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Abstract

We consider a pair of quiver varieties (X;X ′) related by 3d mirror symmetry, where X = T ∗Gr(k, n)
is the cotangent bundle of the Grassmannian of k-planes of n-dimensional space. We give formulas for
the elliptic stable envelopes on both sides. We show an existence of an equivariant elliptic cohomology
cohomology class on X×X ′ (the Mother function) whose restrictions to X and X ′ are the elliptic stable
envelopes of those varieties. This implies, that the restriction matrices of the elliptic stable envelopes for
X and X ′ are equal after transposition and identification of the equivariant parameters on one side with
the Kähler parameters on the dual side.

Contents

1 Introduction 2
1.1 Mirror symmetries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Elliptic stable envelopes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Coincidence of stable envelopes for dual variates . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Relation to (gln, glm)-duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Overview of equivariant elliptic cohomology 6
2.1 Elliptic cohomology functor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 GKM varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Extended elliptic cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Line bundles on elliptic cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.5 Theta functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Elliptic Stable Envelope for X 10
3.1 X as a Nakajima quiver variety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Torus action on X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 T-equivariant K-theory of X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.4 Tangent and polarization bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.5 Elliptic cohomology of X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.6 Uniqueness of stable envelope for X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.7 Existence of elliptic stable envelope for X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.8 Holomorphic normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 Elliptic Stable Envelope for X ′ 14
4.1 X ′ as a Nakajima quiver variety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2 Tautological bundles over X ′ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.3 Torus action on X ′ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.4 Tangent and polarization bundles for X ′ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.5 Elliptic cohomology of X ′ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.6 Holomorphic normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19



5 Abelianization formula for elliptic stable envelope for X ′ 19
5.1 Non-Kähler part of stable envelope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.2 Trees in Young diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.3 Kähler part of the stable envelope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.4 Formula for elliptic stable envelope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.5 Refined formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6 The Mother function 27
6.1 Bijection on fixed points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.2 Identification of equivariant and Kähler parameters . . . . . . . . . . . . . . . . . . . . . . . . 27
6.3 Mother function and 3d mirror symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

7 The Mother function in case k = 1 29
7.1 Explicit formula for the mother function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7.2 Stable envelope for X ′ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7.3 Stable envelope for X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7.4 Stable envelopes are restrictions of the Mother functions . . . . . . . . . . . . . . . . . . . . . 31

8 Simplest non-abelian case n = 4, k = 2 31
8.1 Identification of parameters and fixed points . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
8.2 Explicit expressions for stable envelops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
8.3 Theorem 5 in case n = 4, k = 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
8.4 Identities for theta functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

9 Proof of Theorem 5 35
9.1 Cancellation of trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
9.2 GKM conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
9.3 Divisibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
9.4 Holomorphicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

1 Introduction

1.1 Mirror symmetries

Mirror symmetry is one of the most important physics structures that enters the world of mathematics and
arouses lots of attention in the last several decades. Its general philosophy is that a space X should come
with a dual X ′ which, though usually different from and unrelated to X in the appearance, admits some
deep connections with X in geometry. Mirror symmetry in 2 dimensions turns out to extremely enligntening
in the study of algebraic geometry, symplectic geometry, and representation theory. In particular, originated
from the 2d topological string theory, the Gromov–Witten theory has an intimate connection with 2d mirror
symmetry; for an introduction, see [8, 24].

Similar types of duality also exist in 3 dimensions. More precisely, as introduced in [6, 14, 23, 7, 10, 9, 25,
15], the 3d mirror symmetry is constructed between certain pairs of 3d N = 4 supersymmetric gauge theories,
under which they exchanged their Higgs branches and Coulomb branches, as well as their FI parameters and
mass parameters. In mathematics, the N = 4 supersymmetries implies that the corresponding geometric
object of our interest should admit a hyperKähler structure, or if one prefers to stay in the algebraic context,
a holomorphic symplectic structure. In particular, for theories of the class as mentioned above, the Higgs
branch, which is a certain branch of its moduli of vacua, can be interpreted as a holomorphic symplectic
quotient in mathematics, where the prequotient and group action are determined by the data defining the
physics theory. The FI parameters and mass parameters of the theory are interpreted as Kähler parameters
and equivariant parameters respectively.

The Coulomb branch, however, did not have such a clear mathematical construction until recently [38,
35, 5]. In this general setting it is not a holomorphic symplectic quotient, and it is difficult to study its
geometry. Nevertheless, in many special cases e.g., already appearing in the physics literature [6, 13], the
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Coulomb branch might also be taken as some holomorphic symplectic quotient. Those special cases include
hypertoric varieties, Hilbert schemes of points on C2, the moduli space of instantons on the resolved AN
surfaces, and so on. For a mathematical exposition, see [3, 4], where 3d mirror symmetry is refered to as
symplectic duality.

A typical mirror symmetry statement for a space X and its mirror X ′, is to relate certain geometrically
defined invariants on both sides. For example, in the application of 2d mirror symmetry to genus-zero
Gromow–Witten theory, the J-function counting rational curves in X is related to the I-function, which
arises from the mirror theory.

In the 3d case, instead of cohomological counting, one should consider counting in the K-theory. One of
the K-theoretic enumerative theory in this setting, which we are particularly interested in, is developed by
A. Okounkov and his collaborators [39, 30, 40, 1]. The 3d mirror symmetry statement in this theory looks
like

V (X) ∼= V (X ′), (1)

where X and X ′ is a 3d mirror pair of hypertoric or Nakajima quiver varieties, and V (X), V (X ′) are the
so-called vertex functions, defined via equivariant K-theoretic counting of quasimaps into X and X ′ [39].

On both sides, the vertex functions, which depend on Kähler parameters zi and equivariant parameters
ai, can be realized as solutions of certain geometrically defined q-difference equations. We call those solutions
that are holomorphic in Kähler parameters and meromorphic in equivariant parameters the z-solutions, and
those in the other way the a-solutions. In particular, vertex functions are by definition z-solutions.

Under the correspondence (1), the Kähler and equivariant parameters on X and X ′ are exchanged with
each other, and hence z-solutions of one side should be mapped to a-solutions of the other side and vice
versa. In particular, for the correspondence to make sense, (1) should involve a transition between a basis
of z-solutions, and a basis of a-solutions. In [1], this transition matrix is introduced geometrically as the
elliptic stable envelope.

1.2 Elliptic stable envelopes

The notion of stable envelopes first appear in [31] to generate a basis for Nakajima quiver varieties which
admits many good properties. Their definition depends on a choice of cocharacter, or equivalently, a chamber
in the Lie algebra of the torus that acting on the space X. The transition matrices between stable envelopes
defined for different chambers turn out to be certain R-matrices, satisfying the Yang–Baxter equation and
hence defining quantum group structures. Stable envelopes are generalized to K-theory [39, 30, 40], where
they not only depend on the choice of cocharacter σ, but also depend piecewise linearly on the choice of
slope s, which lives in the space of Kähler parameters.

In [1], stable envelopes are further generalized to the equivariant elliptic cohomology, where the piecewise
linear dependence on the slope s is replaced by the meromorphic dependence to a Kähler parameter z.
In particular, the elliptic version of the stable envelope is the most general structure, K-theoretic and
cohomological stable envelopes can be considered as limits of elliptic. The elliptic stable envelopes depends
on both, the equivariant and Kähler parameters which makes it a natural object for the study of 3d mirror
symmetry.

In this paper, we will concentrate on a special case where X = T ∗Gr(k, n), the cotangent bundle of the
Grassmannian of k-dimensional subspaces in Cn. This variety is a simplest example of Nakajima quiver
variety associated to the A1-quiver, with dimension vector v = k and framing vector w = n. We will always
assume that n ≥ 2k 1. Its mirror, which we denote by X ′, can also be constructed as a Nakajima quiver
variety, associted to the An−1-quiver. It has dimension vector

v = (1, 2, . . . , k − 1, k, . . . , k︸ ︷︷ ︸
(n−2k+1)-times

, k − 1, . . . , 2, 1)

and framing vector
w = δk + δn−k.

For Nakajima quiver varieties, there is always a torus action induced by that on the framing spaces. Let
T and T′ be the tori on X and X ′ respectively. They both have n!/(k!(n − k)!) fixed points, which admit

1Only in the case n ≥ 2k the dual variety X′ can also be realized as quiver variety.
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very nice combinatorial descriptions. Elements in XT can be interpreted as k-subsets p ⊂ n := {1, 2, · · · , n},
while (X ′)T

′
is the set of partitions λ that fit into a k × (n− k) rectangle. There is a natural bijection (41)

between those fixed points
bj : (X ′)T

′ ∼−→ XT.

