − y)θ(λ)
.

It is a deformation of the trivial R-matrix R(z, 0, λ) = idV⊗V .

A dynamical R-matrix defines a representation of the symmetric group Sn on
the space of meromorphic functions of (z1, . . . , zn, y, λ) ∈ Cn × C× h∗ with values
in V ⊗n. The transposition si = (i, i+ 1), i = 1, . . . , n− 1, acts as

f 7→ Si(z, y, λ)s∗i f, Si(z, y, λ) = R(zi−zi+1, y, λ−y
n∑

j=i+2

h(j))(i,i+1)P (i,i+1), (4)

where P ∈ End(V ⊗ V ) is the flip u ⊗ v 7→ v ⊗ u and s∗i acts on functions by
permutation of zi with zi+1.

To a dynamical R-matrix R there corresponds a category “of representations of
the dynamical quantum group associated with R”. Fix y ∈ C and let K be the
field of meromorphic functions of λ ∈ h∗ and for µ ∈ h∗ let τ∗µ ∈ Aut(K) be the
automorphism τ∗µf(λ) = f(λ+ yµ). An object of this category is a K-vector space
W = ⊕µ∈h∗Wµ, which is a semisimple module over h, with finite dimensional weight
spaces Wµ, together with an endomorphisms L(w) ∈ Endh(V ⊗W ), depending on
w ∈ U ⊂ C for some open dense set U , such that

(i) L(w)u⊗ fv = (id⊗ τ∗−µf)L(w)u⊗ v, f ∈ K, u ∈ Vµ, v ∈W .
(ii) L obeys the RLL relations:

R(w1 − w2, y, λ− yh(3))(12)L(w1)(13)L(w2)(23)

= L(w2)(23)L(w1)(13)R(w1 − w2, y, λ)(12)

Morphisms (W1, LW1)→ (W2, LW2) are K-linear maps ϕ : W1 →W2 of h-modules,
commuting with the action of the generators, in the sense that LW2

(w) idV ⊗ ϕ =
idV ⊗ ϕLW1

(w) for all w in the domain of definition. The dynamical quantum
group itself may be defined as generated by Laurent coefficients of matrix elements
of L(w) subject to the RLL relations, see [11] for a recent approach in the case of
elliptic dynamical quantum groups and for the relations with other definitions of
elliptic quantum groups.

The basic example of a representation is the vector evaluation representation
V (z) with evaluation point z ∈ C. The vector representation has W = V ⊗CK and

L(w)v ⊗ u = R(w − z, y, λ)v ⊗ τ∗−µu, v ∈ Vµ, u ∈W.

Here τ∗−µ(v ⊗ f) = v ⊗ τ∗−µf for v ∈ V and f ∈ K, and R acts as a multiplication
operator.

More generally we have the tensor product of evaluation representations V (z1)⊗
· · · ⊗ V (zn) with W = V ⊗n ⊗ K, and, by numbering the factors of V ⊗ V ⊗n by
0, 1, . . . , n,

L(w)v ⊗ u = R(w − z1, y, λ− y
n∑
i=2

h(i))(01)R(w − z2, y, λ− y
n∑
i=3

h(i))(02) · · ·

· · ·R(w − zn, y, λ)(0,n)v ⊗ τ∗−µu, v ∈ Vµ, u ∈W.
(5)
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For generic z1, . . . , zn the tensor products does not essentially depend on the order-
ing of the factors: the operators Si defined above are isomorphisms of representa-
tions

V (z1)⊗· · ·⊗V (zi)⊗V (zi+1)⊗· · ·⊗V (zn)→ V (z1)⊗· · ·⊗V (zi+1)⊗V (zi)⊗· · ·⊗V (zn).

Remark 2.2. It is convenient to consider L-operators L(w), such as (5), which are
meromorphic functions of w and are thus only defined for w in an open dense
set. But one may prefer to consider only representations with L(w) defined for all
w ∈ C. This may be obtained for the representation given by (5) by replacing L(w)
by the product of L(w) with

∏n
a=1 θ(w − za + y).

2.2. Duality and gauge transformations. Suppose that R(z, y, λ) is a dynam-
ical R-matrix with h-module V . Let V ∨ = ⊕µ(V ∨)µ with weight space (V ∨)µ the
dual space to Vµ. Then R∨(z, y, λ) = (R(z, y, λ)−1)∗, the dual map to R(z, y, λ)−1,
is a dynamical R-matrix with values in Endh(V ∨ ⊗ V ∨). It is called the dual
R-matrix to R.

Another way to get new R-matrices out of old is by a gauge transformation.
Let ψV (λ) be a meromorphic function on C × h∗ with values in Auth(V ). Let

ψV⊗V (λ) = ψV (λ− yh(2))(1)ψV (λ)(2) ∈ Endh(V ⊗ V ). Then

Rψ(z, y, λ) = ψV⊗V (λ)−1R(z, y, λ)ψV⊗V (λ)(21)

is another dynamical R-matrix. The corresponding representations of the symmet-
ric group are related by the isomorphism ψV ⊗n(λ) =

∏n
i=1 ψV (λ− yΣnj=i+1h

(j))(i).

2.3. The elliptic dynamical quantum group Eτ,y(gl2). In this paper, we focus
on the dynamical quantum group Eτ,y(gl2). The corresponding R-matrix is the
case N = 2 of Example 2.1. With respect to the basis v1 ⊗ v1, v1 ⊗ v2, v2 ⊗ v1,
v2 ⊗ v2,

R(z, y, λ) =


1 0 0 0
0 α(z, y, λ) β(z, y, λ) 0
0 β(z, y,−λ) α(z, y,−λ) 0
0 0 0 1

 ,

where λ = λ1− λ2. Since R depends only on the difference λ1− λ2 it is convenient
to replace h by the 1-dimensional subspace C spanned by h = diag(1,−1). Then,
under the identification h ∼= C via the basis h, v1 has weight 1 and v2 has weight −1.
Let (W,L) be a representation of Eτ,y(gl2) and write L(w) =

∑2
ij=1Eij ⊗ Lij(w).

Then Lij(w) maps Wµ to Wµ+2(i−j) and for f(λ) ∈ K, Li2(w)f(λ) = f(λ+y)Li2(w)
and Li1(w)f(λ) = f(λ− y)Li1(w).

Example 2.3. The vector representation V (z). Let V = C2 with basis v1, v2.

L11(w)v1 = v1, L22(w)v2 = v2

L11(w)v2 =
θ(w − z)θ(λ+ y)

θ(w − z − y)θ(λ)
v2, L22(w)v1 =

θ(w − z)θ(λ− y)

θ(w − z − y)θ(λ)
v2

L12(w)v1 = −θ(λ+ w − z)θ(y)

θ(w − z − y)θ(λ)
v2, L21(w)v2 = −θ(λ− w + z)θ(y)

θ(w − z − y)θ(λ)
v1,

and the action on other basis vectors is 0.
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2.4. The Gelfand–Zetlin subalgebra. Let W be a representation of the ellip-
tic dynamical quantum group Eτ,y(gl2). Then L22(w), w ∈ C and the quantum
determinant [5]

∆(w) =
θ(λ− yh)

θ(λ)
(L11(w + y)L22(w)− L21(w + y)L12(w)) (6)

generate a commutative subalgebra of Endh(W ). It is called the Gelfand-Zetlin
subalgebra.

3. Shuffle products and weight functions

Weight functions are special bases of spaces of sections of line bundles on sym-
metric powers of elliptic curves. They appear in the theory of hypergeometric
integral representation of Knizhnik–Zamolodchikov equations. In [4] they were
characterized as tensor product bases of a space of function for a suitable notion
of tensor products. In this approach the R-matrices for highest weight represen-
tations of elliptic quantum groups arise as matrices relating bases obtained from
taking different orderings of factors in the tensor product. We review and extend
the construction of [4] in the special case of products of vector representations.

3.1. Spaces of theta functions.

Definition 3.1. Let z ∈ Cn, y ∈ C, λ ∈ C and define Θ−k (z, y, λ) to be the space
of entire holomorphic functions f(t1, . . . , tk) of k variables such that

(1) For all permutations σ ∈ Sk, f(tσ(1), . . . , tσ(k)) = f(t1, . . . , tk).
(2) For all r, s ∈ Z, the meromorphic function

g(t1, . . . , tk) =
f(t1, . . . , tk)∏k

j=1

∏n
a=1 θ(tj − za)

obeys

g(t1, . . . , ti + r + sτ, . . . , tk) = e2πis(λ−ky)g(t1, . . . , ti, . . . , tk).

Definition 3.2. Let z ∈ Cn, y ∈ C, λ ∈ C and define Θ+
k (z, y, λ) to be the space

of entire holomorphic functions f(t1, . . . , tk) of k variables such that

(1) For all permutations σ ∈ Sk, f(tσ(1), . . . , tσ(k)) = f(t1, . . . , tk).
(2) For all r, s ∈ Z, the meromorphic function

g(t1, . . . , tk) =
f(t1, . . . , tk)∏k

j=1

∏n
a=1 θ(tj − za + y)

,

obeys

g(t1, . . . , ti + r + sτ, . . . , tk) = e−2πis(λ−ky)g(t1, . . . , ti, . . . , tk).

Remark 3.3. These spaces are spaces of symmetric theta functions of degree n in
k variables and have dimension

(
n+k−1

k

)
. Actually Θ− depends on the parameters

only through the combination
∑n
a=1 za + λ− ky and Θ+ through the combination∑n

a=1 za − λ− (n− k)y.
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Example 3.4. For z ∈ C and all k = 0, 1, 2, . . . , Θ−k (z, y, λ) is a one-dimensional
vector space spanned by

ω−k (t; z, y, λ) =

k∏
j=1

θ(λ− tj + z − ky),

Θ+
k (z, y, λ) is a one-dimensional vector space spanned by

ω+
k (t; z, y, λ) =

k∏
j=1

θ(λ+ tj − z + (1− k)y),

Remark 3.5. For z ∈ Cn, y, λ ∈ C, Θ−k (z, y, λ) = Θ+
k (z, y,−λ − (n − 2k)y) and

ω+
k (t; z, y, λ) = (−1)kω−k (t; z, y,−λ − (1 − 2k)y). It is however better to keep the

two spaces distinct as they will be given a different structure.

3.2. Shuffle products. Let Sym denote the map sending a function f(t1, . . . , tk)
of k variables to the symmetric function

∑
σ∈Sn f(tσ(1), . . . , tσ(k)).

Proposition 3.6. Let n = n′ + n′′, k = k′ + k′′ be non-negative integers, z ∈ Cn,
z′ = (z1, . . . , zn′), z′′ = (zn′+1, . . . , zn). Then the shuffle product

∗ : Θ±k′(z
′, y, λ+ y(n′′ − 2k′′))⊗Θ±k′′(z

′′, y, λ)→ Θ±k (z, y, λ),

sending f ⊗ g to

f ∗ g(t) =
1

k′!k′′!
Sym

(
f(t1, . . . , tk′)g(tk′+1, . . . , tk)ϕ±(t, z, y)

)
,

with

ϕ−(t, z, y) =

k′∏
j=1

k∏
l=k′+1

θ(tl − tj + y)

θ(tl − tj)

k∏
l=k′+1

n′∏
a=1

θ(tl − za)

k′∏
j=1

n∏
b=n′+1

θ(tj − zb + y),

ϕ+(t, z, y) =

k′∏
j=1

k∏
l=k′+1

θ(tj − tl + y)

θ(tj − tl)

k∏
l=k′+1

n′∏
a=1

θ(tl − za + y)

k′∏
j=1

n∏
b=n′+1

θ(tj − zb),

is well-defined and associative, in the sense that (f ∗ g) ∗ h = f ∗ (g ∗ h), whenever
defined.

Remark 3.7. In the formula for f ∗ g in Proposition 3.6 we can omit the factor
1/k′!k′′! and replace the sum over permutations defining Sym by the sum over
(k′, k′′)-shuffles, namely permutations σ ∈ Sk such that σ(1) < · · · < σ(k′) and
σ(k′ + 1) < · · · < σ(k).

Proof. This is essentially the first part of Proposition 3 of [4] in the special case
of weights Λi = 1. The proof is straightforward: the apparent poles at tj = tl are
cancelled after the symmetrization since θ(tj − tl) is odd under interchange of tj
with tl. Thus f ∗g is a symmetric entire function. One then checks that every term
in the sum over permutations has the correct transformation property under lattice
shifts. �

Proposition 3.8. The maps ∗ of Proposition 3.6 define isomorphisms

⊕kk′=0Θ±k′(z
′, y, λ+ y(n′′ − 2k′′))⊗Θ±k−k′(z

′′, y, λ)→ Θ±k (z, y, λ)

for generic z, y, λ.

We prove this Proposition in 3.12 below.
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3.3. Vanishing condition. The shuffle product ∗ preserves subspaces defined by
a vanishing condition. It is the case of the fundamental weight of a condition
introduced in [4], Section 8 for general integral dominant weights.

Let (z, y, λ) ∈ Cn × C× C. We define a subspace Θ̄±k (z, y, λ) ⊂ Θ±k (z, y, λ) by a
vanishing condition:

Θ̄±k (z, y, λ) =

{
Θ±k (z, y, λ) if k = 0, 1,

{f : f(t1, . . . , tk−2, za, za − y) = 0, 1 ≤ a ≤ n, ti ∈ C}, if k ≥ 2.

Example 3.9. For n = 1,

Θ̄±k (z, y, λ) =

{
Θ±k (z, y, λ) ∼= C, k = 0, 1,

0, k ≥ 2.

Indeed, the condition is vacuous if k ≤ 1 and if k ≥ 2 then ω±k (z; z − y, t3, . . . ) =

θ(λ− ky)θ(λ+ (1− k)y) times a nonzero function. For k = 1, n ≥ 1, Θ̄±1 (z, y, λ) =
Θ±1 (z, y, λ). For k = 2, n = 2, Θ̄±2 (z1, z2, y, λ) is a one-dimensional subspace of the
three-dimensional space Θ±2 (z, y, λ).

Proposition 3.10. The shuffle product restricts to a map

⊕kk′=0Θ̄±k′(z
′, y, λ+ y(n′′ − 2k′′))⊗ Θ̄±k−k′(z

′′, y, λ)→ Θ̄±k (z, y, λ),

which is an isomorphism for generic values of the parameters.

The proof is postponed to 3.12 below. By iteration we obtain shuffle multiplica-
tion maps

Φ̄±k (z, y, λ) :
⊕

Σka=k

n⊗
a=1

Θ̄±ka

(
za, y, λ− y

n∑
b=a+1

(2ka − 1)

)
→ Θ̄±k (z1, . . . , zn, y, λ),

defined for (z, y, λ) ∈ Cn × C × C and k = 0, 1, 2, . . . . The direct sum is over the(
n
k

)
n-tuples (k1, . . . , kn) with sum k and ka ∈ {0, 1}, a = 1, . . . , n.

Corollary 3.11. The maps Φ̄±k (z, y, λ) are isomorphisms for generic (z, y, λ) ∈
Cn × C× C.

Thus, for generic z, y, λ ∈ Cn×C×C, Θ̄±k (z, y, λ) has dimension
(
n
k

)
and is zero

if k > n.

3.4. Duality.

Proposition 3.12. The identification

% : Θ−k (z, y, λ)→ Θ+
k (z, y,−λ− (n− 2k)y)

of Remark 3.5 (the identity map) restricts to an isomorphism

Θ̄−k (z, y, λ)→ Θ̄+
k (z, y,−λ− (n− 2k)y),

also denoted by %. For f ∈ Θ−k′ and g ∈ Θ−k′′ as in Proposition 3.6, the shuffle
product %(g) ∗ %(f) is well-defined and obeys

%(f ∗ g) = %(g) ∗ %(f).

Proof. It is clear that the vanishing condition is preserved. The last claim follows
from the identity

ϕ−(t, z, y) = ϕ+(tk′+1, . . . , tk, t1, . . . , tk′ , zn′+1, . . . , zn, z1, . . . , zn′ , y)

for the functions appearing in the definition of the shuffle product. �
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Remark 3.13. For n = 1 we have %(ω−k ) = (−1)kω+
k , see Example 3.4.

3.5. Weight functions. For (z, y, λ) ∈ Cn × C× C, let

Θ̄±(z, y, λ) = ⊕nk=0Θ̄±k (z, y, λ).

It is an h-module with Θ̄±k of weight −n + 2k. Let v1, v2 be the standard basis of

C2. If n = 1, we identify Θ̄±(z, y, λ) with C2 via the map ω±1 7→ v1, ω
±
0 7→ v2. Then

Φ̄±(z, y, λ) = ⊕kΦ̄±k (z, y, λ) is a linear map

(C2)⊗n → Θ̄±(z, y, λ).

It is a homomorphism of h-modules. Then a basis of (C2)⊗n is labeled by subsets
I of [n] = {1, . . . , n}: vI = vj(1) ⊗ · · · ⊗ vj(n) with j(a) = 2 if a ∈ I and j(a) = 1 if

a ∈ Ī, the complement of I.

Definition 3.14. The weight functions ω±I (t; z, y, λ) are the functions

ω±I (·; z, y, λ) = Φ̄±(z, y, λ)vI ∈ Θ̄±(z, y, λ).

In particular, for n = 1, ω±∅ = ω±0 , ω±{1} = ω±1 . Corollary 3.11 implies:

Proposition 3.15. Let (z, y, λ) be generic. The weight functions ω±I (·; z, y, λ) with

I ⊂ [n], |I| = k form a basis of the space Θ̄±k (z, y, λ) of theta functions obeying the
vanishing condition.

Example 3.16. For k = 1 and n = 1, 2 . . . , z ∈ Cn, y ∈ C, λ ∈ C, a = 1, . . . , n,

ω−{a}(t; z, y, λ) = θ(λ− t+ za + y(n− a− 1))

a−1∏
b=1

θ(t− zb)
n∏

b=a+1

θ(t− zb + y),

ω+
{a}(t; z, y, λ) = θ(λ+ t− za + y(n− a))

a−1∏
b=1

θ(t− zb + y)

n∏
b=a+1

θ(t− zb).

3.6. R-matrices. Note that while Θ̄±k (z, y, λ) is independent of the ordering of

z1, . . . , zn the map Φ̄±k does depend on it and different orderings are related by R-
matrices, as we now describe. We define R-matrices R±(z, y, λ) ∈ Endh(C2 ⊗ C2)
by

R±(z1 − z2, y, λ) = Φ̄±(z1, z2, y, λ)−1Φ̄±(z2, z1, y, λ)P,

where Pu⊗v = v⊗u is the flip of factors. Up to duality and gauge transformation,
these R-matrices coincide with the elliptic R-matrix of Section 2.3:

Proposition 3.17.

(i) Let si ∈ Sn be the transposition (i, i+ 1). Then

Φ̄±(siz, y, λ) = Φ̄±(z, y, λ)R±(zi − zi+1, y, λ− y
n∑

j=i+2

h(j))(i,i+1)P (i,i+1).

(ii) The R-matrices R± obey the dynamical Yang–Baxter equation (2) and the
inversion relation (3).

(iii) With respect to the basis v1 ⊗ v1, v1 ⊗ v2, v2 ⊗ v1, v2 ⊗ v2 of C2 ⊗ C2,

R−(z, y, λ) =


1 0 0 0
0 α(−z, y,−λ) β(−z, y, λ) 0
0 β(−z, y,−λ) α(−z, y, λ) 0
0 0 0 1

 = R∨(z, y, λ)
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is the dual R-matrix, see 2.2, with the standard identification of C2 with
(C2)∗ and

R+(z, y, λ) =


1 0 0 0
0 α(z, y,−λ) β(z, y, λ) 0
0 β(z, y,−λ) α(z, y, λ) 0
0 0 0 1

 = Rψ(z, y, λ)

is the gauge transformed R-matrix with

ψ(λ) =

(
θ(λ)θ(λ− y) 0

0 1

)
.

Corollary 3.18. Let (z, y, λ) ∈ Cn × C× C be generic and set

Si(z, y, λ) = R(zi − zi+1, y, λ− y
n∑

j=i+2

h(j))(i,i+1)P (i,i+1) ∈ Endh((C2)⊗n),

i = 1, . . . , n− 1, cf. (4).

(i) For t ∈ Ck, let ω−(t; z, y, λ) =
∑
I⊂[n],|I|=k ω

−
I (t; z, y, λ)vI . Then

ω−(t; z, y, λ) = Si(z, y, λ)ω−(t; siz, y, λ).

(ii) Let ψV ⊗n(λ) =
∏n
i=1 ψ(λ− yΣj>ih

(j))(i), cf. 2.2. Then

Φ̄+(siz, y, λ)ψV ⊗n(λ)−1 = Φ̄+(z, y, λ)ψV ⊗n(λ)−1Si(z, y, λ).

3.7. A geometric representation. Let z1, . . . , zn, y, λ be generic and w ∈ C.
Recall that we identify Θ̄+(w, y, λ) with V = C2 via the basis ω+

1 , ω
+
0 . Consider

the shuffle products3

p+ : V ⊗ Θ̄+(z1, . . . , zn, y, λ)→ Θ̄+(w, z1, . . . , zn, y, λ),

p− : Θ̄+(z1, . . . , zn, y, λ− yh(2))⊗ V → Θ̄+(w, z1, . . . , zn, y, λ).

Then varying w and denoting P the flip of tensor factors, we get a homomorphism

`(w, y, λ) = p−1
+ ◦ p− ◦ P ∈ Hom(V ⊗ Θ̄+(z, y, λ− yh(1)), V ⊗ Θ̄+(z, y, λ)).

By construction it obeys the dynamical Yang–Baxter equation

R+(w1 − w2, y, λ− yh(3))(12)`(w1, y, λ)(13)`(w2, y, λ− yh(1))(23) (7)

= `(w1, y, λ)(23)`(w2, y, λ− yh(2))(13)R+(w1 − w2, y, λ− yh(3))(12)

in Hom(V ⊗ V ⊗ Θ̄+(z, y, λ − y(h(1) + h(2))), V ⊗ V ⊗ Θ̄+(z, y, λ)). By varying
λ we obtain a representation of the elliptic dynamical quantum group as follows.
Let (z, y) ∈ Cn × C be generic and consider the space Θ̄+

k (z, y)reg of holomorphic

functions f(t, λ) on Ck × C such that for each fixed λ, t 7→ f(t, λ) belongs to
Θ̄+(z, y, λ). It is a module over the ring O(C) of holomorphic functions of λ. We
set

Θ̄+
k (z, y) = Θ̄+

k (z, y)reg ⊗O(C) K.
It is a finite dimensional vector space over K, and for generic z, y it has a basis
given by weight functions ω+

I , |I| = k.

3The compressed notation we are using might be confusing: the map p+ is actually defined on

⊕kΘ̄+(w, y, λ+ (n− 2k)y) ⊗ Θ̄+
k (z, y, λ). The identification of the first factor with V depends on

k through the λ-dependence of the basis vectors ω+
i .
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Proposition 3.19. Let z1, . . . , zn, y be generic complex numbers. Then

Θ̄+(z1, . . . , zn, y) = ⊕nk=0Θ̄+
k (z1, . . . , zn, y).

is a representation of the elliptic quantum group Eτ,y(gl2) with the L-operator

L(w)(v ⊗ u) = ψ(λ− yh(2))(1)`(w, y, λ)(ψ(λ)−1)(1)(v ⊗ τ∗−µu), v ∈ Vµ.
Here ψ is the gauge transformation of Proposition 3.17.

Proof. The homomorphisms ` obey the RLL-type relations (7) with R-matrix R+

which, according to Proposition 3.17, is obtained from R by the gauge transforma-
tion ψ. It is easy to check that

ˆ̀(w, y, λ) = ψ(λ− yh(2))(1)`(w, y, λ)(ψ(λ)−1)(1)

obeys the same relations but with R+ replaced by R. It follows that the correspond-
ing difference operators define a representation of the elliptic dynamical quantum
group. �

Remark 3.20. It follows from the previous section that this representation is iso-
morphic to the tensor product V (zσ(1))⊗· · ·⊗V (zσ(n)) for any permutation σ ∈ Sn.
However this identification with a tensor product of evaluation vector representa-
tions depends on a choice of ordering of the z1, . . . , zn, while Θ̄+(z1, . . . , zn, y, λ)
depends as a representation only on the set {z1, . . . zn}.

3.8. Pairing. We define a pairing of Θ−k with Θ+
k , taken essentially from [20],

Appendix C. Note that the product of a function in Θ−k (z, y, λ) and a function

in Θ+
k (z, y, λ) divided by the products of Jacobi theta functions in part (2) of

Definitions 3.1 and 3.2, is a function which is doubly periodic in each variable ti
with poles at ti = za and at ti = za − y, a = 1, . . . , n. It can thus be viewed
as a meromorphic function on the Cartesian power Ek of the elliptic curve E =
C/(Z + τZ).

Definition 3.21. Let z1 . . . , zn, y ∈ E such that za 6= zb + jy for all 1 ≤ a, b ≤ n,
1 ≤ j ≤ n− 1, and let γ ∈ H1(E r {z1, . . . , zn}) be the sum of small circles around
za, a = 1, . . . , n, oriented in counterclockwise direction. Let D ⊂ Ek be the effective
divisor D = ∪na=1 ∪ki=1 ({t ∈ Ek : ti = za} ∪ {t ∈ Ek : ti = za − y}). The symmetric
group Sk acts by permutations on the sections of the sheaf O(D) of functions on Ek

with divisor of poles bounded by D. Let 〈 〉 : Γ(Ek,O(D))Sk → C be the linear
form

f → 〈f〉 =
θ(y)k

(2πi)kk!

∫
γk
f(t1, . . . , tk)

∏
1≤i 6=j≤k

θ(ti − tj)
θ(ti − tj + y)

dt1 · · · dtk.

For k = 0 we define 〈 〉 : C→ C to be the identity map.

Lemma 3.22. Let f ∈ Γ(Ek,O(D))Sk . Then

〈f〉 = θ(y)k
∑

1≤i1<···<ik≤n

rest1=zi1
· · · restk=zik

f(t1, . . . , tk)
∏
i6=j

θ(ti − tj)
θ(ti − tj + y)

 .

Proof. By the residue theorem, 〈f〉 is a sum of iterated residues at ti = za(i)

labeled by maps a : [k] → [n]. Since θ(ti − tj) vanishes for ti = tj , only injective
maps a contribute non-trivially. Moreover, since the integrand is symmetric under
permutations of the variables ti, maps a differing by a permutation of {1, . . . , k}
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give the same contribution. Thus we can restrict the sum to strictly increasing
maps a and cancel the factorial k! appearing in the definition. �

Definition 3.23. Denote Q =
∏k
i=1

∏n
a=1 θ(ti − za)θ(ti − za + y) and let

〈 , 〉 : Θ−k (z, y, λ)⊗Θ+
k (z, y, λ)→ C

be the bilinear pairing 〈f, g〉 = 〈fg/Q〉, defined for generic z ∈ Cn, y ∈ C. Note
that fg/Q is an elliptic function of ti for all i.

Here is the explicit formula for the pairing:

〈f, g〉 =
θ(y)k

(2πi)kk!

∫
γk

f(t1, . . . , tk)g(t1, . . . , tk)∏
i,a θ(ti − za)θ(ti − za + y)

∏
i 6=j

θ(ti − tj)
θ(ti − tj + y)

dt1 · · · dtk. (8)

Lemma 3.24. Let n = 1. Then 〈ω−0 , ω
+
0 〉 = 1,

〈ω−1 , ω
+
1 〉 = θ(λ− y)θ(λ),

and 〈ω−k , ω
+
k 〉 = 0 for k > 1.

Proof. The first claim holds by definition. We have

〈ω−1 , ω
+
1 〉 = θ(y) rest=z

θ(λ− t+ z − y)θ(λ+ t− z)
θ(t− z)θ(t− z + y)

dt = θ(λ− y)θ(λ).

For k ≥ 2, the residue at t1 = z is regular at ti = z for i ≥ 2 and thus the iterated
residue vanishes. �

Proposition 3.25.

(i) The pairing restricts to a non-degenerate pairing Θ̄−k (z, y, λ)⊗Θ̄+
k (z, y, λ)→

C for generic z1, . . . , zn, y, λ.
(ii) In the notation of Proposition 3.10, suppose fi ∈ Θ̄−k′i

(z′, y, λ+y(n′′−2k′′i )),

gi ∈ Θ̄+
k′′i

(z′′, y, λ), i = 1, 2 and k′1 + k′2 = k′′1 + k′′2 . Then

〈f1 ∗ f2, g1 ∗ g2〉 =

{
〈f1, g1〉〈f2, g2〉 if k′1 = k′′1 and k′2 = k′′2 .