We will consider the extended equivariant elliptic cohomology of X and X ′ under the corresponding
framing torus actions, denoted by ET(X) and ET′(X

′) respectively. By definition, they are certain schemes,
associated with structure maps which are finite (and hence affine)

ET(X)→ ET × EPicT(X), ET′(X
′)→ ET′ × EPicT′ (X

′),

where ET × EPicT(X) and ET′ × EPicT′ (X
′) are powers of an elliptic curve E, the coordinates on which are the

Käher and equivariant parameters. There is a natural identification (42)

κ : K→ T′, T→ K′

between the Kähler and equivariant tori of the two sides, which induces an isomorphism between ET×EPicT(X)

and ET′ × EPicT′ (X
′).

By localization theorems, the equivariant elliptic cohomology of X has the form

ET(X) =
( ∐
p∈XT

Ôp
)
/∆,

where each Ôp is isomorphic to the base ET × EPicT(X). The T-action on X is good enough, in the sense
that it is of the GKM type, which means that it admits finitely many isolated fixed points, and finitely many
1-dimensional orbits. Due to this GKM property, the gluing data ∆ of X is easy to describe: it is simply
the gluing of Ôp and Ôq for those fixed points p and q connected by 1-dimesional T-orbits. For X ′, ET′(X

′)
also has the form as above; however, the gluing data ∆′ is more complicated.

By definition, the elliptic stable envelope Stabσ(p) for a given fixed point p ∈ XT is the section of a
certain line bundle T (p). We will describe this section in terms of its components

Tp,q := Stabσ(p)|Ôq
,

which are written explicitly in terms of theta functions and satisfy prescribed quasiperiodics and compatibility
conditions. Similar for X ′, we will describe the components

T ′λ,µ := Stab′σ′(λ)
∣∣
µ
.

1.3 Coincidence of stable envelopes for dual variates

Our main result is that the restriction matrices for elliptic stable envelopes on the dual varieties coincide
(up to transposition and normalization by the diagonal elements):

Corollary 1. Restriction matrices of elliptic stable envelopes for X and X ′ are related by:

Tp,pT
′
λ,µ = T ′µ,µTq,p (2)

where p = bj(λ), q = bj(µ) and parameters are identified by (42).

In (2), the prefactors Tp,p and T ′µ,µ have very simple expressions as product of theta functions. The
explicit formula for matrix elements T ′λ,µ and Tq,p, however, involves complicated summations.

Explicit formulas (see Theorem 3 and 4) for elliptic stable envelopes are obtained by the abelianzation
technique [44, 45, 1, 46]. In the spirit of abelianization, the formula for Tq,p involves a symmetrization sum
over the symmetric group Sk, the Weyl group of the gauge group GL(k). However, the formula T ′λ,µ involves
not only a symmetrization over Sn,k, the Weyl group of the corresponding gauge group, but also a sum over
trees. Similar phenomenon already appear in the abelianization formula for the elliptic stable envelopes of
Hilb(C2) [46]. The reason for this sum over trees to occur is that in the abelianization for X ′, the preimage
of a point is no longer a point, as in the case of X.

4



As a result, the correspondence (44) we obtained here actually generates an infinite family of nontrivial
identities among product of theta functions. See Section 7 and 8 for examples in the simplest cases k = 1
and n = 4, k = 2. In particular, in the n = 4, k = 2 case, we obtain the well-known 4-term theta identity.

Motivated by the correspondence (44) and the Fourier–Mukai philosophy, a natural guess is that the
identity might actually come from a universal “Mother function” m, living on the product X×X ′. Consider
the following diagram of embeddings

X = X × {λ} iλ−→ X ×X ′ ip←− {p} ×X ′ = X ′.

Corollary 2 then follows directly from our main theorem:

Theorem 1. There exists a holomorphic section m (the Mother function) of a line bundle M on the T ×
T
′
equivariant elliptic cohomology of X ×X ′ such that

i∗λ(m) = Stab(p), i∗p(m) = Stab′(λ),

where p = bj(λ).

The existence of the Mother function was already predicted by Aganagic and Okounkov in the original
paper [1]. This paper originated from our attempt to check their conjecture and construct the mother
function for the simplest examples of dual quiver varieties.

1.4 Relation to (gln, glm)-duality

Let C2(u) be the fundamental evaluation module with evaluation parameter u of the quantum affine algebra

U~(ĝl2). Similarly, let
∧k Cn(a) be the k-th fundamental evaluation module with the evaluation parameter

a of quantum affine algebra U~(ĝln). Recall that the equivariant K-theory of quiver varieties are natu-
rally equipped with an action of quantum affine algebras [37]. In particular, for X = T ∗Gr(k, n) we have

isomorphism of weight subspaces in U~(ĝl2)-modules:

KT(X) ∼= weight k subspace in C2(u1)⊗ · · · ⊗ C2(un) (3)

In geometry, the evaluation parameters ui are identified with equivariant parameters of torus T. Similarly,
the dual variety X

′
is related to representation theory of U~(ĝln):

KT′ (X
′) ⊂

∧k
Cn(a1)⊗

∧n−k
Cn(a2) (4)

the corresponding weight subspace is spanned by the following vectors

KT′ (X
′) = Span{(ei1 ∧ · · · ∧ eik)⊗ (ej1 ∧ · · · ∧ ejn−k), {i1, . . . ik, j1, . . . , jn−k} = n},

where ei is the canonical basis in Cn. So that both spaces have dimension n!/(k!(n− k)!).
Let us recall that the elliptic stable envelopes features in the representation theory as a building block

for solutions of quantum Knizhnik-Zamilodchikov equations and quantum dynamical equations associated
to affine quantum groups [11]. The integral solutions of these equations have the form [2, 26, 41, 28]:

Ψp,q ∼
∫
C

∏
i

dxi Φp(x1, . . . , xn)Stabq(x1, . . . , xn)

Here Ψp,q represents the matrix of fundamental solution of these equations in some basis. The functions
Φp(x1, . . . , xn) are the so called master functions and Stabq(x1, . . . , xn) denotes the elliptic stable envelope
of the fixed point (elliptic weight function). The variables of integration xi correspond to the Chern roots
of tautological bundles.

The Theorem 1 implies, in particular, that 3D mirror symmetry for the pair (X,X
′
) identifies U~(ĝl2)

solutions in (3) with U~(ĝln) solutions in (4). Under this identification the evaluation parameters turn
to dynamical parameters of the dual side, so that the quantum Knizhnik-Zamolodchikov equations and
dynamical equations change their roles. This way, our results suggest a new geometric explanation of (gln,
glm) and bispectral dualities [34, 33, 47].
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2 Overview of equivariant elliptic cohomology

We start with a very pedestrian exposition of the equivariant elliptic cohomology. For more detailed discus-
sions we refer to [16, 17, 20, 22, 29, 43].

2.1 Elliptic cohomology functor

Let X be a smooth variety endowed with an action of torus T ∼= (C×)r. We say X is a T-variety. Recall that
taking spectrums of the equivariant cohomolory and K-theory, SpecH∗T(X) can be viewed as an affine scheme
over the Lie algebra of the torus SpecH∗T(pt) ∼= Cr, and SpecKT(X) is an affine scheme over the algebraic
torus SpecKT(pt) ∼= (C×)r. Equivariant elliptic cohomology is an elliptic analogue of this viewpoint.

Let us fix an elliptic curve
E = C×/qZ,

i.e., fix the modular parameter q. The equivariant elliptic cohomology is a covariant functor:

EllT : {T-varieties} → {schemes},

which assigns to a T-variety X certain scheme EllT(X). For example, the equivariant elliptic cohomology of
a point is

EllT(pt) = T/qcochar(T) ∼= Edim(T).

We denote this abelian variety by ET := EllT(pt). We will refer to the coordinates on ET (same as coordinates
on T) as equivariant parameters.

Let π : X → pt be the canonical projection to a point. The functoriality of the elliptic cohomology
provides the map π∗ : EllT(X) → ET. For each point t ∈ ET, we take a small anallytic neighborhoods Ut,
which is isomorphic via the exponential map to a small analytic neighborhood in Cr. Consider the sheaf of
algebra

HUt := H•T(XTt)⊗H•T (pt) Oan
Ut ,

where
Tt :=

⋂
χ∈char(T),χ(t)=0

kerχ ⊂ T.

Those algebras glue to a sheaf H over ET, and we define EllT(X) := SpecET
H . The fiber of EllT(X) over

t is obtained by setting local coordinates to 0, as described in the following diagram [1]:

(5)SpecH•(XTt) �
� //

π∗

��

SpecH•T(XTt)

��

(π∗)−1(Ut)oo //

��

EllT(X)

π∗

��
{t} �
� // Cr Utoo // ET.

Example 1. Let us consider a two-dimensional vector space V = C2 with coordinates (z1, z2), and a torus
T = (C×)2 acting on it by scaling the coordinates: (z1, z2)→ (u1z1, u2z2). Let us set X = P(V ). The action
of T on V induces a structure of T-space on X. We have ET = E×E and the equivariant parameters u1 and
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u2 represent the coordinates on the first and the second factor. Note that for a generic point t = (u1, u2) ∈ ET

the fixed set XTt consists of two points, which in homogeneous coordinates of P(V ) are:

p = [1 : 0], q = [0 : 1].

The stalk of H at t is H•T(p ∪ q) ⊗H•T OET,t, and the fiber is H•(p ∪ q). We conclude, that over a general
point t ∈ ET the fiber of π∗ in (5) consists of two points.

At the points t = (u1, u2) with u1 = u2 the torus Tt acts trivially on X, thus locally the sheaf H looks
like

H•T(XTt) = H•T(P1) = C[δu1, δu2, z]/(z − δu1)(z − δu2),

where δu1, δu2 are local coordinates centered at x. Taking Spec, this is the gluing of two copies of C2 along
the diagonal. Overall we obtain that

EllT(X) = (Op ∪∆ Oq) /∆,

where Op ∼= Oq ∼= ET, and /∆ denotes the gluing of these two abelian varieties along the diagonal

∆ = {(u1, u2) | u1 = u2} ⊂ ET.

2.2 GKM varieties

We assume further that the set of fixed points XT is a finite set of isolated points. We will only encounter
varieties of this type in our paper. In this case, for a generic one-parametric subgroup Tt ⊂ T we have

XTt = XT.

Therefore, similarly to Example 1 we conclude that EllT(X) is union of |XT| copies of ET:

EllT(X) =
( ∐
p∈XT

Op
)
/∆, (6)

where Op ∼= ET and /∆ denotes the gluing of these abelian varieties along the subschemes SpecH•(XTt)
corresponding to substori Tt for which the fixed sets XTt are larger than XT. We call Op the T-orbit
associated to the fixed point p in EllT(X).

In general, the subscheme ∆ describing the intersections of orbits in the “bouquet” (6) can be quite
involved. There is, however, a special case when it is relatively simple.

Definition 1. We say that T-variety X is a GKM variety if it satisfies the following conditions:

• XT is finite,

• for every two fixed points p, q ∈ XT there is no more than one T-equivariant curve connecting them.

Note that by definition, a GKM variety contains finitely many T-equivariant compact curves (i.e., curves
starting and ending at fixed points). We note also that all these curves are rational C ∼= P1 because T-action
on C exists only in this case.

For a compact curve C connecting fixed points p and q, let χC ∈ Char(T) = Hom(ET, E) be the character
of the tangent space TpC. For all points t on the hyperplane χ⊥C ⊂ ET we thus have XTt = XT ∪ C. This
means that in (6) the T-orbits Op and Oq are glued along the common hyperplane

Op ⊃ χ⊥C ⊂ Oq.

Note that the character of TqC is −χC so it does not matter which end point we choose as the first. In sum,
we have:
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Proposition 1. If X is a GKM variety, then

EllT(X) =
( ∐
p∈XT

Op
)
/∆,

where /∆ denotes the gluing of T-orbits Op and Oq along the hyperplanes

Op ⊃ χ⊥C ⊂ Oq,

for all p and q connected by an equivariant curve C.

Proof. Locally around t ∈ ET, the stalk of H is given by H•T(XTt). By the property of equivariant cohomol-
ogy of GKM varieties [21], the variety SpecH•T(XTt) is the gluing of tp along hyperplanes χ⊥C , where tp ∼= Cr
are Lie algebras of the torus, associated to fixed points.

In particular, one can see that the intersections of orbits Op and Oq are always transversal and hence
EllT(X) is a variety with simple normal crossing singularities.

The classical examples of GKM varieties include Grassmannians or more generally, partial flag varieties.
For non-GKM varieties the structure of subschemes SpecH•(XTt) and intersection of orbits in (6) can be
quite involved.

2.3 Extended elliptic cohomology

We define

EPic(X) := Pic(X)⊗Z E ∼= E dim(Pic(X)). (7)

For Nakajima quiver varieties Pic(X) ∼= Z|Q| and thus EPic(X)
∼= E|Q|, where |Q| denotes the number of

vertices in the quiver. We will refer to the coordinates in this abelian variety as Kähler parameters. We will
usually denote the Kähler parameters by the symbol zi, i = 1, . . . , |Q|.

The extended T-orbits are defined by

Ôp := Op × EPic(X),

and the extended elliptic cohomology by

ET(X) := EllT(X)× EPic(X).

In particular, ET(X) is a bouquet of extended orbits:

ET(X) =
( ∐
p∈XT

Ôp
)
/∆

where ∆ denotes the same gluing of orbits as in (6), i.e., the extended orbits are glued only along the
equivariant directions.

2.4 Line bundles on elliptic cohomology

We have the following description of a line bundle on the variety ET(X).

Proposition 2.

• A line bundle T on the scheme ET(X) is a collection of line bundles Tp on extended orbits Ôp, p ∈ XT,
which coincide on the intersections:

Tp|Ôp∩Ôq = Tq|Ôp∩Ôq ,
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• A meromorphic (holomorphic) section s of a line bundle T is the collection of meromorphic (holomor-
phic) sections sp of Tp which agree on intersections:

sp|Ôp∩Ôq = sq|Ôp∩Ôq . (8)

Since each orbit Ôp is isomorphic to the base ET × EPic(X), each Tp is isomorphic via the pull-back along
π∗ to a line bundle on the base. In practice, we often use the coordinates on the base to describe Tp’s.

Example 2. Characterization of line bundles and sections is more complicated for non-GKM varieties. Let
X = P1 × P1, with homogeneous coordinates ([x : y], [z : w]), and let C∗ acts on it by

t · ([x : y], [z : w]) = ([x : ty], [z : tw]).

There are four fixed points, but infinitely many C∗-invariant curves: the closure of {([x : y], [x : λy])} for
any λ ∈ C∗ is a C∗-invariant curve, connecting the points ([1 : 0], [1 : 0]) and ([0 : 1], [0 : 1]). Locally near
the identity 1 ∈ EC∗ , the elliptic cohomology EllC∗(X) looks like

SpecH•T(X) = SpecC[H,u]/(H − u)2(H + u)2 → SpecC[u],

where u is the local coordinate near 1 ∈ EC∗ . We see that locally the elliptic cohomology has two non-reduced
irreducible components, each of multiplicity two.

2.5 Theta functions

By Proposition 2, to specify a line bundle T on ET(X) one needs to define line bundles Tp on each orbit Ôp.

As Ôp is an abelian variety, to fix Tp it suffices to describe the transformation properties of sections as we

go around periods of Ôp. In other words, to define Tp one needs to fix quasiperiods wi of sections

s(xiq) = wis(xi),

for all coordinates xi on Ôp, i.e., for all equivariant and Kähler parameters.

The abelian variates Ôp are all some powers of E, which implies that sections of a line bundle on ET(X)
can be expressed explicitly through the Jacobi theta function associated with E:

θ(x) := (qx)∞(x1/2 − x−1/2)(q/x)∞, (x)∞ =

∞∏
i=0

(1− xqi).

The elementary transformation properties of this function are:

θ(xq) = − 1

x
√
q
θ(x), θ(1/x) = −θ(x).

We also extend it by linearity and define

Θ
(∑

i
ai −

∑
j
bj

)
:=

∏
i θ(ai)∏
j θ(bj)

.

By definition, the elliptic stable envelope associated with a T-variety X is a section of certain line bundle
on ET(X) [1]. Thus, one can use theta-functions to give explicit formulas for stable envelopes, see Theorem
3 for example. It will also be convenient to introduce the following combination:

φ(x, y) =
θ(xy)

θ(x)θ(y)
.