0, otherwise.

Proof. It is sufficient to prove (ii), since with Lemma 3.24 it implies that, with a
proper normalization, weight functions form dual bases with respect to the pairing.

We use Lemma 3.22 to compute 〈f1 ∗ f2, g1 ∗ g2〉. Let us focus on the summand
in Lemma 3.22 labeled by i1 < · · · < in and suppose is ≤ n′ < is+1. Due to the
factor θ(tl − za) in ϕ−, see Proposition 3.6, the only terms in the sum over shuffles
having nonzero first s residues rest1=zi1

,. . . rests=zis are those for which t1, . . . , ts
are arguments of f1. In particular the summand vanishes unless s ≤ k′1. Similarly
the factors θ(tj − zb) in ϕ+ restrict the sum over shuffles to those terms for which
ts+1, . . . , tk are arguments of g2, so that the summand vanishes unless s ≥ k−k′′2 =
k′2. It follows that if k′1 < k′2 then 〈f1 ∗ f2, g1 ∗ g2〉 vanishes and that if k′1 = k′′1 ,
the pairing can be computed explicitly as sum over i1 < · · · < is ≤ n′ < is+1 <
· · · < ik, with s = k′1, of terms involving f1g1(zi1 , . . . , zik′1

)f2g2(zik′1+1, . . . , zik).

The coefficients combine to give 〈f1, g1〉〈f2, g2〉.
There remains to prove that the pairing vanishes also if k′1 > k′2. Here is where

the vanishing condition comes in. We first consider the case where k′1− k′2 = 1 and
then reduce the general case to this case.
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As above the presence of the vanishing factors in ϕ± imply that the non vanishing
residues in Lemma 3.22 are those labeled by i1 < · · · < ik such that at least k′′1
indices are ≥ n′ and the corresponding variables ti are arguments of g1 and at
least k′2 indices are ≤ n′ and the corresponding variables are arguments of f2. If
k′1 − k′2 = 1 there is one variable left and we can write the pairing as a sum of
one-dimensional integrals over this variable:

IA,B =

∫
γ

f1(zA, t)g1(zB)f2(zA)g2(t, zB)

h(z1, . . . , zn, y, t)
dt. (9)

Here zA = za1
, . . . , zak′2

with ai ≤ n′ and zB = zb1 , . . . , zbk′′1
with bi > n′. The

point is that in h(z, t) several factor cancel and one obtains

h(z, y, t) = C(z, y)
∏

c∈A∪B

θ(t− zc)
∏

c∈A∪B
θ(t− zc + y),

for some t-independent function C(z, y). Because of the vanishing condition, the
integrand in (9) is actually regular at t = zc − y and the only poles are at t = zc,
c ∈ A ∪B. By the residue theorem IA,B = 0.

Finally, let us reduce the general case to the case where k′1 − k′2 = 1. We use
induction on n. By Lemma 3.24 the pairing vanishes unless k = 1, 0 so there
is nothing to prove in this case. Assume that the claim is proved for n − 1. By
Proposition 3.10, we can write g1 = h1∗m1 and g2 = h2∗m2 with mi ∈ Θ̄−ri(zn, y, λ).
By Lemma 3.24 we can assume that ri ∈ {0, 1}. By the associativity of the shuffle
product we can use the result for k′1 − k′2 = 1 to obtain that the pairing vanishes
unless r1 = r2 and

〈f1 ∗ g1, f2 ∗ g2〉 = 〈f1 ∗ h1, f2 ∗ h2〉〈m1,m2〉.

By the induction hypothesis, this vanishes unless k′1 = k′2. �

We obtain orthogonality relations for weight functions. To formulate them we
introduce some notation. For I ⊂ [n] and 1 ≤ j ≤ n we set

n(j, I) = |{l ∈ [n] | l ∈ I, l > j}|,
w(j, I) = n(j, I)− n(j, Ī).

(10)

Thus −w(j, I) the sum of the weights of the tensor factors to the right of the j-th
factor in vI .

Corollary 3.26. (cf. [20, Theorem C.4])

〈ω−I , ω
+
J 〉 = δI,JψI(y, λ),

where ψI(y, λ) =
∏
j∈I θ(λ− (w(j, I) + 1)y)θ(λ− w(j, I)y).

3.9. Normalized weight functions. By construction the weight functions ω±I
are entire functions of all variables and obey the vanishing conditions

ω±I (za, za − y, t3, . . . , tk; z, y, λ) = 0, a = 1, . . . , n.

This motivates the following definition.
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Definition 3.27. The normalized weight functions w±I are the functions

w−I (t; z, y, λ) =
ω−I (t; z, y, λ)∏

1≤j 6=l≤k θ(tj − tl + y)
,

w+
I (t; z, y, λ) =

ω+
I (t; z, y, λ)

ψI(y, λ)
∏

1≤j 6=l≤k θ(tj − tl + y)
.

Remark 3.28. The factor 1/ψI , defined in Corollary 3.26, simplifies the orthogonal-
ity relations and the action of the permutations of the zi at the cost of introducing
poles at λ+ yZ modulo Z + τZ.

Let I = {i1, . . . , ik} ⊂ [n] and f(t1, . . . , tk) a symmetric function of k variables.
We write f(zI) for f(zi1 , . . . , zik).

Lemma 3.29. For each I, J ⊂ [n] such that |I| = |J |, the weight functions
w−I (zJ ; z, y, λ) and ψI(y, λ)w+

I (zJ ; z, y, λ) are entire functions of z, y, λ.

Proof. The vanishing condition implies that ω±I (za, zb, t3, . . . ) is divisible by θ(zb−
za+y) so that the quotient by θ(t2−t1+y) is regular at zb = za−y after substitution
t1 = za, t2 = zb. Since ω±I is a symmetric function, the same holds for any other
pair tj , tl. �

The orthogonality relations become:

Proposition 3.30. (cf. [14, 15, 17]) Let I, J ⊂ [n], |I| = |J | = k. The normalized
weight functions obey the orthogonality relations∑

K

w−I (zK , z, y, λ)w+
J (zK , z, y, λ)∏

a∈K
∏
b∈K̄ θ(za − zb)θ(za − zb + y)

= δI,J .

The summation is over subsets K ⊂ [n] of cardinality |K| = k.

Proof. This is a rewriting of Corollary 3.26 by using Lemma 3.22. �

We will also use the orthogonality relations in the following equivalent form.

Corollary 3.31. Let I,K ⊂ [n], |I| = |K| = k. We have∑
J

w−J (zI , z, y, λ)w+
J (zK , z, y, λ) =

{∏
a∈I,b∈Ī θ(za − zb)θ(za − zb + y), I=K,

0, otherwise.

Proof. Let

xIK =
w−I (zK , z, y, λ)∏
a∈K,b∈K̄ θ(za − zb)

, yKJ =
w+
J (zK , z, y, λ)∏

a∈K,b∈K̄ θ(za − zb + y)
.

Proposition 3.30 claims that the matrix (xIK)I,K is the left inverse of the matrix
(yKJ)K,J . This implies, however, that the matrix (xIK)I,K is also a right inverse
of (yKJ)K,J , which is equivalent to the statement of the corollary. �

Weight functions have a triangularity property. Introduce a partial ordering on
the subsets of [n] of fixed cardinality k: if I = {i1 < · · · < ik} and J = {j1 < · · · <
jk}, then I ≤ J if and only if i1 ≤ j1, . . . , ik ≤ jk.
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Lemma 3.32. Let ε : [n]2 → {0, 1} be such that

ε(a, b) =

{
1, if a > b,

0, if a < b.

Then

(i) w−I (zJ ; z, y, λ) vanishes unless J ≤ I and

w−I (zI ; z, y, λ) =
∏
a∈I

θ(λ− (w(a, I) + 1)y)
∏

a∈I,b∈Ī

θ(za − zb + ε(b, a)y).

(ii) w+
I (zJ , z, y, λ) vanishes unless I ≤ J and

w+
I (zI ; z, y, λ) =

∏
a∈I,b∈Ī θ(za − zb + ε(a, b)y)∏
a∈I θ(λ− (w(a, I) + 1)y)

.

3.10. Eigenvectors of the Gelfand–Zetlin algebra. The normalized weight
functions w−I evaluated at zJ provide the (triangular) transition matrix between
the standard basis of (C2)⊗n and a basis of eigenvectors of the Gelfand–Zetlin
algebra. The Gelfand–Zetlin algebra is generated by the determinant ∆(w), see
(20), and L22(w). The determinant acts by multiplication by

n∏
i=1

θ(w − zi + y)

θ(w − zi)
.

We thus need to diagonalize L22(w).

Lemma 3.33. Let 0 ≤ k ≤ n, [k] = {1, . . . , k}. Then

ξ[k] =

k∏
i=1

θ(λ+ (n− k − i)y)v[k] ∈ V (z1)⊗ · · · ⊗ V (zn)

is an eigenvector of L22(w) with eigenvalue

k∏
a=1

θ(w − za)

θ(w − za − y)
.

Proof. (see [8, 15, 17]). Since L21(w)v1 = 0 = L12(w)v2, the action of L22(w) on

v⊗k1 ⊗v
⊗n−k
2 is simply the product of the action on all factors, with the appropriate

shift of λ. Since L22(w) acts diagonally in the basis v1, v2 one gets the result by
straightforward calculation. �

For I ⊂ [n], |I| = k, define

ξI = ξI(z, y, λ) =
∑
|J|=k

w−J (zI , z, y, λ)∏
a∈I,b∈Ī θ(za − zb + y)

vJ . (11)

By Lemma 3.32 this definition is consistent with the one for ξ[k] above.

Proposition 3.34. (cf. [8,15,17]) The vectors ξI , I ⊂ [n], |I| = k form a basis of
eigenvectors of the operators of the Gelfand–Zetlin algebra on V (z1)⊗ · · · ⊗ V (zn):

∆(w)ξI =

n∏
a=1

θ(w − za + y)

θ(w − za)
ξI , L22(w)ξI =

∏
a∈I

θ(w − za)

θ(w − za − y)
ξI .
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Proof. By Corollary 3.18 (i), we have that

ξI(z, y, λ) = Si(z, y, λ)ξsi·I(siz, y, λ).

Thus ξI(z, y, λ) is related to ξsi·I(siz, y, λ) by a morphism of representations of the
elliptic dynamical quantum group. If |I| = k then there is a permutation σ such that
σ · I = [k] and thus ξI(z, y, λ) = ρ(σ) ξ[k](σ · z, y, λ) for some morphism ρ(σ). Since
ξ[k](z, y, λ) is an eigenvector of L22(w) with eigenvalue µ[k](w; z, y), see Lemma
3.33, we deduce that ξI(z, y, λ) is an eigenvector with eigenvalue µI(w; z, y) =
µ[k](w;σ · z, y). �

3.11. An explicit formula for weight functions. Let I = {i1 < i2 < · · · <
ik} ⊂ [n] and recall the definition (10) of w(i, I) and of ψI in Corollary 3.26. We
set

l+I (r, a; t, z, y, λ) =


θ(tr − za + y), if a < ir,

θ(λ+ tr − za − w(ir, I)y), if a = ir,

θ(tr − za), if a > ir,

and

l−I (r, a; t, z, y, λ) =


θ(tr − za), if a < ir,

θ(λ− tr + za − (w(ir, I) + 1)y), if a = ir,

θ(tr − za + y), if a > ir.

Then

w+
I (t; z, y, λ) =

1

ψI(y, λ)
Sym

( ∏k
r=1

∏n
a=1 l

+
I (r, a; t, z, y, λ)∏

1≤i<j≤k θ(ti − tj)θ(tj − ti + y)

)
,

and

w−I (t; z, y, λ) = Sym

( ∏k
r=1

∏n
a=1 l

−
I (r, a; t, z, y, λ)∏

1≤i<j≤k θ(tj − ti)θ(ti − tj + y)

)
.

3.12. Dual bases and resonances. Here we prove Propositions 3.8 and 3.10.
They are corollaries of the following more precise statement:

Proposition 3.35. Let Λ = Z + τZ and fix (z, y, λ) ∈ Cn × C × C. Assume that
za − zb − sy 6∈ Λ, for all a 6= b, s = 0, . . . , k, λ− sy 6∈ Λ for all s ∈ S ⊂ Z for some
finite S depending on k and n.

(i) Let ω±ka = ω±ka(t; za, λ + y
∑n
b=a+1(1 − 2kb)), see Example 3.4. Then the

family

ω±k1
∗ · · · ∗ ω±kn , k ∈ Zk≥0,

n∑
a=1

ka = k

is a basis of Θ±k (z, y, λ).
(ii) The subfamily indexed by (ka)na=1 such that ka ∈ {0, 1} for all a is a basis

of Θ̄±k (z, y, λ).

Part (i) and a special case of (ii) are proved in [4]. The proof relies on the fol-
lowing construction of linear forms whose evaluations on the members of the family
form a non-degenerate triangular matrix. For a symmetric function f(t1, . . . , tk)
and w ∈ C, define evwf to be the symmetric function of k − 1 variables

evwf(t1, . . . , tk−1) = f(t1, . . . , tk−1, w).
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It is easy to check that evw maps Θ±k (z, y, λ) to Θ±k−1(z, y, λ± y). For ` ∈ Z≥0 and
f a symmetric function of k variables set

evw,`(f) =


f if ` = 0,

evw−`y ◦ · · · ◦ evw−y ◦ evw(f) if 1 ≤ ` ≤ k,

0, otherwise.

Finally, for ` ∈ Zn≥0,
∑n
a=1 `a = k we introduce linear forms ε`1,...,`n ∈ Θ±(z, y, λ)∗:

ε`1,...,`n = evzn,`n ◦ · · · ◦ evz1,`1 .

The following result is a special case of Proposition 30 from [4] (adapted to the
conventions of this paper). It can be checked by induction using the fact that the
evaluation points are such that at most one shuffle in the definition of the shuffle
products contributes nontrivially.

Lemma 3.36. Let (z, y, λ) ∈ Cn × C × C, k, ` ∈ Zn≥0 with
∑n
a=1 `a =

∑n
a=1 ka.