This function has the following quasiperiods:

φ(xq, y) = y−1φ(xq, y), φ(x, yq) = x−1φ(x, y).

These transformation properties define the so-called Poincaré line bundle on the product of dual elliptic
curves E × E∨ with coordinates x and y and φ(x, y) is a meromorphic section of this bundle.
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3 Elliptic Stable Envelope for X

In this section, we discuss algebraic variety X = T ∗Gr(k, n) – the cotangent bundle over the Grassmannian
of k-dimensional subspaces in an n-dimensional complex space.

3.1 X as a Nakajima quiver variety

We consider a Nakajima quiver variety X defined by the A1-quiver, with dimension v = k and framing
w = n. Explicitly, this variety has the following construction. Let R = Hom(Ck,Cn) be a vector space of
complex k×n matrices. There is an obvious action of GL(k) on this space, which extends to an Hamiltonian
action on its cotangent bundle:

T ∗R = R⊕R∗ ∼= Hom(Ck,Cn)⊕Hom(Cn,Ck),

with the Hamiltonian moment map

µ : T ∗R→ gl(k)∗, µ(j, i) = ij.

Then X is defined as
X := µ−1(0) ∩ {θ-semistable points}/GL(k),

where j ∈ R and i ∈ R∗ are n×k and k×n matrices respectively. There are two choices of stability conditions
θ < 0 and θ > 0. In the first case the semistable points are those pairs (j, i) with injective j:

{θ-semistable points} = {(j, i) ∈ T ∗R | rank(j) = k}, (9)

In the case θ > 0 the semistable points are (j, i) with i surjective [19]:

{θ-semistable points} = {(j, i) ∈ T ∗R | rank(i) = k}.

The general theory assures that X is a smooth holomorphic symplectic variety. In this paper, we choose

θ = (−1) ∈ LieR(K),

where K := U(1), as the stability condition defining X, in which case it is isomorphic to the cotangent bundle
of the Grassmannian of complex k-dimensional vector subspaces in an n-dimensional space.

3.2 Torus action on X

Let A = (C×)n be a torus acting on Cn by scaling the coordinates:

(z1, . . . , zn) 7→ (z1u
−1
1 , . . . , znu

−1
n ), (10)

which induces an action of A on T ∗R. We denote by C×~ the torus acting on T ∗R by scaling the second
component:

(j, i)→ (j, i ~−1)

We denote the whole torus T = A × C×~ . The action of T preserves semistable locus of µ−1(0) and thus
descends to X. Simple check shows that the action of A preserves the symplectic form on X, while C×~ scales
it by ~.

Note that the action (10) leaves invariant k-dimensional subspaces spanned by arbitrary k coordinate
vectors. Thus, the set of T-fixed points XT consists of n!/((n− k)!k!) points corresponding to k-dimensional
coordinate subspaces in Cn. In other word, a fixed point λ ∈ XT is described by a k-subset in the set
{1, 2, . . . , n}.
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3.3 T-equivariant K-theory of X

Let us denote the tautological bundles on X associated to Ck and Cn by V and W respectively. The bundle
W is a topologically trivial rank-n vector bundle, because Cn is a trivial representation of GL(k). In contrast,
V is a nontrivial rank-k subbundle of W. One can easily see that V is the standard tautological bundle of
k-subspaces on the Grassmannian. We assume that the tautological bundle splits in K-theory into a sum of
virtual line bundles,

V = y1 + · · ·+ yk. (11)

In other words, yi denote the Chern roots of V. The T-equivariant K-theory of X has the form:

KT(X) = C[y±1
1 , . . . , y±1

k ]Sk ⊗ C[u±1
i , ~±1]

/
I

where Sk is the symmetric group of k elements, and I denotes the ideal of Laurent polynomials with vanishing
restrictions at the fixed points, i.e., at (12). For out choice of stability condition, the matrix j representing a
fixed point is of rank k, thus if p is a fixed point corresponding to the k-subset {p1, . . . ,pk} ⊂ {1, 2, . . . , n},
then

yi|p = u−1
pi , i = 1, . . . , k. (12)

This means that if a K-theory class is represented by a Laurent polynomial f(yi) then its restriction to a
fixed point is given by the substitution f(yi)|p = f(u−1

pi ).
We note that for the opposite choice of the stability parameter θ < 0 the restriction would take the form

f(yi)|p = f(u−1
pi ~

−1), where the extra factor ~−1 comes from the action of C×~ on the matrix i, which is of
rank k for this choice of stability condition.

3.4 Tangent and polarization bundles

The definition of the elliptic stable envelope requires the choice of a polarization and a chamber [1]. The
polarization T 1/2X, as a virtual bundle, is a choice of the half of the tangent space. In other words,

TX = T 1/2X + ~−1T 1/2X∗.

We choose the polarization dual to the canonical polarization (which is defined for all Nakajima varieties,
see Example 3.3.3. in [31]):

T 1/2X = ~−1W∗ ⊗ V − ~−1V∗ ⊗ V. (13)

Expressing TX through the Chern roots by (11) and restricting it to a fixed point p by (12), we find the
T-character of the tangent space at p equals:

TpX =
∑
i∈p
j∈n\p

(ui
uj

+ ~−1uj
ui

)
, (14)

where p denotes the k-subset in n = {1, . . . , n}.
The definition of the stable envelope also requires the choice of a chamber, or equivalently, a cocharactor

of the torus A. We choose σ explicitly as

σ = (1, 2, . . . , n) ∈ LieR(A). (15)

The choice of σ fixes the decomposition TpX = N+
p ⊕N−p , where N±p are the subspaces whose A-characters

take positive or negative values on σ. From (14) we obtain:

N−p =
∑
i∈p,
j∈n\p,
i<j

ui
uj

+ ~−1
∑
i∈p,
j∈n\p,
i>j

uj
ui
, N+

p =
∑
i∈p,
j∈n\p,
i>j

ui
uj

+ ~−1
∑
i∈p,
j∈n\p,
i<j

uj
ui
. (16)
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3.5 Elliptic cohomology of X

Let us first note that X is a GKM variety. Two fixed points p, q are connected by an equivariant curve C
if and only if the corresponding k-subsets differ by one index p = q \ {i} ∪ {j}. In this case the T-character
of the tangent space equals:

TpC = ui/uj .

We conclude that the extended elliptic cohomology scheme equals:

ET(X) =
( ∐

p∈XT

Ôp

)
/∆ (17)

with Ôp
∼= ET × EPic(X) and /∆ denotes gluing of abelian varieties Ôp and Ôq with p = q \ {i} ∪ {j} along

the hyperplanes ui = uj .
Let us consider the following functions (see Section 2.5 for the notations):

Up,q(X) = Θ
(
T 1/2X

∣∣∣
q

) k∏
i=1

φ(u−1
pi , z

−1)

φ(u−1
qi , z

−1)

n∏
i=1

φ(ui, z
−1
ui ~

Dp
i )

φ(ui, z
−1
ui )

. (18)

Here, the powers Dp
i come from the index of the polarization bundle. They are computed as follows: for our

choice of the polarization (13) and chamber (15) the index of a fixed point p equals:

indp = T 1/2X
∣∣∣
p,>

=
∑
i∈p
j /∈p
j>i

uj
ui~

,

and the integers Dp
i are the degrees of the index bundle, i.e., the degree in variable ui of the monomial:

det indp =
∏
i∈p
j /∈p
j>i

uj
ui~

.

The collection {Up,q | q ∈ XT} form is a meromorphic section of some line bundle which we denote
by T (p). It means that the transformation properties of sections of T (p)|Ôq

are given by quasiperiods of

functions Up,q(X).
By definition, the elliptic stable envelope Stabσ(p) of a fixed point p (corresponding to the choice of

chamber σ and polarization T 1/2X) is a section of T (p) fixed uniquely by a list of properties [1]. Alternative
version of the elliptic stable envelope for cotangent bundles to partial flag variates was defined in [42, 12].
Comparing explicit formulas for elliptic stable envelopes in the case of the variety X from [1] and from
[42, 12] one observes that they differ by a multiple. The definition of [42, 12] is based on the fact that X
is a GKM variety, while definition of [1] is more general and is not restricted to GKM varieties. In fact,
the Nakajima varieties are almost never GKM varieties. In this paper we choose the approach of [42, 12],
because GKM structure of X will simplify the computations. As we mentioned already, in the case of variety
X both approaches lead to the same explicit formulas, thus there is no ambiguity in this choice.

Definition 2. The elliptic stable envelope of a fixed point Stabσ(p) is the unique section of T (p), such that
its components

Tp,q := Stabσ(p)|Ôq

satisfy the following properties

1) Tp,p =
∏
i∈p,
j∈n\p,
i<j

θ
(ui
uj

) ∏
i∈p,
j∈n\p,
i>j

θ
(uj
ui

~−1
)

.

2) Tp,q = fp,q
∏
i∈q,
j∈n\q,
i>j

θ
(uj
ui

~−1
)

, where fp,q is holomorphic in parameters ui.

Let us note that the fact that Stabσ(p) is a section of T (p) implies that its restrictions Tp,q are sections

of line bundles on abelian varieties Ôq which have the same transformation properties in all variables as
Up,q(X).
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3.6 Uniqueness of stable envelope for X

To justify the last definition, we need the following uniqueness theorem.

Theorem 2. [Appendix A, [12]] The matrix Tp,q satisfying:
1) For a given fixed p, the collection {Tp,q | q ∈ XT} form a section of the line bundle T (p) (as defined

by (18)).

2) Tp,p =
∏
i∈p,
j∈n\p,
i<j

θ
(ui
uj

) ∏
i∈p,
j∈n\p,
i>j

θ
(uj
ui

~−1
)

.

3) Tp,q = fp,q
∏
i∈q,
j∈n\q,
i>j

θ
(uj
ui

~−1
)

, where fp,q is holomorphic in parameters ui.

in unique.

Proof. Assume that we have two matrices which satisfy 1),2),3) and let κp,q be their difference. Assume
that κp,q 6= 0 for some p. Let q be a maximal (in the order defined by the chamber) fixed point such that
κp,q 6= 0. By 3) we know that

κp,q = fp,q
∏
i∈q,
j∈n\q,
i>j

θ
(uj
ui

~−1
)
, (19)

where fp,q is a holomorphic function of ui.

For i ∈ q and j ∈ n \ q with i < j, consider the point q′ = q \ {i} ∪ {j}. By construction, q and q
′

are
connected by an equivariant curve with character ui/uj . The condition 1) means:(

κp,q − κp,q′
)∣∣∣
ui=uj

= 0.

By construction q < q
′

(in the order on fixed points) and thus κp,q′ = 0, which implies κp,q|ui=uj = 0.

Comparing with (19) we conclude that fp,q is divisible by θ(ui/uj). Going over all such pairs of i, j we find:

κp,q = f
′

p,q

∏
i∈q,
j∈n\q,
i<j

θ
(ui
uj

) ∏
i∈q,
j∈n\q,
i>j

θ
(uj
ui

~−1
)

= f
′

p,q Tq,q,

where f
′

p,q is holomorphic in ui. As a holomorphic function it can be expanded as f
′

p,q =
∞∑
k=0

cku
k
i with

nonzero radius of convergence.
The quasiperiods of functions Tp,q are the same as those of the functions U(p)|q. In particular, for all

i 6∈ p ∩ q from (18) we find:

f
′

p,q(uiq) = f
′

p,q(ui)z
±1hm

for some integer m. We obtain:
∞∑
k=0

ck(z±1hm − qk)uki = 0

and thus ck = 0 for all k, i.e., f
′

p,q = 0.

3.7 Existence of elliptic stable envelope for X

The following result is proven in [1, 12, 27]:

Theorem 3. For canonical polarization (13) and chamber (15) the elliptic stable envelope of a fixed point
p ∈ XT has the following explicit form:
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Stabσ(p) = Sym


k∏
l=1

(
pl−1∏
i=1

θ(ylui~−1)
θ(yluplz

−1~k−n+pl−2l)

θ(z−1~k−n+pl−2l)

n∏
i=pl+1

θ(y−1
l u−1

i )

)
∏

1≤i<j≤n
θ(yi/yj)θ(~yi/yj)

 (20)

where the symbol Sym stands for the symmetrization over all Chern roots y1, . . . , yk.

Note that the components Tp,q are defined by this explicit formula as restriction Tp,q = Stabθ,σ(p)|q =

Stabθ,σ(p)|yi=u−1
qi

. The proof of this theorem is by checking the properties 1)-3) from Theorem 2 explicitly,

details can be found in [12].

3.8 Holomorphic normalization

Note that the stable envelope (20) has poles in the Kähler parameter z. It will be more convenient to work
with a different normalization of the stable envelope in which it is holomorphic in z:

Stab(p) := Θp Stabσ(p), (21)

where Θp is the section of a line bundle on the Kähler part EPic(X′ ) defined explicitly by

Θp =

k∏
m=1

θ(z−1~k−n+pm−2m).

(For X ′ and T′, see Section 4.) Similarly to Theorem 2, the stable envelope Stab(p) can be defined as a
unique section of the twisted line bundle on ET(X):

M(p) = T (p)⊗Θp. (22)

with diagonal restrictions (Property 2 in Theorem 2) given by Tp,pΘp. Note that the function Θp only
depends on Kähler variables. Thus, the twist of line bundle (22) does not affect quasiperiods of stable
envelopes in the equivariant parameters.

We will see that the section Θp has the following geometric meaning: it represents the elliptic Thom
class of the repelling normal bundle on the dual variety X ′ (see (28)):

Θp = Θ(N
′−
λ ),

where λ is related to p by (41), with parameter a1/a2 related to Kähler parameter z by (42).

4 Elliptic Stable Envelope for X ′

4.1 X ′ as a Nakajima quiver variety

From now on we always assume that n ≥ 2k. In this section we consider the variety X ′ which is a Nakajima
quiver variety associated to the An−1 quiver. This variety is defined by the framing dimension vector:

wi = δk,i + δn−k,i,

i.e., all framing spaces are trivial except those at position k and n− k. Both non-trivial framing spaces are
one-dimensional. The dimension vector has the form

v = (1, 2, . . . , k − 1, k, . . . , k︸ ︷︷ ︸
(n−2k+1)-times

, k − 1, . . . , 2, 1).
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By definition, this variety is given by the following symplectic reduction. Let us consider the vector space:

R =

n−2⊕
i=1

Hom(Cvi ,Cvi+1)
⊕

Hom(C,Cvk)
⊕

Hom(Cvn−k ,C),

and denote the representatives by (al, ik, jn−k), l = 1, . . . , n− 2. Similarly, the dual vector space:

R∗ =

n−2⊕
i=1

Hom(Cvi+1 ,Cvi)
⊕

Hom(Cvk ,C)
⊕

Hom(C,Cvn−k)

with representatives by (bl, jk, in−k). We consider the symplectic space T ∗R = R⊕R∗ and the moment map

µ : T ∗R→
n−1⊕
i=1

gl(vi)
∗.

Denote a = ⊕iai, b = ⊕ibi, i = ⊕iii and j = ⊕iji, then the moment takes the explicit form µ((a,b, i, j) =
[b,a] + i ◦ j. With this notation X ′ is defined as the quotient:

X ′ := µ−1(0) ∩ {θ′-semistable points}/
n−1∏
i=1

GL(vi).

We will use the canonical choice of the stability parameter 2

θ′ = (1, 1, . . . , 1) ∈ LieR(K′),

where K′ := U(1)n−1. The set of the θ′-semistable points in T ∗R is described as follows : a point
((a, ik, jn−k), (b, jk, in−k)) ∈ µ−1(0) is θ′-semistable, if and only if the image of ik ⊕ in−k under the ac-

tions of {al,bl, 1 ≤ l ≤ n− 2} generate the entire space
⊕n−1

i=1 Cvi .

4.2 Tautological bundles over X ′

We denote by Vi the rank vi tautological vector bundle on X ′ associated to Cvi . It will be convenient
to represent the dimension vector and associated tautological bundles using the following combinatorial
description. Let us consider a rectangle Rn,k with dimensions k × (n − k). We turn Rn,k by 45◦ as in the
Fig.3. We will denote by � = (i, j) ∈ Rn,k a box in Rn,k with coordinates (i, j), i = 1, . . . , n − k and
j = 1, . . . , k. We define a function of diagonal number on boxes:

c� = i− j + k.

Note that 1 ≤ c� ≤ n−1. It may be convenient to visualize c� as the horizontal coordinate of a box � as in
Fig.4. The total number of boxes with c� = i is vi = dimVi. With a box (i, j) we associate a variable xij .
It will be convenient to think about the set of xij with the same c� as Chern roots of tautological bundles,
such that in K-theory we have:

Vm =
∑
c�=m

x�.