Then

(i) Let fa ∈ Θ−ka(za, y, λ− y
∑n
b=a+1(2kb − 1)), a = 1, . . . , n. Then

ε`1,...,`n(f1 ∗ · · · ∗ fn) = 0,

unless `1 + · · ·+ `p ≤ k1 + · · ·+ kp for all p = 1, . . . , n, and

εk1,...,kn(f1 ∗ · · · ∗ fn) =

n∏
a=1

evza,ka(fa)

×
∏
a<b

(
kb−1∏
s=0

θ(zb − za − ys)
ka−1∏
s=0

θ(za − zb + y(1− s))

)
.

(ii) Let ω−k be the basis of Θ−k (z, y, λ), z ∈ C, defined in Example 3.4. Then

evz,kω
−
k =

k∏
s=1

θ(λ− sy).

Setting fa = ω−ka , a = 1, . . . , n gives a proof of Proposition 3.35 (i) in the case of

Θ−. The case of Θ+ is reduced to this case by Proposition 3.12.
We turn to the proof of Proposition 3.35 (ii). In the notation we have introduced

here, Θ̄±k (z, y, λ) is the intersection of the kernels of evza,2 for a = 1, . . . , n.
Let (z, y, λ) ∈ Cn × C × C and 1 ≤ c ≤ n. In the following Proposition we

describe the interaction of evzc and evzc−y with the shuffle product. By using the
identifications of Remark 3.3, we view these maps as maps between the following
spaces:

evzc : Θ±k (z, y, λ)→ Θ±k−1(z1, . . . , zc − y, . . . , zn, y, λ),

evzc−y : Θ±k (z, y, λ)→ Θ±k−1(z1, . . . , zc + y, . . . , zn, y, λ± 2y).

Proposition 3.37. In the notation of Proposition 3.6, let f ∈ Θ−k′(z
′, y, λ+y(n′′−

2k′′)), g ∈ Θ−k′′(z
′′, y, λ). We have

(i) evzc(f ∗ g) = evzc(f) ∗ g
∏n
b=n′+1 θ(zc − zb + y), 1 ≤ c ≤ n′,

(ii) evzc−y(f ∗ g) = f ∗ evzc−y(g)
∏n′

a=1 θ(zc − za − y), n′ < c ≤ n.
Similarly, let f ∈ Θ+

k′(z
′, y, λ+ y(n′′ − 2k′′)), g ∈ Θ+

k′′(z
′′, y, λ). We have
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(iii) evzc−y(f ∗ g) = evzc−y(f) ∗ g
∏n
b=n′+1 θ(zc − zb + y), 1 ≤ c ≤ n′,

(iv) evzc(f ∗ g) = f ∗ evzc(g)
∏n′

a=1 θ(zc − za − y), n′ < c ≤ n.

Proof. (i) Due to the factor
∏k
l=k′+1 θ(tl − zc) in the definition of ϕ−, see Propo-

sition 3.6, the only terms in the sum over permutations contributing nontrivially
to evzc(f ∗ g) are such that tk is an argument of f . Thus evzc(f ∗ g) = evzc(f) ∗ g
times a factor that is computed explicitly. The proof of (ii)-(iv) is similar. �

By iterating, we obtain:

Corollary 3.38. Let f ∈ Θ−k′(z
′, y, λ+ y(n′′ − 2k′′)), g ∈ Θ−k′′(z

′′, y, λ). We have

evzc,2(f ∗ g) = evzc,2(f) ∗ g
n∏

b=n′+1

θ(zc − zb + y)θ(zc − zb), 1 ≤ c ≤ n′,

evzc,2(f ∗ g) = f ∗ evzc,2(g)

n′∏
a=1

θ(zc − za − y)θ(zc − za), n′ < c ≤ n,

and similarly for Θ+. In particular, if f and g satisfy the vanishing condition then
also f ∗ g does.

Proof of Proposition 3.35, (ii). We give the proof for Θ̄−k (z, y, λ). The proof for

Θ̄+
k (z, y, λ) is similar or can be deduced using the duality map of Proposition 3.12. It

follows from Corollary 3.38 that the indicated subfamily does belong to Θ̄−k (z, y, λ).
It remains to show that it is a spanning set. By Proposition 3.35, (i), we know that
any element of Θ̄−k (z, y, λ) can be written as linear combinations∑

k1+···+kn=k

λk1,...,knωk1
∗ · · · ∗ ωkn .

On the other hand, the linear form εk1,...,kn vanishes on Θ̄−k (z, y, λ) if ka ≥ 2 for
some a, since it involves the evaluation at za, za−y. By Lemma 5.17, the coefficients
λk1,...,kn must thus vanish if at least one ka is ≥ 2 which is what we had to prove.
�

4. Equivariant elliptic cohomology of Grassmannians

Let E be an elliptic curve and G a compact group. Equivariant elliptic cohomol-
ogy was postulated by Ginzburg, Kapranov and Vasserot in [7] as a functor EG from
pairs of finite G-CW complexes to superschemes satisfying a set of axioms, gener-
alizing those satisfied by equivariant cohomology and equivariant K-theory. One of
them being that for a point pt, EG(pt) is a suitable moduli scheme of G-bundles on
the dual elliptic curve. For example EU(n)(pt) = E(n) = En/Sn and for an abelian
group A with group of charactersX(A) = Hom(A,U(1)), EA(pt) = Hom(X(A), E).
By functoriality, the scheme EG(M) comes with a structure map

pG : EG(M)→ EG(pt).

For a complex elliptic curve, the case we consider here, a construction of equivariant
elliptic cohomology was given by Grojnowski [7,10]. It has the property that for a
connected Lie group G with maximal torus A and Weyl group W then W acts on
EA(M) and EG(M) = EA(M)/W .



20 GIOVANNI FELDER, RICHÁRD RIMÁNYI, AND ALEXANDER VARCHENKO

4.1. Tautological bundles and Chern classes. Let E be a complex elliptic
curve. The unitary group U(n) and its maximal torus A ∼= U(1)n act on the
Grassmannian Gr(k, n) of k-dimensional subspaces of Cn. The A-equivariant co-
homology of Gr(k, n) was described in [7, Section (1.9)], and is analogous to the
classical description of ordinary equivariant cohomology in terms of Chern classes
of tautological bundles. The Grassmannian has two tautological equivariant vector
bundles of rank k and n−k, respectively. They give rise to a characteristic map [7]

χ : EA(Gr(k, n))→ EU(k)(pt)× EU(n−k)(pt) = E(k) × E(n−k).

Here E(k) = Ek/Sk denotes the symmetric power of the elliptic curve, which is
the U(k)-equivariant cohomology of a point. Together with the structure map to
EA(pt) we have a description of the equivariant elliptic cohomology as the fiber
product of E(k)×E(n−k) and En over E(n), namely, we have the Cartesian square:

EA(Gr(k, n)) −→ E(k) × E(n−k)

↓ ↓
En −→ E(n).

The left vertical arrow is the structure map to EA(pt); the maps En → E(n)

and E(k) × E(n−k) → E(n) are the canonical projections. Thus EA(Gr(k, n)) =
(E(k) × E(n−k))×E(n) En.

The symmetric group Sn (the Weyl group of U(n)) acts on the diagram above
(with trivial action on the right column) and the U(n)-equivariant cohomology is
the quotient by this action:

EU(n)(Gr(k, n)) = EA(Gr(k, n))/Sn = E(k) × E(n−k).

4.2. Moment graph description. An alternative useful description of the equi-
variant elliptic cohomology is via the localization theorem, proved by Goresky,
Kottwitz and MacPherson [9] for equivariant cohomology and generalized to elliptic
cohomology by Knutson and Roşu [18]. For partial flag varieties such as Grassman-
nians it is described explicitly in [6, Example 4.4]. The action of A on the Grass-
mannian Gr(k, n) has isolated fixed points labeled by subsets of [n] = {1, . . . , n}
with k elements. The fixed point xI labeled by I ⊂ [n] is the k-plane spanned by
the coordinate axes indexed by I. The inclusion of the fixed points xI induces a
map ιI : EA(pt)→ EA(Gr(k, n)) and it turns out that EA(Gr(k, n)) is the union of
the ιIEA(pt) ' En where I runs over the subsets of [n] with k elements.

Let Γ be the graph with vertex set Γ0 the set of subsets I ⊂ [n] with |I| =
k elements and an edge connecting I with I ′ for each pair of vertices such that
|I∩I ′| = k−1. In this case I = J ∪{a} and I ′ = J ∪{b} with |J | = k−1 and we set
∆I,I′ = {z ∈ En, za = zb}. We then have inclusion maps ∆I,I′ → ιIEA(pt) = En,
∆I,I′ → ιI′EA(pt) = En.

Proposition 4.1. We have the coequalizer diagram

t|I∩I′|=k−1∆I,I′ ⇒ tI⊂[n],|I|=kE
n → EA(Gr(k, n))).

In other words, EA(Gr(k, n)) is the union of copies of En labeled by subsets I ⊂
[n] of size k, glued along the diagonals ∆I,I′ . The structure map EA(Gr(k, n)) →
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En is the identity on each copy. The isomorphism between the two descriptions of
EA(Gr(k, n)) is induced by the map

tI⊂[n],|I|=kE
n → (E(k) × E(n−k))×E(n) En

whose restriction to the copy En labeled by I is

z 7→ (z, zI , zĪ), zI = (zi)i∈I , zĪ = (zj)j∈Ī .

It is easy to check directly Proposition 4.1 using the fiber product as a definition
of the equivariant elliptic cohomology.

4.3. Cotangent bundles and dynamical parameter. The action of U(n) on
the Grassmannian induces an action on its cotangent bundle Xk,n = T ∗Gr(k, n).
Additionally we have an action of U(1) on the cotangent bundle by scalar multipli-
cation on the fibers, so we get an action of

G = U(n)× U(1)

and its Cartan torus

T = A× U(1) ∼= U(1)n+1.

Since the cotangent bundle is equivariantly homotopy equivalent to its zero section,
the equivariant elliptic cohomology is simply

ET (Xk,n) = EA(Gr(k, n))× E,

a scheme over ET (pt) = En × E, and

EG(Xk,n) = EU(n)(Gr(k, n))× E,

a scheme over EG(pt) = E(n) × E.
We will consider, as in [1], an extended version of elliptic cohomology to accom-

modate for dynamical variables in quantum group theory, namely

ÊT (Xk,n) := ET (Xk,n)× (Pic(Xk,n)⊗Z E) ∼= ET (Xk,n)× E,

a scheme over ÊT (pt) = En × E × E (the Picard group of the Grassmannian
is infinite cyclic generated by the top exterior power of the tautological bundle).
Similarly, we set

ÊG(Xk,n) = EG(Xk,n)× E,
which is a scheme over ÊG(pt) = E(n) × E × E.

The fixed points xK for the A-action on the Grassmannian are also isolated
fixed points in the cotangent bundle of the Grassmannian for the T -action and we
have maps ιK = ÊT (iK) : ÊT (pt) → ÊT (Xk,n) induced by the inclusion iK : pt 7→
xK . Then ÊT (Xk,n) consists of the components ιKÊT (pt), where K runs over the

subsets of [n] with k elements. By Section 4.1, we have a description of ÊT (Xk,n)
as a fiber product:

ÊT (Xk,n) ∼= (E(k) × E(n−k))×E(n) En × E × E.

In particular we have the characteristic embedding

c : ÊT (Xk,n)→ E(k) × E(n−k) × En × E × E (12)

of the extended T -equivariant elliptic cohomology scheme into a non-singular pro-
jective variety.
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5. Admissible line bundles on ÊT (Xk,n)

5.1. Line bundles on Ep. Line bundles on complex tori are classified by the
Appel–Humbert theorem, see Section I.2 in [13]. In the special case of powers of
generic elliptic curves this reduces to the following explicit description: let E = C/Λ
with Λ = Z + τZ so that Ep = Cp/Λp. For each pair (N, v) consisting of a
symmetric integral p × p matrix N and v ∈ (C/Z)p let L(N, v) be the line bundle
(Cp × C)/Λp → Ep with action

λ · (x, u) = (x+ λ, eλ(x)u), λ ∈ Λp, x ∈ Cp, u ∈ C,

and cocycle

en+mτ (x) = (−1)n
tNn(−eiπτ )m

tNme2πimt(Nx+v), n,m ∈ Zp.

Proposition 5.1.

(i) L(N, v) is isomorphic to L(N ′, v′) if and only if N = N ′ and v ≡ v′

mod Λp.
(ii) For generic E, every holomorphic line bundle on Ep is isomorphic to
L(N, v) for some (N, v).

(iii) L(N1, v1)⊗ L(N2, v2) ∼= L(N1 +N2, v1 + v2).
(iv) Let σ ∈ Sp act by permutations on Ep and Cp. Denote also by σ the

corresponding p× p permutation matrix. Then

σ∗L(N, v) = L(σtNσ, σtv).

To an integral symmetric p × p matrix N and a vector v ∈ Cp we associate
the integral quadratic form N(x) = xtNx and the linear form v(x) = xtv on the
universal covering Cp of Ep and we call them the quadratic form and the linear
form of the line bundle L(N, v). The linear form is defined up to addition of an
integral linear form.

Remark 5.2. Exceptions to (ii) are elliptic curves with complex multiplication, in
which case there are additional line bundles that are not isomorphic to those of the
form L(N, v).

Remark 5.3. The map Ep → Pic(Ep) sending v to L(0, v) is an isomorphism onto
the subgroup Pic0(Ep) of classes of line line bundles of degree 0. If E is a generic
elliptic curve, the Néron–Severi group NS(Ep) = Pic(Ep)/Pic0(Ep) is a free abelian
group of rank n(n+ 1)/2 identified with the group of integral symmetric matrices
via N 7→ L(N, 0).

Remark 5.4. Sections of L(N, v) are the same as functions f on Cp such that
f(x+λ) = eλ(x)−1f(x) for all λ ∈ Λp, x ∈ Cp. Explicitly, a function on Cp defines
a section of L(N, v) if and only if

f(x1, . . . , xj + 1, . . . , xp) = (−1)Njjf(x),

f(x1, . . . , xj + τ, . . . , xp) = (−1)Njje−2πi(
∑
k Njkxk+vj)−πiτNjjf(x),

for all x ∈ Cp, j = 1, . . . , p.