The tautological bundles Vi generate the equivariant K-theory of X ′. The K-theory classes are represented
by Laurent polynomials in x�:

KT′(X
′) = C[x±1

ij ]Sn,k ⊗ C[a±1 , a
±
2 , ~

±]/I,

2We use the same notations for stability condition as in the Maulik-Okounkov [31]. In particular, for us the stability
parameter θ = (θi) corresponds to a character χ :

∏
iGL(vi)→ C× given by

χ : (gi) 7→
∏
i

(det gi)
θi .

This notation is opposite to one used in Ginzburg’s lectures [19], where θ corresponds to the character
∏
i(det gi)

−θi .
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where T′ is the torus described in the next subsection. These are the Laurent polynomials symmetric with
respect to each group of Chern roots, i.e., invariant under the group:

Sn,k =

n−1∏
i=1

Svi . (23)

where Svl acts by permutations on xij with c� = l. The ideal I is the ideal of polynomials which restricts
to zero at every fixed point:

I = {f(xi,j) : f(xi,j)|xij=ϕλij ,∀λ ∈ (X ′)T
′

}.

4.3 Torus action on X ′

Let A′ = (C×)2 be a 2-dimensional torus acting on the framing space C⊕ C by

(z1, z2) 7→ (z1a1, z2a2).

Let C×~ be the 1-dimensional torus acting on T ∗R by scaling the cotangent fiber

((a, ik, jn−2k), (b, jk, in−2k)) 7→ ((a, ik, jn−2k), ~(b, jk, in−2k)).

Denote their product by T′ = A′ × C×~ . The fixed loci in X ′ under the A′-action admit a tensor product
decomposition:

(X ′)A
′

=
∐

v(1)+v(2)=v

M(v(1), δk)×M(v(2), δn−2k),

where M(v(1), δk) is the quiver variety associated with the An−1 quiver with dimension vector v(1), framing
vector δk and the same stability condition θ′; similar with M(v(2), δn−2k).

We now give a combinatorial description of the quiver varietyM(v(1), δk). By definition, a representative
of a point in M(v(1), δk) takes the form (a, i,b, j). It is θ′-semistable, if and only if the image of i under the
actions of all a and b’s generate the space

V(1) :=

n−1⊕
i=1

Cv
(1)
i .

One can show that in this case, as an analogue of Lemma 2.8 in [36], we must have j = 0. The moment map

equation, together with jk = 0 implies that a commutes with b, as operaters on V(1). Therefore, we see that

V (1) is spanned by vectors aibjik(1), which if nonzero, lie in Cv
(1)
i−j+k . The stability condition implies that

the set {(i, j) ∈ Z2
>0 | ai−1bj−1ik(1) 6= 0} form a Young diagram, which corresponds to a partition λ.

In summary, the quiver variety M(v(1), δk) is either empty or a single point, where the latter case only

happens when there exists a partition λ, whose number of boxes in the m-th diagonal is v
(1)
m+k. The quiver

variety M(v(2), δn−2k) can be described in exactly the same way.
The restriction of Chern roots to the fixed point can be determined as follows. Consider

ai−1bj−1ik : C→ Vi−j+k.

The action of the group GL(v(1)) on ai−1bj−1ik is

a 7→ gag−1, b 7→ gbg−1, ik 7→ gkik,

where g = (g1, · · · , gn−1) ∈
∏
i GL(vi). So

ai−1bj−1ik 7→ gai−1bj−1ik,

and the action of A′ on the framing space C, z 7→ a1z, induces the action

ai−1bj−1ik 7→ a−1
1 ai−1bj−1ik.
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Here a1 becomes a−1
1 because the framing C is the domain space of ik. To determine the restriction of the

Chern root ϕij , we need g to compensate the action of T′, i.e.

gi = a1, ∀i.

So the (A′-equivariant) restriction is ϕij = a1. For the ~-weight, C×~ acts on b directly by ~. So the T′-
equivariant restriction is ϕij = a1~q−1. Exactly same consideration applies to the second partM(v(2), δn−2k).

Let us summarize the above discussion. The set of fixed points (X ′)T
′

is a finite set labeled by Young
diagrams which fit into rectangle Rn,k. If λ is such a diagram we denote its complement in the (n− k)× k
rectangle Rn,k by λ̄. It is easy to see that λ̄ is also a Young diagram. The Young diagrams λ and λ̄ divide the
rectangle Rn,k into two non-intersecting set of boxes. Our notations are clear from the following example.

Example 3. Let us fix n = 8, k = 3 and consider a Young diagram λ = [3, 2], then λ̄ = [4, 3, 3]. The union
of λ and λ̄ is the rectangular of dimensions 5× 3:

[3, 2] + [4, 3, 3] =

Figure 1: An example of a fixed point represented by [3, 2] ∈ R8,3

It is clear that the number of fixed points is n!/((n − k)!k!), i.e., the same as for XT. To describe the
values of the Chern roots xij at a fixed point λ, we introduce the following function:

ϕλij =

{
a1~j−1, if (i, j) ∈ λ,
a2~n−k−i+1, if (i, j) ∈ λ̄ (24)

The values of this function at the boxes are clear from the example in Fig.2:

a1

a1~

a1~2

a1

a1~

a2~4

a2~3

a2~3

a2~3

a2~2

a2~2

a2~2

a2~

a2~

a2~

Figure 2: The values of ϕλ� for λ = [3, 2] and n = 8, k = 3.

If λ ∈ (X ′)T
′

is a fixed point, then the restriction of the Chern roots of tautological bundles are given by
the formula:

x�|λ = ϕλ�. (25)

4.4 Tangent and polarization bundles for X ′

To define the elliptic stable envelope we need to specify a polarization a chamber. We choose the canonical
polarization:

T 1/2X ′ = a−1
1 Vk + a2V∗n−k +

n−2∑
i=1

Vi+1V∗i −
n−1∑
i=1

V∗i Vi, (26)

such that the virtual tangent space takes the form:

TX ′ = T 1/2X ′ + (T 1/2X ′)∗ ⊗ ~−1.
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We choose a chamber in the following form:

σ′ : (0, 1) ∈ LieR(A′). (27)

The character of the tangent space at a fixed point λ ∈ (X ′)T can be computed by restriction (24):

TλX
′ = TX ′|λ .

The tangent space at a fixed point decomposes into attracting and repelling parts:

TλX
′ = N

′+
λ ⊕N

′−
λ ,

where N
′±
λ are the subspaces with A-characters which take positive and negative values on the cocharacter

(27) respectively. Explicitly these characters equal:

N
′−
λ =

k∑
m=1

a1

a2
~2k−n+pm−2m−1, N

′+
λ =

k∑
m=1

a2

a1
~−2k+n−pm+2m (28)

where p = {p1, . . . ,pk} = bj(λ), for bj described in (41).

4.5 Elliptic cohomology of X ′

The extended elliptic cohomology scheme of X ′ is a bouquet of T′ orbits

ET′(X
′) :=

∐
λ∈(X′)T′

Ô
′
λ/∆

′,

where Ô
′
λ
∼= ET′ ×EPic(X′) with equivariant parameters and Kähler parameters to be coordinated in the first

and second factor respectively.
Similarly to our discussion in Section 3.5 for fixed points λ, µ we consider the following functions:

U ′λµ = Θ
(
T 1/2X ′

∣∣∣
µ

) ∏
�∈Rn,k

φ(ϕλ�, z
−1
c�

)

φ(ϕµ�, z
−1
c� )

2∏
i=1

φ(ai, z
−1
ai ~

Dλi )

φ(ai, z
−1
ai )

.

The powers Dλ
i are determined as follows: let us consider the index of the fixed point

indλ = T 1/2X ′
∣∣∣
λ,>

The symbol > means that among the T
′

weights of T 1/2X ′
∣∣
λ,>

we choose only those which are positive at σ
′
.

Let det(indλ) denote the product of all these weights, then Dλ
i is a degree of this monomial in variable ai.

For fixed λ the functions U ′λµ are components of a meromorphic section of a line bundle on ET′(X
′) [1].

We denote this line bundle by T ′(λ). By definition, the sections of restrictions T ′(λ)|
Ô
′
µ

have the same

quasiperiods (in all, equivariant and Kähler variables) as the function U ′λµ.