Remark 5.5. The factors of −1 in the cocycle can be removed by going to an
equivalent cocycle. With the present convention the line bundles L(N, 0) correspond
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to divisors whose irreducible components are subgroups. Let θ(z) be the odd Jacobi
theta function in one variable, see (1). Then, for any r ∈ Zp and z ∈ C,

θ(rtx+ z) = θ(r1x1 + · · ·+ rpxp + z)

is a holomorphic section of L(N, v) with quadratic form

N(x) =

(
p∑
i=1

rixi

)2

,

and linear form

v(x) = z

p∑
i=1

rixi.

If z = 0 this section vanishes precisely on the subtorus Ker(φr), the kernel of the
group homomorphism φr : Ep → E, x 7→

∑
i rixi. Since an integral quadratic form

is an integral linear combination of squares of integral linear forms, L(N, 0) has
a meromorphic section which is a ratio of products of theta functions θ(rtx) with
r ∈ Zp.

5.2. Admissible line bundles. The elliptic dynamical quantum group acts on
sections of admissible line bundles, which are, up to a twist by a fixed line bundle,
those coming from the base scheme ÊT (pt). Let pT be the structure map

pT : ÊT (Xk,n)→ ÊT (pt),

and χ̂ = χ× id× id the characteristic map

χ̂ : ÊT (Xk,n) = EA(Gr(k, n))× E × E → E(k) × E(n−k) × E × E.

Let t1, . . . , tk, s1, . . . , sn−k, y, λ be coordinates on the universal covering of Ek ×
En−k × E × E and N the quadratic form

Nk,n(t, s, y, λ) = 2

k∑
i=1

ti(λ+ (n− k)y) +

k∑
i=1

n−k∑
j=1

(ti − sj)2. (13)

Clearly Nk,n is symmetric under permutation of the coordinates ti and of the coordi-

nates sj and thus L(Nk,n, 0) can be considered as a bundle on E(k)×E(n−k)×E×E.

Definition 5.6. The twisting line bundle on Xk,n is Tk,n = χ̂∗L(Nk,n, 0)

Definition 5.7. An admissible line bundle on ÊT (Xk,n) is a line bundle of the
form

p∗TL ⊗ Tk,n,
for some line bundle L on ÊT (pt).

5.3. Holomorphic and meromorphic sections. We will consider meromorphic
sections of line bundles on elliptic cohomology schemes. Since these schemes are
singular, we need to be careful about the definition. Recall that ÊT (Xk,n) has

components YK = ιKÊT (pt), corresponding to the inclusion of the fixed points xK ,
labeled by subsets K ⊂ [n] of cardinality k. We say that a meromorphic section
on a complex manifold restricts to a meromorphic section on a submanifold if it is
defined at its generic point, i.e., if the divisor of poles does not contain a component
of the submanifold.
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Definition 5.8. Let L be a line bundle on ÊT (Xk,n). A meromorphic section of L
is a collection of meromorphic sections sI of L|YI , labeled by I ⊂ [n] with |I| = k
and restricting to meromorphic sections on all intersections YI1 ∩ · · · ∩YIs and such
that

sI |YI∩YJ = sJ |YI∩YJ ,

for all I, J . A holomorphic section is a meromorphic section whose restriction to
each YI is holomorphic. We denote by Γ(ÊT (Xk,n),L) the space of holomorphic

sections of L and by Γmer(ÊT (Xk,n),L) the space of meromorphic sections of L.

5.4. Weight functions and admissible line bundles. With the description of
line bundles of Section 5.1, the weight functions w+

I (t1, . . . , tk, z1, . . . , zn, y, λ) can

be viewed as sections of certain line bundles on E(k)×E(n−k)×En×E×E, namely as
(s-independent) functions of the coordinates (t1, . . . , tk, s1, . . . , sn−k, z, y, λ) on the
universal covering space, with proper multipliers under lattice translations. Their
pull-back by the characteristic embedding

c : ÊT (Xk,n) ↪→ E(k) × E(n−k) × En × E × E,

see (12), is a section of the pull-back bundle and its restriction to ιJ ÊT (pt) is the
evaluation of w+

I at t = zI .

Proposition 5.9. Let I ⊂ [n], |I| = k. Then the restriction c∗w+
I of w+

I to

ÊT (Xk,n) is a meromorphic section of the admissible bundle p∗TLI ⊗ Tk,n for some

line bundle LI on ÊT (pt). Moreover ψIc
∗w+

I is holomorphic.

Proof. We need first to check that all terms in the sum over Sk defining the sym-
metrization map Sym in Section 3.11 have the same transformation properties under
shifts of the variables by the lattice so that they define sections of the same line
bundle on Ek × En × E2. The symmetrization map then produces a section sym-
metric under permutations of ti, which is the same as a section of a line bundle on
E(k)×En×E2. The transformation properties are encoded in the quadratic form:
the argument of Sym is a section of the line bundle L(MI , 0) with

MI(t, z, y, λ) = 2

k∑
r=1

tr(λ+ (n− k)y) +

k∑
r=1

n∑
a=1

(tr − za)2 − 2
∑

1≤r<s≤k

(tr − ts)2

+ M̃I(z, y, λ),

where M̃I is independent of t1, . . . , tk. Since MI is symmetric under permutations
of the variables ti it defines an Sn-equivariant line bundle. All terms in the sum
over permutations are sections of this line bundle and their sum is a symmetric
section, i.e., the pull-back of a section on the quotient E(k) × En × E2, which we
understand as a section on E(k) × E(n−k) × En × E2, constant along E(n−k). The
restriction to the component ιKÊT (pt) of ÊT (Xk,n) is w+

I (zK , z, y, λ), the result of
substituting the variables ti by zK = (zi)i∈K . It is a section of the line bundle with
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quadratic form

MI(zK , z, y, λ) = 2
∑
i∈K

zi(λ+ (n− k)y) +
∑
i∈K

n∑
a=1

(zi − za)2 −
∑
i,j∈K

(zi − zj)2

+ M̃I(z, y, λ)

= 2
∑
i∈K

zi(λ+ (n− k)y) +
∑

i∈K,j∈K̄

(zi − zj)2 + M̃I(z, y, λ)

= Nk,n(zK , zK̄ , y, λ) + M̃I(z, y, λ),

cf. (13). Thus the symmetrization is a section of the tensor product of the twisting

bundle and the bundle with quadratic form M̃I which is independent of K and
thus comes from ÊT (pt) = En × E2. The section ψIc

∗w+
I is holomorphic because

of Lemma 3.29. �

Thus c∗w+
I is a meromorphic section of an admissible line bundle p∗TLI ⊗ Tk,n

with poles on a finite set of hypertori with equation λ− jy = 0, j ∈ Z, the divisors
of zeros of ψI . The bundle LI can be calculated: LI = L(NI , 0) with

NI = −2
∑
a∈Ī

n(a, I)zay − 2
∑
a∈I

za(λ+ n(a, Ī)y)

+ (k(n− k)−
∑
a∈I

n(a, Ī))y2 −
∑
a∈I

(λ− (n(a, I) + 1)y + n(a, Ī)y)2,
(14)

see (10) for the definition of n(a, I). Let DI be the divisor of zeros of the sec-

tion ψI(y, λ) on ÊT (pt), I ⊂ [n], see Corollary 3.26. Then the normalized weight
function can be understood as a holomorphic section of an admissible bundle:

c∗w+
I ∈ Γ(Xk,n, p

∗
TLI(DI)⊗ Tk,n).

Here the notation L(D) means as usual the invertible sheaf of meromorphic sections
of a sheaf L whose poles are bounded by the divisor D.

Example 5.10. Let n = 1. Then w+
∅(t, z, y, λ) = 1 and c∗w∅ = 1 is a section of

the trivial bundle (L∅ and T0,1 are both trivial). For k = 1,

w+
{1}(t, z, y, λ) =

θ(λ+ t− z)
θ(λ)θ(λ− y)

,

and c∗w+
{1} is obtained by substituting t = z:

c∗w+
{1}(z, y, λ) =

1

θ(λ− y)
.

This is a meromorphic section of the line bundle L(−(λ−y)2, 0) with a simple pole

at λ = y on ÊT (X1,1) = ÊT (pt) ∼= E3. The quadratic form is composed from the
quadratic forms 2zλ of T1,1 and −2zλ− (λ− y)2 of L{1}.

5.5. Elliptic cohomology classes and stable envelope. Here we introduce an
elliptic version of the Maulik–Okounkov stable envelope. It is constructed in terms
of weight functions. In the Appendix we give an axiomatic definition in the spirit
of [12]. It would be interesting to understand the relation of our definition with the
one sketched in [1].
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Definition 5.11. Let L ∈ Pic(ÊT (pt)). A T -equivariant elliptic cohomology class
on Xk,n of degree L is a holomorphic section of the admissible bundle p∗TL ⊗ Tk,n
on ÊT (Xk,n). We denote by Hell

T (Xk,n)L the vector space of T -equivariant elliptic
cohomology classes of degree L on Xk,n. We denote by Hell

T (Xn)L the h-module
⊕nk=0H

ell
T (Xk,n)L, with k-th direct summand of h-weight −n+ 2k.

Definition 5.12. The stable envelope is the map

Stab: (C2)⊗n → ⊕nk=0 ⊕I⊂[n],|I|=k H
ell
T (Xk,n)LI(DI), (15)

sending vI to the cohomology class c∗w+
I .

Remark 5.13. The basis vector vI should be viewed as the generator of the space
of elliptic cohomology classes of the fixed point xI , see Section 7 below.

Remark 5.14. The class c∗w+
I has analogs in equivariant cohomology and equivari-

ant K-theory of Xk,n, see [8,14,15]. The analog of c∗w+
I in equivariant cohomology

is the equivariant Chern–Schwartz–MacPherson class of the open Schubert variety
ΩI , see [16]. Hence c∗w+

I may be considered as an elliptic equivariant version of
the Chern–Schwartz–MacPherson class.

5.6. Sheaf of elliptic cohomology classes and theta functions. Here we real-
ize elliptic cohomology classes as sections of coherent sheaves on ÊT (pt) and relate
their sections to the theta functions with vanishing condition of Section 3.3.

Definition 5.15. Let k = 0, . . . , n, µ = −n + 2k and Tk,n be the twisting line
bundle of Definition 5.6. The sheaf of elliptic cohomology classes of weight µ is the
sheaf

Hell
T (Xk,n) = pT∗Tk,n

on ÊT (pt). Here pT∗ = (pT )∗ denotes the direct image by the structure map

pT : ÊT (Xk,n)→ ÊT (pt).

By the projection formula, L ⊗ pT∗Tk,n ∼= pT∗(p
∗
TL ⊗ Tk,n) for any line bundle

L ∈ Pic(ÊT (pt)). Thus a section of Hell
T (Xk,n)⊗L on an open set U is a section of

the admissible line bundle p∗TL ⊗ Tk,n on p−1
T (U). In particular,

Hell
T (Xk,n)L = Γ(ÊT (pt),Hell

T (Xk,n)⊗ L).

The space Θ+
k (z, y, λ) of theta functions introduced in Section 3.1 is the fiber of a

vector bundle Θ+
k,n on ÊT (pt). In the language of Section 5.1, Θ+

k,n = p∗L(NΘ
k,n, 0)

is the direct image by the projection p : E(k) × ÊT (pt) → ÊT (pt) onto the second
factor of the line bundle associated with the quadratic form

NΘ
k,n = 2

k∑
i=1

ti(λ+ (n− k)y) +

k∑
i=1

n∑
a=1

(ti − za)2 + k(k − 1)y2 (16)

Here, as usual, the ti are coordinates on the universal covering of Ek and za, y, λ are
coordinates on the universal covering of ÊT (pt). In fact only the terms involving ti
in NΘ

k,n are determined by the transformation properties of the fibers Θ+
k (z, y, λ).

We choose the remaining terms to simplify the formulation of Theorem 5.16 below.
The space of theta functions Θ̄+

k (z, y, λ) satisfying the vanishing condition of

Section 3.3 is the generic fiber of a coherent subsheaf Θ̄+
k,n of Θ+

k,n on ÊT (pt) (it is
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the intersection of kernels of morphisms evza,2 of coherent sheaves). The sheaves
Θ̄+
k,n and Hell

T (Xk,n) are closely related: there is a morphism

ϕ : Θ̄+
k,n → H

ell
T (Xk,n),

defined as follows. A section of Θ̄+
k,n on an open set U is given by a function

f(t; z, y, λ) on Ck × U , which, as a function of t belongs to Θ+
k (z, y, λ) and obeys

the vanishing conditions

f(za, za − y, t3, . . . , tk; z, y, λ) = 0, a = 1, . . . , n.

The morphism ϕ sends f to (ϕIf)I⊂[n],|I|=k where ϕIf is the restriction of ϕf to

ιIÊT (pt) ∼= ÊT (pt):

ϕIf(z, y, λ) =
f(t; z, y, λ)∏

i 6=j θ(ti − tj + y)

∣∣∣∣∣
t=zI

, (17)

cf. Section 3.9.

Theorem 5.16. Let D ⊂ ÊT (pt) be the union of the hypertori za = zb + y,
1 ≤ a 6= b ≤ n and λ = jy, −n ≤ j ≤ n. The map ϕ : f 7→ (ϕIf)I⊂[n],|I|=k
given by formula (17) is a well-defined injective morphism of OÊT (pt)-modules

ϕ : Θ̄+
k,n ↪→ H

ell
T (Xk,n),

which is an isomorphism on ÊT (pt) rD.

Proof. We first prove that the morphism is well-defined. The function ϕIf of
z, y, λ defines a section of the line bundle L(Q, 0) with quadratic form Q = (NΘ

k,n−∑
i6=j(ti − tj + y)2)|t=zI . An explicit calculation shows that

Q = Nk,n|t=zI ,s=zĪ .

It follows that ϕf is a meromorphic section of pT∗Tk,n. By Lemma 3.29 (which
applies to any symmetric theta function obeying the vanishing condition), ϕf is
actually holomorphic.

To show that the morphism is injective, we use the fact that the weight functions
ω+
I form a basis of Θ̄+

k (z, y, λ) at the generic point of ÊT (pt), see Proposition 3.15.

Thus every local section of Θ̄+
k,n can be written as linear combination of normalized

weight functions with meromorphic coefficients. If this section is in the kernel of
our morphism then its restriction to each component vanishes. By the triangularity
property of weight functions of Lemma 3.32 all coefficients must vanish and the
kernel is trivial.