The elliptic stable envelope Stab′σ′(λ) of a fixed point λ is a section of this line bundle, which is specified
by a list of conditions similar to those of Definition 2. In this case, however, X ′ is not of GKM type. In
particular, for k > 1 it may contain families of curves connecting two fixed points. This means that the

subscheme ∆′ over which the orbits Ô
′
λ are glued and the condition of agreement for sections on different

components are more complicated. Nevertheless, the Stab′σ′(λ) can be described very explicitly using the
abelianization technique, see Section 5.
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4.6 Holomorphic normalization

It will be convenient to work with stable envelopes which differ from one defined in [1] by normalization

Stab′(λ) = Θ′λ Stab′σ′(λ) (29)

with prefactor Θ′λ given by

Θ′λ =
∏
i∈p,
j∈n\p,
i<j

θ
(ui
uj

) ∏
i∈p,
j∈n\p,
i>j

θ
(
~−1uj

ui

)

where p = bj(λ) (see (41) below) and variables ui are related to Kähler parameters zi through (42). The
stable envelope Stab′(λ) is a section of the twisted line bundle on ET′ (X

′
)

M′(λ) = T ′(λ)⊗Θ′λ. (30)

As the function Θ′λ only depends on Kähler variables this twist does not affect quasiperiods of stable envelopes
in equivariant parameters. Geometrically the section Θ′λ is related to repelling part of the normal bundles
N−p on the side X see (16):

Θ′λ = Θ(N−p ). (31)

We will see that in this normalization the stable envelopes are holomorphic sections of M′(λ).

5 Abelianization formula for elliptic stable envelope for X ′

5.1 Non-Kähler part of stable envelope

Define a function in the boxes of the rectangle Rn,k by:

ρλ� =

{
i+ j, if � ∈ λ
−i− j, if � 6∈ λ

The following function describes the part of elliptic stable envelope of a fixed point λ which is independent
on Kähler parameters:

Sn,kλ = (−1)k(n−k)

∏
cI=k
I∈λ

θ
(xI
a1

) ∏
cI=k
I 6∈λ

θ
( a1

xI~

) ∏
cI=n−k

θ
(a2~
xI

) ∏
cI+1=cJ
ρλ
I
>ρλ
J

θ
(xJ~
xI

) ∏
cI+1=cJ
ρλ
I
<ρλ
J

θ
(xI
xJ

)
∏

cI=cJ
ρλ
I
>ρλ
J

θ
(xI
xJ

)
θ
( xI
xJ~

) (32)

where all products run over boxes in Rn,k which satisfy the specified conditions. For example,
∏
cI=k
I 6∈λ

denotes

a product over all boxes I ∈ λ and projection cI = k. Similarly,
∏

cI=cJ
ρλ
I
>ρλ
J

denotes double product over all boxes

I, J ∈ Rn,k with cI = cJ and ρλI > ρλJ .
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Example 4.

S3,1
[1] = θ

(
x1,1

a1

)
θ

(
a2~
x2,1

)
θ

(
x2,1~
x1,1

)
,

S4,2
[1,1] =

θ

(
x1,1

a1

)
θ

 a2~
x1,1

θ( a1

~x2,2

)
θ

 a2~
x2,2

θ(x1,1

x2,1

)
θ

(
x1,2

x1,1

)
θ

~x2,2

x1,2

θ(x2,2

x2,1

)

θ

(
x1,1

x2,2

)
θ

(
x1,1

~x2,2

) ,

S4,2
[2] =

θ
(
x1,1

a1

)
θ

(
a2~
x1,1

)
θ

(
a1

~x2,2

)
θ

(
a2~
x2,2

)
θ

(
x2,1~
x1,1

)
θ

(
x1,1~
x1,2

)
θ

(
~x2,2

x1,2

)
θ

(
x2,2

x2,1

)
θ

(
x1,1

x2,2

)
θ

(
x1,1

~x2,2

) .

5.2 Trees in Young diagrams

Let us consider a Young diagram λ. We will say that two boxes �1 = (i1, j1),�2 = (i2, j2) ∈ λ are adjacent
if

i1 = i2, |j1 − j2| = 1 or j1 = j2, |i1 − i2| = 1.

Definition 3. A λ-tree is a rooted tree with:
(?) a set of vertices given by the boxes of a partition λ,
(?, ?) a root at the box r = (1, 1),
(?, ?, ?) edges connecting only the adjacent boxes.

Note that the number of λ-trees depends on the shape of λ. In particular, there is exactly one tree for
“hooks” λ = (λ1, 1, · · · , 1).

We assume that each edge of a λ-tree is oriented in a certain way. In particular, on a set of edges we
have two well-defined functions

h, t : {edges of a tree} −→ {boxes of λ},

which for an edge e return its head h(e) ∈ λ and tail t(e) ∈ λ boxes respectively. In this paper we will work
with a distinguished canonical orientation on λ-trees.

Definition 4. We say that a λ-tree has canonical orientation if all edges are oriented from the root to the
end points of the tree.

For a box � ∈ λ and a canonically oriented λ-tree t we have a well-defined canonically oriented subtree
[�, t] ⊂ t with root at �. In particular, [r, t] = t for a root r of t.

We rotate the rectangle Rn,k by 45◦ as in the Fig.3, such that the horizontal coordinate of the box is
equal to c�. The boundary of a Young diagram λ ⊂ Rn,k is a graph Γ of a piecewise linear function. We
define a function on boxes in Rn,k by:

β
(1)
λ (�) =

 +1 if � ∈ λ and Γ has maximum above �
−1 if � ∈ λ and Γ has minimum above �
0 else

(33)

Note that β
(1)
λ (�) = 0 for all � ∈ λ̄. For example, the Fig.3 gives the values of β

(1)
λ (�) for λ =

(4, 4, 4, 3, 3, 2) ∈ R10,4.
We also define

β
(2)
λ (�) =

 +1 if c� < k
−1 if c� > n− k
0 else

and we set

v(�) = β
(1)
λ (�) + β

(2)
λ (�). (34)
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−1

−1

−1

0

1

1

1

0

0

0

0

0

1

1

1

0

0

−1

−1

0

1

1

0

0

Figure 3: Values of function β
(1)
λ (�) for the diagram λ = (4, 4, 4, 3, 3, 2) ∈ R10,4. The boundary Γ of the

Young diagram λ is denoted by green color.

5.3 Kähler part of the stable envelope

Let λ ⊂ Rn,k be a Young diagram and λ̄ = Rn,k \ λ is the complement Young diagram as above. Let t∪ t̄ be
the (disjoint) union of λ-tree t and λ̄-tree t̄. We define a function:

WEll(t ∪ t̄;xi, zi) := WEll(t;xi, zi)W
Ell(̄t, xi, zi),

for the elliptic weight of a tree, where

WEll(t;xi, zi) := (−1)κ(t)φ
(ϕλr
xr
,
∏

�∈[r,t]

z−1
c�

~−v(�)
)∏
e∈t

φ
(xt(e)ϕλh(e)

ϕλt(e)xh(e)

,
∏

�∈[h(e),t]

z−1
c�

~−v(�)
)
, (35)

and similar with WEll(̄t, xi, zi).
Here � ∈ t or e ∈ t means the box or edge belongs to the tree. The sign of a tree depends on the number

κ(t) which is equal to the number of edges in the tree with wrong orientation. In other words, κ(t) is the
number of edges in t directed down or to the left, while κ(̄t) is the number of edges in t̄ directed up or to the
right. To avoid ambiguity, we also define WEll(t;xi, zi) := 1 for a tree in the empty Young diagram.

Example 5. Let us consider a Young diagram [2, 2] ⊂ R5,2 with trees .

By definition we have:

WEll
( )

= WEll
( )

WEll
( )

.

In this case we have six boxes with the following characters:

ϕλ11 = a1, ϕλ21 = a1, ϕλ31 = a2~, ϕλ12 = a1~, ϕλ22 = a1~, ϕλ32 = a2~.

Similarly for the ~-weights of boxes (34) we obtain:

β(1, 1) = β(1)(1, 1) + β(2)(1, 1) = 1 + 0 = 1,
β(1, 2) = β(1)(1, 2) + β(2)(1, 2) = 0 + 1 = 1,
β(2, 1) = β(1)(2, 1) + β(2)(2, 1) = 0 + 0 = 0,
β(2, 2) = β(1)(2, 2) + β(2)(2, 2) = 1 + 0 = 1,
β(3, 1) = β(1)(3, 1) + β(2)(3, 1) = 0− 1 = −1,
β(3, 2) = β(1)(3, 2) + β(2)(3, 2) = 0 + 0 = 0.
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First, let us consider WEll
( )

. In this case we have a tree with the root at r = (1, 1) and three

edges with the following heard and tails:

t(e1) = (1, 1), h(e1) = (1, 2), t(e2) = (1, 1), h(e2) = (2, 1), t(e3) = (1, 2), h(e3) = (2, 2).