We now construct the inverse map on the complement of D. A section s of
Hell
T (Xk,n) on an open set U is a collection of sections sI of Tk,n on the various

components of p−1
T (U) and agreeing on intersections. Then f = ϕ−1s is

f(t; z, y, λ) =
∑
I,K

ψK(y, λ)−1 w−K(zI , z, y, λ)sI(z, y, λ)∏
a∈I,b∈Ī θ(za − zb)θ(za − zb + y)

ω+
K(t, z, y, λ).

It is easy to check that this is a meromorphic section of Θ̄+
k,n on U with poles at

zb = za + y, 1 ≤ a 6= b ≤ n and at the zeros of ψK . It is regular at the apparent
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poles at za = zb since the sections sI agree on intersections of the components. Let
us compute ϕf :

f(t; z, y, λ)∏
i 6=j θ(ti − tj + y)

=
∑
I,K

w−K(zI , z, y, λ)sI(z, y, λ)∏
a∈I,b∈Ī θ(za − zb)θ(za − zb + y)

w+
K(t, z, y, λ).

The orthogonality relations, see Corollary 3.31, imply

ϕJf =
∑
I,K

w−K(zI , z, y, λ)sI(z, y, λ)∏
a∈I,b∈Ī θ(za − zb)θ(za − zb + y)

w+
K(zJ , z, y, λ)

= sJ(z, y, λ)

�

5.7. Symmetric group and G-equivariant cohomology classes. The symmet-
ric group Sn on n letters acts on Cn by permutation of coordinates. This action
induces an action of Sn on the Grassmannians, their cotangent bundles Xk,n and on
T so that the action map T×Xk,n → Xk,n is Sn-equivariant. The induced action on

the cohomology schemes ÊT (Xk,n) can be easily described: on ÊT (pt) = En ×E2,
Sn acts by permutations of the first n factors and σ ∈ Sn sends the component
ιKÊT (pt) of ÊT (Xk,n) to ισ(K)ÊT (pt) so that the diagram

ÊT (pt)
σ−→ ÊT (pt)

ιK ↘ ↙ ισ(K)

ÊT (Xk,n)

commutes for any K ⊂ [n] with |K| = k elements. The structure map ÊT (Xk,n)→
ÊT (pt) is Sn-equivariant and the quotient by the action of Sn is the G-equivariant
elliptic cohomology scheme.

Lemma 5.17. The twisting bundle is Sn-equivariant, i.e., the Sn-action lifts to an
Sn action on the bundle.

Proof. This follows since the twisting bundle is the pull-back by an Sn-equivariant
map of a bundle on E(k) × E(n−k) on which the action of the symmetric group is
trivial. �

In particular for each σ ∈ Sn and admissible line bundle M, we have an admis-
sible line bundle σ∗M and a map

σ∗ : Γmer(ÊT (Xk,n),M)→ Γmer(ÊT (Xk,n), σ∗M),

and also a map
σ∗ : Hell

T (Xk,n)→ σ∗Hell
T (Xk,n).

Let π : ÊT (pt)→ ÊG(pt) = ÊT (pt)/Sn. Then we obtain an action of the symmetric
group on π∗Hell

T (Xk,n).

Definition 5.18. Let G = U(n)× U(1). The sheaf of G-equivariant elliptic coho-
mology classes is

Hell
G (Xk,n) = π∗Hell

T (Xk,n)Sn ,

a coherent sheaf on ÊG(pt) = E(n) × E × E. Let L ∈ Pic(ÊG(pt)). The space
of G-equivariant elliptic cohomology classes of degree L on Xk,n is Hell

G (Xk,n)L =

Γ(ÊG(pt),Hell
G (Xk,n)⊗L). We set Hell

G (Xn)L to be the h-module ⊕nk=0H
ell
G (Xk,n)L,

with the summand labeled by k of h-weight −n+ 2k.
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5.8. Admissible difference operators. Recall that ÊT (Xk,n) has a factor E ×
E corresponding to the U(1)-action on the cotangent spaces and the dynamical

parameter. For j ∈ Z, let τj = τ j1 be the automorphism of E × E such that

τj(y, λ) = (y, λ+ jy).

Denote also by τj the automorphism id×τj of ÊT (Xk,n) = EA(Gr(k, n))×E×E. If

L is a line bundle on ÊT (Xk,n) then τj lifts to a (tautological) bundle map L → τ∗j L,
also denoted by τ∗j . It maps meromorphic sections to meromorphic sections and is
thus a well-defined operator

τ∗j : Γmer(ÊT (Xk,n),L)→ Γmer(ÊT (Xk,n), τ∗j L).

Definition 5.19. Let k = 0, . . . , n and L be a line bundle on ÊT (pt), µ ∈ 2Z,
ν ∈ Z. An admissible difference operator on meromorphic sections of an admissible
line bundle M1 = p∗TL1 ⊗ Tk,n on ÊT (Xk,n) of degree (L, µ, ν) is a linear map

ϕ : Γmer(ÊT (Xk,n),M1)→ Γmer(ÊT (Xk+µ,n),M2)) such that

(i) M2 is the admissible bundle p∗TL2 ⊗ Tk+µ/2,n with L2 = L ⊗ τ∗νL1.
(ii) For each section s of M1 and fixed point xK ∈ Xk+µ,n,

ι∗Kϕ(s) =
∑
K′

ϕK,K′τ
∗
ν ι
∗
K′s (18)

for some sections ϕK,K′ ∈ Γmer(ÊT (pt), ι∗KM2 ⊗ ι∗K′τ∗νM
−1
1 ).

By inserting the definition, we see that the line bundle of which ϕK,K′ is a section
is

ι∗KM2 ⊗ τ∗ν ι∗K′M−1
1 = L ⊗ ι∗KTk+µ/2,n ⊗ τ∗ν ι∗K′T −1

k,n .

This line bundle is independent of the admissible line bundle the operator acts on.
It thus makes sense to let the same admissible difference operator act on sections
of different admissible line bundles. We set

Ak,n(L, µ, ν), k = 0, . . . , n, 0 ≤ k + µ ≤ n,
to be the space of admissible difference operators of degree (L, µ, ν).

It is convenient to extend the above definitions to the case of varying k. We de-
note by Xn = tnk=0Xk,n the disjoint union of cotangent bundles to Grassmannians
of subspaces of all dimensions in Cn. The extended elliptic cohomology scheme is
then

ÊT (Xn) = tnk=0ÊT (Xk,n).

It comes with a map pT : ÊT (Xn)→ tnk=0ÊT (pt).

Definition 5.20. An admissible line bundle on ÊT (Xn) is a line bundle whose

restriction to each ÊT (Xk,n) is admissible. Let L = (L0, . . . ,Ln) be a line bundle on

tnk=0ÊT (pt), µ, ν ∈ Z. An admissible difference operator of degree (L, µ, ν) acting

on sections of an admissible line bundle M1 is a linear map Γmer(ÊT (Xn),M1)→
Γmer(ÊT (Xn),M2) restricting for each k = 0, . . . , n such that k+µ ∈ {0, . . . , n} to
an admissible difference operator

Γmer(ÊT (Xk,n),M1|Xk,n)→ Γmer(ÊT (Xk+µ,n),M2|Xk+µ,n
),

of degree (Lk, µ, ν). We denote by

An(L, µ, ν) = ⊕0≤k,k+µ≤nAk,n(Lk, µ, ν)
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the space of admissible difference operators of degree (L, µ, ν).

Remark 5.21. We will not need to consider operators on components for k such
that k+µ 6∈ {0, . . . , n}. However to have a correct definition we may set ÊT (Xk,n)
to be the empty set if k 6∈ {0, . . . , n} and declare the space of sections of any line
bundle on the empty set to be the zero vector space.

5.9. Left and right moment maps. Examples of admissible difference operators
are multiplication operators by sections of pull-backs of line bundles on ÊT (pt).
A subclass of these operators appear as coefficients in the defining relations of the
quantum group: they are the entries of the R-matrix and are functions of the
dynamical and deformation parameter, and appear in the relations in two different
guises: with and without “dynamical shift”. We borrow the terminology of [2],
Section 3, where these two appearances are called the left and right moment maps.

Let L be a line bundle on ÊT (pt). We define two line bundles µ`L, µrL on

tnk=0ÊT (pt):

• µrL is the line bundle (L, . . . ,L);
• µ`L is the line bundle (τ∗nL, τ∗n−2L, . . . , τ∗−nL).

Definition 5.22. The left moment map is the map

µ` : Γmer(ÊT (pt),L)→ An(µ`L, 0, 0),

sending a section s to the operator whose restriction to Ak,n is the multiplication
by τ∗n−2kp

∗
T s.

The right moment map is the map µr : Γmer(ÊT (pt),L)→ An(µrL, 0, 0) sending
s to the operator whose component in Ak,n is the multiplication by p∗T s.

5.10. Sections of admissible bundles as a module over multiplication op-
erators. Let L ∈ Pic(ÊT (pt)) and set A0

n(L) = (An(L, 0, 0)). Then the fam-
ily A0

n = (A0
n(L))L∈Pic(ÊT (pt)) is a commutative subalgebra graded by the Picard

group of the base. It acts on meromorphic sections of admissible bundles by map-
ping Γmer(Xk,n,M) to Γmer(Xk,n,M⊗ p∗TL) for any admissible line bundle M.
Then the weight functions form a system of free generators of the module of sec-
tions of admissible line bundles over A0

n in the following sense.

Theorem 5.23. Let L ∈ Pic(ÊT (pt)). Every section ω ∈ Γmer(ÊT (Xk,n), p∗TL ⊗
Tk,n) can be uniquely written as

ω =
∑

I⊂[n],|I|=k

aIStab(vI),

for some aI ∈ A0
n(L ⊗ L−1

I ), where LI is the line bundle of Prop. 5.9.

Proof. Denote by YI = ιIÊT (pt) the component labeled by I. Suppose that ω
is a meromorphic section vanishing on YJ for all J > I and such that ω|YI 6= 0.
By Lemma 3.32, we can subtract from ω a multiple of c∗w+

I to get a section that
vanishes on YJ , J ≥ I. By induction we may subtract from ω a suitable linear
combination of weight functions to get 0. �

5.11. Sn-equivariant admissible difference operators.

Definition 5.24. An admissible difference operator is called Sn-equivariant if it
commutes with the action of the symmetric group on sections.
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Lemma 5.25. Let L be an Sn-equivariant line bundle on ÊT (pt). An admissible
difference operator ϕ of degree (L, µ, ν) is Sn-equivariant if and only if its matrix
elements ϕK,K′ obey

σ∗ϕσ(K),σ(K′) = ϕK,K′ .

5.12. Graded algebras, graded modules. Let Q be a group. Recall that an
Q-graded algebra A over C is a collection (Aγ)γ∈Q of complex vector spaces with
associative linear multiplication maps Aγ ⊗ Aγ′ → Aγγ′ , a ⊗ b 7→ a · b. Let P
be a set with a left action of Q. A P -graded (left) module over A is a collection
(Mp)p∈P of complex vector spaces indexed by P together with linear action maps
Aγ ⊗Mp → Aγ·p, a⊗m 7→ a ·m, obeying (a · b) ·m = a · (b ·m). A unital Q-graded
algebra is an Q-graded algebra with an identity element 1 ∈ Ae in the component
indexed by the identity element e of Q. We require 1 to act as the identity on
P -graded modules.

5.13. The grading of admissible difference operators. LetQ = Pic(ÊT (pt))n
2Z×Z be the product of the Picard group of ÊT (pt) ∼= En+2 by 2Z×Z with group
law

(L, µ, ν)(L′, µ′, ν′) = (L ⊗ τ∗νL′, µ+ µ′, ν + ν′).

Proposition 5.26. The collection (An(L, µ, ν))(L,µ,ν)∈Q with the composition of
operators is a unital Q-graded algebra.

Proof. An admissible difference operator of degree (L′, µ′, ν′) sends a section of an
admissible line bundle M1 = p∗TL1 ⊗ Tk,n to a section of M2 = p∗TL2 ⊗ Tk+µ′/2,n

with L2 = L′⊗τ∗ν′L1. An operator of degree (L, µ, ν) sends this section to a section
of p∗TL3 ⊗ Tk+µ/2+µ′/2,n with

L3 = L ⊗ τ∗νL2 = L ⊗ τ∗νL′ ⊗ τ∗ν+ν′L1.

It is clear that the µ-components of the degree add, so the composition has degree
(L⊗ τ∗νL′, µ+µ′, ν+ ν′), as required. The identity element is the multiplication by
constant function 1, a section of the trivial bundle O. �

Remark 5.27. There is a slight abuse of notation, since A(L, µ, ν) is defined for a
line bundle L and not for its equivalence class. The point is that A(L, µ, ν) for
equivalent bundles L are canonically isomorphic: if ϕ is an admissible difference
operator of degree (L, µ, ν) and ψ : L → L′ is an isomorphism then ϕ′ = ψ ◦ϕ◦ψ−1

is an difference operator of degree (L′, µ, ν). This establishes the isomorphism

ψ̄ : A(L, µ, ν)→ A(L′, µ, ν),

which we claim is independent of ψ. Indeed any two choices of ψ differ by the
composition with an automorphism of L. Since Aut(L) = C×, ψ and ψ′ differ by
multiplication by a nonzero scalar which does not affect ψ̄.

Let P be the set of pairs (L, µ) with L ∈ Pic(ÊT (Xn)) and µ ∈ Z. Then Q acts
on P via

(L, µ, ν) · (L′, µ′) = (L ⊗ τ∗νL′, µ+ µ′).

Let M = p∗TL1 ⊗ Tk,n be an admissible bundle on Xk,n.
Admissible difference operators map sections of admissible line bundles to sec-

tions of admissible line bundles. This is formalized as follows.
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Proposition 5.28. The collection of vector spaces Γmer(ÊT (Xk,n), p∗TL ⊗ Tk,n),
labeled by (L, µ), with µ = −n+ 2k is a P -graded module over the Q-graded unital
algebra An of admissible difference operators.

Proof. This is an immediate consequence of the definition, see Definition 5.19, (i).
�

6. Action of the elliptic dynamical quantum group

In this section we construct an action of the elliptic dynamical quantum group
associated with gl2 on the extended equivariant elliptic cohomology ÊT (Xn) of the
union of cotangent bundles of the Grassmannians of planes in Cn. The action is by
Sn-equivariant admissible difference operators acting on admissible line bundles on
the cohomology scheme. Thus each generator Lij(w) (i, j ∈ {1, 2}) of the elliptic
dynamical quantum group acts on sections of any admissible line bundle by an
admissible difference operator of some degree (Lij(w), µij , νij) which we give below.
We also compute the action on T -equivariant elliptic cohomology classes and use
the Sn-equivariance to show that the action descends to an action on G-equivariant
classes, with G = U(n)× U(1).

We construct the action in such a way that at the generic fibre of ÊT (Xk,n) →
ET (pt) = En × E (i.e., for fixed z1, . . . , zn, y) the map (15) defines a morphism
of representations from the tensor product of evaluation representations. In other
words, suppose that

Lij(w)vI =
∑
K

Lij(w, z, y, λ)KI vK ,

for some meromorphic coefficients Lij(w, z, y, λ)KI . Then we want that

Lij(w)Stab(vI) =
∑
K

Lij(w, z, y, λ)KI Stab(vK). (19)

The matrix coefficients Lij(w, z, y, λ)KI are certain meromorphic functions of z, y, λ
with theta function-like transformation properties and can thus be considered as
meromorphic sections line bundles on ÊT (pt). Therefore each summand on the
right-hand side is a meromorphic section of an admissible line bundle. The content
of the following theorem is that the sum defines uniquely an admissible difference
operator.

Theorem 6.1.

(i) The formula (19) uniquely defines admissible difference operators Lij(w),
i, j ∈ {1, 2}, of degree (Lij(w), 2(i − j), ε(j)) with ε(1) = −1, ε(2) = 1, for

some Sn-equivariant line bundle Lij(w) on ÊT (pt).
(ii) These operators obey the RLL relations of the elliptic dynamical quantum

group in the form

µ`R(w1 − w2, y, λ)(12)L(w1)(13)L(w2)(23)

= L(w2)(23)L(w1)(13)µrR(w1 − w2, y, λ)(12).

Here the coefficients of the quadratic relations are in A0
n and the action of

µ`, µr is on each matrix element of R.
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The proof of this theorem is by explicit description of the action and is parallel
to the case of Yangians and affine quantum enveloping algebras, [8,15,17]. We give
the formulae for the action in Section 6.1, 6.2, 6.3. The proof of Theorem 6.1 is in
Section 6.4.

By Theorem 6.1, the generators Lij(w) send meromorphic sections of admissible
bundles to meromorphic sections of admissible bundles. The next result gives a
more precise control on the poles of coefficients. We give the action on holomorphic
sections, i.e., equivariant elliptic cohomology classes, both for the torus T = U(1)n×
U(1) and the group G = U(n)× U(1).

Theorem 6.2.

(i) Let D be the divisor on ÊT (pt) whose components are the hypersurfaces
defined by equations za + y = w, for 1 ≤ a ≤ n and λ + yj = 0, for j =
−n . . . , n− 1, n. Then Lij(w) maps Hell

T (Xn)L to Hell
T (Xn)τ∗

ε(j)
L⊗Lij(w)(D)

for any L ∈ Pic(ÊT (pt)).
(ii) Let H`

G(Xn)L be the space of G-equivariant elliptic cohomology classes of

degree L for G = U(n) × U(1), see Definition 5.18. Let π : ÊT (pt) →
ÊG(pt) be the canonical projection. View line bundles on ÊG(pt) as Sn-

equivariant line bundles on ÊT (pt). Then the operators Lij(w) induce well-
defined operators from Hell

G (Xn)L to Hell
G (Xn)τ∗

ε(j)
L⊗Lij(w)(π(D)) for each

L ∈ Pic(ÊG(pt)).

The proof of this theorem is contained in Section 6.4.

Remark 6.3. Let q : ÊT (pt) = ET (pt) × E → ET (pt) be the projection onto the
first factor. Since the action of the generators Lij(w) is by admissible difference
operators it preserves the fiber of q∗Hell

T (Xn) at a generic point of the non-extended
ET (pt). If we realize this fiber as a certain space of functions of λ and tensor with
all meromorphic functions of λ we get a representation of the quantum group in
the sense of Section 2.1. By construction, it is isomorphic to the tensor product
of evaluation representations. Thus we can think of the action of the quantum
group on equivariant elliptic cohomology classes as a tensor product of evaluation
representations with variable evaluation points and deformation parameter.

6.1. Action of the Gelfand–Zetlin subalgebra. The Gelfand–Zetlin subalgebra
is the commutative subalgebra generated by L22(w) and the determinant ∆(w). As
shown in Section 3.10 these operators act diagonally in the basis ξI of V (z1)⊗· · ·⊗
V (zn). It follows that the vectors

ξ̂I =
∑
|J|=k

w−J (zI , z, y, λ)∏
a∈I,b∈Ī θ(za − zb + y)

Stab(vJ),

(cf. (11)), which by construction are sums of sections of certain admissible line
bundles, are eigenvectors of the Gelfand–Zetlin subalgebra. It turns out that they
are sections of admissible bundles with support on a single irreducible component
of ÊT (Xn):
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Proposition 6.4. Let I,K ⊂ [n], |I| = |K| = k. The restriction of ξ̂I to the

component of Ê(Xk,n) labeled by K is

ι∗K ξ̂I =

{∏
a∈I,b∈Ī θ(za − zb) I=K,

0, otherwise.

Proof. From the definition of ξ̂I and Stab(vJ) we have

ι∗K ξ̂I = ι∗K

(∑
J

w−J (zI , z, y, λ)∏
a∈I,b∈Ī θ(za − zb + y)

w+
J (t, z, y, λ)

)

=
1∏

a∈I,b∈Ī θ(za − zb + y)

∑
J

w−J (zI , z, y, λ)w+
J (zK , z, y, λ),

which, using Corollary 3.31, proves our statement. �

Thus we can write any section (sI)I⊂[n] of an admissible bundle as linear com-

bination
∑
sI ξ̂I/

∏
a∈I,b∈Ī θ(za − zb). Since the ξ̂I are eigenvectors the action of

the Gelfand–Zetlin algebra is given by admissible difference operator with diagonal
matrices of coefficients.

The action of the determinant ∆(w) is easiest to describe: it is given by an ad-
missible difference operator of degree (L∆(w), 0, 0), where L∆(w) = L(N∆, v∆(w))
is the line bundle associated with the data

N∆(z, y, λ) =

n∑
a=1

(2za + y)y, v∆(w; z, y, λ) = −wy.

Since N∆ and v∆ are symmetric under permutations of the variables zi, the corre-
sponding bundle is naturally Sn-equivariant. The determinant acts on sections of
any admissible line bundle L1 on ÊT (Xk,n) it acts by multiplication by the section

n∏
i=1

θ(w − zi + y)

θ(w − zi)

of L∆(w).
The action of L22(w) is by an operator of degree (L22(w), 0, 1). It is defined on

the components by

ι∗KL22(w)s =
∏
i∈K

θ(w − zi)
θ(w − zi − y)

τ∗1 ι
∗
Ks,

and Lk22(w) = L(2k
∑n
a=1 zay, kwy), which is an Sn-equivariant line bundle.

Lemma 6.5. These formulae define Sn-equivariant admissible difference operators
∆(w) ∈ A(L∆(w), 0, 0) and L22(w) ∈ A(L22(w), 0, 1).

Proof. Both operators are defined by diagonal matrices (ϕK,K′) in the notation of
Definition 5.19. It is straightforward to check that the diagonal matrix elements
ϕK,K are sections of the correct line bundle. The equivariance property of Lemma
5.25 is clearly satisfied. Moreover the divisor of poles does not contain any diagonal
∆I = {z ∈ En+2 : zi = zj ,∀i, j ∈ I}, I ⊂ [n] so that the difference operator
maps meromorphic sections to meromorophic sections. It remains to check that
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the sections on the different components coincide on their intersections, namely
that for every a ∈ K, b ∈ K̄,

ϕK,K |za=zb = ϕK̃,K̃ |za=zb , K̃ = K r {a} ∪ {b}.

This can be checked directly but also follows from the equivariance condition for
the permutation of a and b. �

6.2. Action of L12 and L21. Let k = 1, . . . , n and K ⊂ [n] with |K| = k − 1.

ι∗KL12(w)s = (−1)kθ(y)
∑
a∈K̄

θ(λ+ w − za + (n− 2k + 1)y)

θ(w − za − y)

×
∏
j∈K

θ(w − zj)
θ(w − zj − y)

∏
j∈K θ(za − zj − y)∏
j∈K̄r{a} θ(za − zj)

ι∗K∪{a}τ
∗
1 s.

Lemma 6.6. L12(w) is an Sn-equivariant admissible difference operator of degree
(L12(w),−2, 1) with

Lk12(w) = L(−(λ+ (n− 2k)y)2,−w(λ+ (n− k + 1)y)).

Let k = 0, . . . , n− 1 and K ⊂ [n] with |K| = k + 1.

ι∗KL21(w)s = (−1)n−k
θ(y)

θ(λ)θ(λ− y)

∑
a∈K

θ(λ− w + za)

θ(w − za − y)

×
∏

j∈Kr{a}

θ(w − zj)
θ(w − zj − y)

∏
j∈K̄ θ(zj − za − y)∏
j∈Kr{a} θ(zj − za)

ι∗Kr{a}τ
∗
−1s

Lemma 6.7. L21(w) is an Sn-equivariant admissible difference operator of degree
(L21(w), 2,−1) with

Lk21(w) = L(−λ2 − (n− 2k + 2)y2 + 2y(λ−
n∑
i=1

zi), w(λ− (k + 1)y)).

Lemmas 6.6 and 6.7 are proved the same way as Lemma 6.5. The only new
feature is the appearance of simple poles on diagonals zi = zj and it is thus not a
priori clear that these operators map meromorphic sections to meromorphic sections
in the sense of Definition 5.8. The point is that when acting on meromorphic
sections, these poles cancel by the equivariance conditions. For example let us
consider the behaviour of ϕ = L12(w)s in the vicinity of the diagonal za = zb. The
matrix element ϕK,K∪{a} has a simple pole there if b ∈ K̄ r {a} and so has the
matrix element ϕK,K′∪{b} which by equivariance is obtained from ϕK,K∪{a} by the
transposition σ12 of a, b. In local coordinates and trivializations compatible with
the Sn-action, by setting fj = ιK∪{j}τ

∗
1 s, j = a, b, the potentially singular term in

ι∗KL12(w)s at za = zb has the form

g(z, y, λ)

za − zb
fa(z, y, λ) +

g(sabz, y, λ)

zb − za
fb(σ12z, y, λ).

Since sabz = z and fa = fb on the diagonal za = zb, the poles cancel. The same
argument works for L21. �
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6.3. Action of L11. Since L22(w) is an invertible admissible difference operator,
the action of L11(w) can be obtain from the action of the Gelfand–Zetlin algebra
and the action of L12, L21 via the formula for the determinant

∆(w) =
µ`(θ(λ))

µr(θ(λ))
(L11(w + y)L22(w)− L21(w + y)L12(w)). (20)

Here θ(λ) is considered as a section of the bundle L(N, 0) on E2 with N(y, λ) = λ2.

6.4. Proof of Theorems 6.1 and 6.2. Theorem 6.1 (i) for L22, L12 and L21

follows from Lemma 6.5, Lemma 6.6 and Lemma 6.7, respectively. The operator
L11 can be expressed as composition of these admissible difference operators via
the determinant and is thus also admissible. Part (ii) follows by construction. To
prove Theorem 6.2 (i) we need to check that in the matrix elements of Lij(w) only
simple poles at zi = w+y and λ = jy, j ∈ Z appear. This is clear from the explicit
formulae except for L11(w). To prove it for this operator, we use two formulae
for it: one is using the definition and the orthogonality relations, and the other
expressing it in terms of the other Lij and the determinant, as in Section 6.3.

The first formula gives

ι∗LL11(w)s =
∑
I,J,K

w−K(zI)L11(w)JKw
+
J (zL)∏

a∈I,b∈Ī θ(za − zb)θ(za − zb + y)
τ∗−1ι

∗
Is. (21)

The matrix elements L11(w)JK of L11(w) in the tensor basis vI of (C2)⊗n are sums
of products of matrix elements of R-matrices and have at most simple poles at
za = w+y and possible poles at λ = jy, j ∈ Z, see (5). Thus the right-hand side of
the (21) has (among other poles) at most simple poles at za = w + y. The second
formula is in terms of the determinant:

L11(w)s =

(
θ(λ)

θ(λ− yµ)
∆(w − y) + L21(w − y)L12(w)

)
L22(w + y)−1s,

for s ∈ Hell
T (Xk,n)M with µ = −n + 2k. From this formula and the explicit

expression of L12, L21, L22 we see that only simple poles at λ = yµ, −n ≤ µ ≤ n
occur and that the remaining apparent poles at za − zb = 0, za − zb + y = 0 in (21)
are spurious.

Finally Theorem 6.2 (ii) holds since the bundles Lij(w) are Sn-equivariant (and
can thus be viewed as line bundles on the quotient) and the action is given by
Sn-equivariant difference operators.

7. Shuffle products and stable envelopes for subgroups

The stable envelope of [12] is a map from the equivariant cohomology of the fixed
point set for a torus action on a Nakajima variety to the equivariant cohomology
of the variety. The goal of this section is to extend this interpretation of the
stable envelope to the elliptic case for cotangent bundles of Grassmannians. In
our construction the stable envelope is built out of weight functions, which in turn
are obtained from shuffle products of elementary weight functions associated with
the one-point spaces T ∗Gr(0, 1), T ∗Gr(1, 1). Thus the first step is to extend the
fiber-by-fiber construction of the shuffle product of Section 3 to a shuffle product
defined on sections of the coherent sheaf Θ̄+

k,n on ÊT (pt). By using the isomorphism

(outside the divisor D) of Theorem 5.16, we get a shuffle product on the sections



ELLIPTIC QUANTUM GROUPS AND EQUIVARIANT COHOMOLOGY 37

of the sheaf of elliptic cohomology classes Hell
T (Xk,n). The n-fold shuffle product of

classes in Hell
T (Xk,1), k = 0, 1 is then essentially the stable envelope.

We propose to view shuffle products of factors of an arbitrary number of factors
as stable envelopes corresponding to subgroups ot T . Their geometric interpretation
is that they correspond to maps from the cohomology of the fixed point set for the
action of a subgroup of the torus T , cf. [12, Section 3.6].

The basic case, which as we shall see corresponds to the shuffle product of two
factors, is the subgroup Bm ⊂ U(1)n

B = Bm = {(z, . . . , z︸ ︷︷ ︸
m

, 1, . . . , 1) ∈ A : z ∈ U(1)},

isomorphic to U(1).
Fixed points for the action of this subgroup on Gr(k, n) are k-planes of the

form V1 ⊕ V2, with V1 in the span of the first m coordinate axes and V2 in the
span of the last n −m coordinate axes. Thus the fixed point set decomposes into
connected components according to the dimension of V1. Each of these components
is a product of Grassmannians. Similarly, the Bm-invariant part of the cotangent
space at a fixed point splits as a direct sum of cotangent spaces at the factors and
we get an isomorphism

XBm
k,n
∼= tkd=0Xd,m ×Xk−d,n−m.

As above we consider the action of An = U(1)n on Xk,n. Then the embedding
Xd,m×Xk−d,n−m ↪→ Xk,n is Am×An−m = An-equivariant. The Künneth formula
[7] predicts that this embedding induces a map

EAm(Xd,m)× EAn−m(Xk−d,n−m)→ EAn(Xk,n), (22)

In the description as a fiber product,

EAm(Xd,m) = E(d) × E(m−d) ×E(m) Em,

and the map is the obvious one: ((t′, s′, z′), (t′′, s′′, z′′)) 7→ (p(t′, t′′), p(s′, s′′), z′, z′′).
Here t′ ∈ E(d), t′′ ∈ E(k−d), p : E(d) × E(k−d) → E(k) is the canonical projection
and similarly for the other factors.

As in Section 4.3, we consider the extended equivariant elliptic cohomology
ÊTn(Xk,n) = EAn(Xk,n) × E2 for the torus Tn = An × U(1) where the addi-
tional U(1) factor acts by multiplication on each cotangent space. We then have
the corresponding embedding

ÊTm(Xd,m)×E2 ÊTn−m(Xk−d,n−m)→ ÊTn(Xk,n), (23)

where the map to E2 is the projection onto the second factor. Both are schemes
over ÊTn(pt) = ÊTm(pt)×E2 ETn−m(pt).

Proposition 7.1. The shuffle product of Proposition 3.10 defines a map

∗ : τ∗n′′−2k′′Θ̄
+
k′,n′ � Θ̄+

k′′,n′′ → Θ̄+
k,n ⊗ Lk′,k′′,n′,n′′

of sheaves of OÊT (pt)-modules, where k = k′ + k′′, n = n′ + n′′ and Lk′,k′′,n′,n′′ =

L(k′′y((n′ − k′)y − 2
∑n′

a=1 za), 0) ∈ Pic(ÊTn(pt)).
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Proof. The sheaf Θ+
k,n is defined by the quadratic form NΘ

k,n(t, z, y, λ), see (16).

Let us write t = (t′, t′′), z = (z′, z′′), with t′ = (t1, . . . , tk′), t
′′ = (tk′+1, . . . , tk) and

similarly for z. Then τ∗n′′−2k′′Θ̄
+
k′,n′ � Θ̄+

k′′,n′′ is associated with the quadratic form

M(t, z, y, λ) = NΘ
k′,n′(t

′, z′, y, λ+ y(n′′ − 2k′′)) +NΘ
k′′,n′′(t

′′, z′′, y, λ).

The shuffle product maps a section of this bundle to a section of a bundle associated
with the sum of this quadratic form and the quadratic forms of the theta functions
in ϕ+, see Proposition 3.6, namely

M(t, z, y, λ) +

k′∑
j=1

k∑
l=k′+1

(
(tj − tl + y)2 − (tj − tl)2

)
+

k∑
l=k′+1

n′∑
a=1

(tl − za + y)2 +

k′∑
j=1

n∑
b=n′+1

(tj − zb)2.

It is straightforward to verify that this is equal to

NΘ
k,n(t, z, y, λ) + k′′y

(n′ − k′)y − 2

n′∑
a=1

za

 .

This shows that the shuffle product takes values in Θ+
k,n⊗Lk′,k′′,n′,n′′ . The fact that

it actually takes values in the subsheaf defined by the vanishing condition follows
from Proposition 3.10. �

Definition 7.2. Let k = k′ + k′′, n = n′ + n′′. The unnormalized stable envelope

associated with the component Xk′,n′ ×Xk′′,n′′ of the fixed point set X
Bn′
k,n is the

shuffle product map

S̃tab: τ∗n′′−2k′′Θ̄
+
k′,n′ � Θ̄+

k′′,n′′ → Θ̄+
k,n ⊗ Lk′,k′′,n′,n′′

of sheaves of OÊTn (pt)-modules.

By using the isomorphism Θ̄k,n
∼= Hell

Tn
(Xk,n) on the complement of the divisor

D of Theorem 5.16, we obtain a map

S̃tab: τ∗n′′−2k′′Hell
Tn′

(Xk′,n′) �Hell
Tn′′

(Xk′′,n′′)→ Hell
Tn(Xk,n)⊗ Lk′,k′′,n′,n′′ ,

on ÊT (pt) rD.
More generally, we may consider subgroups B = Bn1

×· · ·×Bnr ⊂ U(1)n whose
fixed point sets have components Xk1,n1

× · · · ×Xkr,nr and define stable envelopes
given by r-fold shuffle products and thus by compositions of stable envelopes for
two factors.

Two special cases give the stable envelope of Section 5.5 and the action of the
elliptic dynamical quantum group.

In the first case we take B = U(1)n. The fixed points are isolated and labeled by
I ⊂ [n]. We think of the fixed point labeled by I as a product Xk1,1 × · · · ×Xkn,1

with ki = 1 if i ∈ I and ki = 0 otherwise. The unnormalized stable envelope on the
component labeled by I ⊂ [n] is then

S̃tab: �nj=1 τ
∗
w(j,I)H

ell
T1

(Xki,1)→ Hell
T1

(Xki,1)⊗MI ,

(the factors are ordered from left to right) for some suitable line bundle MI ∈
Pic(ÊTn(pt)) obtained as tensor product of line bundles Lk′,k′′,n′,n′′ . In this case
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the map is defined everywhere, not just on the complement of D, since Θ̄k,1
∼=

Hell
T1

(Xk,1) on ÊT1
(pt).

The stable envelope of Section 5.5 is obtained by taking the tensor product with
suitable line bundles τ∗w(j,I)Mkj on ÊTn(pt) so that ⊕1

k=0Γ(Xk,1,Hell
T1

(Xk,1)⊗Mk)

is identified with C2 via the basis ω+
0 , ω

+
1 , passing to global sections and normalizing

by dividing by ψI .
In the second case we reproduce the construction of Section 3.7 in the global

setting. Thus we consider the stable envelope for two factors Xd,1 × Xk−d,n ⊂
Xk,n+1. We obtain two maps

⊕1
d=0τ

∗
n−2(k−d)Θ̄

+
d,1 � Θ̄+

k−d,n ⊗ L
−1
d,k−d,1,n → Θ̄+

k,n+1

⊕1
d=0τ

∗
1−2dΘ̄

+
k−d,n � Θ̄+

d,1 ⊗ L
−1
k−d,d,n,1 → Θ̄+

k,n+1

which are invertible at a generic point. Since Θ̄+
k,1 is isomorphic to Hell

T1
(Xk,1) we

get a map

⊕1
d=0τ

∗
1−2dΘ̄

+
k−d,n �Hell

T1
(Xd,1)⊗ L−1

k−d,d,n,1

→ ⊕1
d=0τ

∗
n−2(k−d)H

ell
T1

(Xd,1) � Θ̄+
k−d,n ⊗ L

−1
d,k−d,1,n,

defined on some dense open set. This map contains the information of the action of
the elliptic dynamical quantum group on the elliptic cohomology of ÊTn(Xn). The
action of the generators is given as explained in 3.7: one needs as above to take the
tensor product with a suitable line bundle to associate elliptic cohomology classes
ω+

1 , ω
+
0 with the standard basis of C2. Then we are in the setting of Section 3.7

and we obtain an action of the elliptic dynamical quantum group which is up to
gauge transformation the one described in the previous section.

Appendix A. Axiomatic definition of elliptic stable envelopes

In this section we give an axiomatic definition of the elliptic stable envelopes in
the spirit of Maulik–Okounkov [12, Section 3.3], see also [14,15,17].

Recall that c∗w+
I is a meromorphic section (with controlled denominators) of

an appropriate line bundle over ÊT (Xk,n). The scheme ÊT (Xk,n) has components

YJ = ιJ ÊT (pt), and the restriction of a section to YJ is the result of substituting
the variables ti by zJ = (zi)i∈J .

A meromorphic section of an admissible line bundle p∗TL(N, 0)⊗Tk,n restricted to

YJ can be written as a meromorphic function F : Cn+2 → C whose transformation
properties with respect to the lattice Zn+2 +τ Zn+2 are determined by p∗TL(N, 0)⊗
Tk,n, see Remark 5.4. Below we will consider special forms of such functions.

Theorem A.1. For any I the section c∗w+
I satisfies the following properties.

• It is a meromorphic section of an admissible line bundle p∗TL(N, 0)⊗ Tk,n.

• The restriction of c∗w+
I to YI , written as a function Cn+2 → C with trans-

formation properties determined by p∗TL(N, 0)⊗ Tk,n, is∏
a∈I,b∈Ī θ(za − zb + ε(a, b)y)∏
a∈I θ(λ− (w(a, I) + 1)y)

,

where ε(a, b) is defined in Lemma 3.32 and w(a, I) is defined in (10).
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• The restriction of c∗w+
I to any YJ , written as a function Cn+2 → C with

transformation properties determined by p∗TL(N, 0)⊗ Tk,n, is of the form

1

ψI

∏
a∈J

∏
b∈J̄
b<a

θ(za − zb + y) · FI,J , (24)

where FI,J is a holomorphic function.

Moreover, these three properties uniquely determine c∗w+
I .

Remark A.2. From the second property one can calculate the quadratic form

NI = −2
∑
a∈Ī

n(a, I)zay − 2
∑
a∈I

za(λ+ n(a, Ī)y)

+ (k(n− k)−
∑
a∈I

n(a, Ī))y2 −
∑
a∈I

(λ− (n(a, I) + 1)y + n(a, Ī)y)2,

cf. (14).

Remark A.3. Lemma 3.32 (ii) implies the triangularity property

• the restriction of c∗w+
I to YJ is 0 unless J ≤ I.

According to Theorem A.1 this property is a consequence of the three properties
listed.

Remark A.4. The third listed property is a local version of a support condition used
in the axiomatic description of cohomological stable envelopes in [12, Theorem 3.3.4
(i)]; see also the corresponding axiom in K-theory in [15, Theorem 3.1 (I)].

Proof. The first two properties of c∗w+
I are claimed in Proposition 5.9 and Lem-

ma 3.32 (ii). Inspecting the explicit formula for w+
I in Section 3.11 one finds that,

after substitution ti by za, a ∈ J , all non-zero terms are of the form (24), which
proves the third property.

Now we prove that the three properties uniquely determine c∗w+
I . Let a section

satisfy the three listed properties, and let κI be the difference of that section and
c∗w+

I . Assume that κI is not 0. Then there exists a J such that κI restricted to
YJ is not 0. For a total ordering ≺ refining the partial order < on the cardinality
k subsets of [n] let us choose J to be the largest with the property κI |YJ 6= 0. We
have J 6= I because of the second property.

We claim that κI |YJ , written as a function Cn+2 → C with transformation
properties determined by p∗TL(NI , 0)⊗ Tk,n, is of the form

1

ψI

∏
a∈J

∏
b∈J̄
b<a

θ(za − zb + y) ·
∏
a∈J

∏
b∈J̄
b>a

θ(zb − za) · F1, (25)

where F1 is holomorphic. The fact that this function can be written in the form

1

ψI

∏
a∈J

∏
b∈J̄
b<a

θ(za − zb + y) · F2, (26)

with F2 holomorphic, is explicit from the third property. We need to prove that
F2 is the product of

∏
a∈J

∏
b∈J̄,b>a θ(zb − za) and a holomorphic function. Let

a ∈ J, b ∈ J̄ and b > a. Denote J ′ = (J − {a}) ∪ {b}. Observe that J < J ′ and
hence J ≺ J ′. From the choice of J therefore it follows that κI restricted to YJ′ is
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0. The diagonal ∆J,J ′ = {za = zb} is included both in YJ and YJ′ , hence we obtain
that the substitution of za = zb into κI |YJ vanishes. It follows that the function F2

vanishes on the hyperplane za = zb and its translates by the lattice Zn+2 +τ Zn+2.
The zeros of θ(zb−za) are exactly these hyperplanes and are of first order, therefore
F2 can be written as a product of θ(zb−za) times a holomorphic function. Iterating
this argument for all (a, b) with a ∈ J, b ∈ J̄ , b > a we obtain that (26) is in fact of
the form (25), what we claimed.

Observe that the product of theta functions in (25) is the numerator of c∗w+
J |YJ .

Hence we obtain that (25) further equals∏
a∈J θ(λ− (w(a, J) + 1)y)

ψI
· c∗w+

J |YJ · F1.

Since the transformation properties of κI |YJ are determined by p∗TL(NI , 0)⊗ Tk,n,
and those of c∗w+

J |YJ are determined by p∗TL(NJ , 0)⊗Tk,n, we have that the trans-
formation properties of ∏

a∈J θ(λ− (w(a, J) + 1)y)

ψI
· F1 (27)

are determined by p∗TL(NI −NJ , 0)—the factor Tk,n canceled.
Let a ∈ J ∩ Ī, and consider (27) as a function of za, let us call it f(za). Since

the first factor (the fraction) only depends on λ and y, f is a holomorphic function
of za for generic y, λ. Comparing the za dependence of NI and NJ we obtain that

f(za + τ) = e−2πi(λ+sy)f(za), f(za + 1) = f(za), (28)

for some integer s. Using the 1-periodicity, we expand

f(za) =
∑
m∈Z

ame
2πimza ,

and using the first transformation property of (28) we obtain∑
m

ame
2πimza

(
e2πimτ − e−2πi(λ+sy)

)
= 0,

implying am = 0 for all m ∈ Z. We obtained F1 = 0, and in turn, κI |YJ = 0. This
is a contradiction proving that κI is 0 on all YJ . �
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