For the first factor in (35) we obtain:

φ
(ϕλr
xr
,
∏

�∈[r,t]

z−1
c�

~−v(�)
)

= φ
( a1

x1,1
, z−1

1 z−2
2 z−1

3 ~−3
)

For the edges in the product (35) we obtain:

φ
(xt(e1)ϕ

λ
h(e1)

ϕλt(e1)xh(e1)

,
∏

�∈[h(e1),t]

z−1
c�

~−v(�)
)

= φ
(x11

x12
~, z−1

1 z−1
2 ~−2

)
,

φ
(xt(e2)ϕ

λ
h(e2)

ϕλt(e2)xh(e2)

,
∏

�∈[h(e2),t]

z−1
c�

~−v(�)
)

= φ
(x11

x21
, z−1

3

)
,

φ
(xt(e3)ϕ

λ
h(e3)

ϕλt(e3)xh(e3)

,
∏

�∈[h(e3),t]

z−1
c�

~−v(�)
)

= φ
(x12

x22
, z−1

2 ~−1
)
.

Thus, overall we obtain:

WEll
( )

= φ
( a1

x1,1
,

1

z1z2
2z3~3

)
φ
(x11~
x12

,
1

z1z2~2

)
φ
(x11

x21
,

1

z3

)
φ
(x12

x22
,

1

z2~

)
.

Similarly, for the second multiple we obtain:

WEll
( )

= φ
(a2~
x32

,
~
z3z4

)
φ
(x32

x31
,
~
z4

)
.

5.4 Formula for elliptic stable envelope

Definition 5. The skeleton Γλ of a partition λ is the graph, whose vertices are given by the set of boxes of
λ and whose edges connect all adjacent boxes in λ.

Definition 6. A L-shaped subgraph in λ is a subgraph γ ⊂ Γλ consisting of two edges γ = {δ1, δ2} with the
following end boxes:

δ1,1 = (i, j), δ2,1 = δ1,2 = (i+ 1, j), δ2,2 = (i+ 1, j + 1). (36)

It is easy to see that the total number of L-shaped subgraphs in λ is equal to

m =
∑
l∈Z

(dl(λ)− 1), (37)

where dl(λ) is the number of boxes in the l-diagonal of λ

dl(λ) = #{� ∈ λ | c� = l}. (38)
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There is a special set of λ-trees, constructed as follows. For each L-shaped subgraph γi in λ we choose one
of its two edges. We have 2m of such choices. For each such choice the set of edges Γλ \ {δi} is a λ-tree. We
denote the set of 2m λ-trees which appear this way by Υλ.

Now let us define Υn,k = Υλ × Υλ̄, whose elements of are pairs of trees (t, t̄), where t is a λ-tree with
root (1, 1), t̄ is a λ̄-tree with root (n− k, k). Both trees are constructed in the way described as above, and
they are disjoint, i.e., do not have common vertices.

Example 6. Let us consider λ = [3, 2] ∈ R8,3 and λ̄ = [4, 3, 3]. A typical element of Υ8,3 looks like:

∈ Υ8,3

The following theorem can be proved using the same arguments as in [46].

Theorem 4. The elliptic stable envelope of a fixed point λ for the chamber σ′ defined by (27) and polarization
(26) has the following form:

Stab′σ′(λ) = SymSn,k

(
Sn,kλ

∑
(t,̄t)∈Υn,k

WEll(t ∪ t̄)
)

(39)

where the symbol SymSn,k
denotes a sum over all permutations in the group (23).

5.5 Refined formula

In this subsection, we prove a refined version of formula (23), in the sense that when restricted to another
fixed point µ, the summation will be rewritten as depending on the trees t̄ only, but not on the trees t. The
refined formula will be of crucial use to us in the proof of the main theorem.

Given a fixed point λ, the original unrefined formula (39) has the following structure (for simplicity we
omit the chamber subscript σ′):

Stab′(λ) =
∑

σ∈Sn,k,t,̄t

N σ

Dσ
Rσ(t, t̄)Wσ(t, t̄),

where we denote

N := (−1)k(n−k)−1
∏
cI=k
I∈λ

I 6=(1,1)

θ
(xI
a1

) ∏
cI=k
I 6∈λ

θ
( a1

xI~

) ∏
cI=n−k
I 6=(n−k,k)

θ
(a2~
xI

) ∏
cI+1=cJ
ρλI>ρ

λ
J

(I↔J) 6∈Γλ∪Γλ̄

θ
(xJ~
xI

) ∏
cI+1=cJ
ρλI<ρ

λ
J

(I↔J)6∈Γλ∪Γλ̄

θ
(xI
xJ

)
,

D :=
∏

cI=cJ , ρλI>ρ
λ
J

θ
(xI
xJ

) ∏
cI=cJ , ρλI>ρ

λ
J+2

θ
( xI
xJ~

)
,

R(t, t̄) :=

∏
cI+1=cJ , ρ

λ
I=ρλJ+1

(I↔J)∈Γλ\t∪Γλ̄\t̄
θ
(xJ~
xI

)∏
cI+1=cJ , ρ

λ
I+1=ρλJ

(I↔J)∈Γλ\t∪Γλ̄\t̄
θ
(xI
xJ

)
∏
cI=cJ , ρλi =ρλj +2 θ

( xI
xJ~

)

W(t, t̄) :=

θ
(a1

xr

∏
I∈[r,t]

z−1
cI ~−v(I)

)
θ
( ∏
I∈[r,t]

z−1
cI ~−v(I))

∏
e∈t

θ
(xt(e)ϕλh(e)

xh(e)ϕ
λ
t(e)

∏
I∈[h(e),t]

z−1
cI ~−v(I)

)
θ
( ∏
I∈[h(e),t]

z−1
cI ~−v(I)

)
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·
θ
(a2~
xr̄

∏
I∈[r̄,̄t]

z−1
cI ~−v(I)

)
θ
( ∏
I∈[r̄,̄t]

z−1
cI ~−v(I)

) ∏
e∈t̄

θ
(xt(e)ϕλh(e)

xh(e)ϕ
λ
t(e)

∏
I∈[h(e),̄t]

z−1
cI ~−v(I)

)
θ
( ∏
I∈[h(e),̄t]

z−1
cI ~−v(I)

) ,

and N σ, Dσ, Rσ(t, t̄), Wσ(t, t̄) are the functions obtained by permuting xi’s via σ ∈ Sn,k in N , D, R, W.
We would like to consider its restriction to a fixed point ν ⊃ λ; in other words, to evaluate xI = ϕνI . The

symmetrization ensures that Stab′(λ) does not have poles for those values of xI ’s, and hence Stab′(λ)
∣∣
ν

is
well-defined.

For an individual term such as
N σ

Dσ
Rσ(t, t̄)Wσ(t, t̄),

however, its restriction to ν is not well-defined; in other words, it may depend on the order we approach the
limit xI = ϕνI . We discuss these properties in more details here.

Lemma 1. The restriction to ν of
N σ

Dσ
is well-defined, i.e., does not depend on the ordering of evaluation.

Proof. The proof is the same as Proposition 9 of [46].

Lemma 2. If
N σ

Dσ

∣∣∣∣
ν

6= 0,

then σ fixes every box in ν̄.

Proof. Suppose that
N σ

Dσ

∣∣∣∣
ν

6= 0. Then by Lemma 1, N σ contains no factors that vanish when restricted to

ν. First note that N σ contains ∏
ci=n−k, i 6=(n−k,k)

θ
( a2~
xσ(i)

)
,

which vanishes unless σ(i) 6= (n− k, k) for any i 6= (n− k, k). Hence σ(n− k, k) = (n− k, k).
We proceed by induction on the ρ-values of boxes in ν̄. Assume that σ fixes every box with ρ ≤ ρ0.

Consider a box (a, b) with ρ(a, b) = ρ0 +2. Then either (a+1, b) or (a, b+1) lies in ν̄, and both of them have
ρ = ρ0. Suppose σ−1(a, b) 6= (a, b), then it is adjacent to neither (a + 1, b) nor (a, b + 1), and by induction
hypothesis, ρσ−1(a,b) > ρa+1,b, ρa,b+1. We see that N σ contains the factor

θ
( xσ(a+1,b)

xσ(σ−1(a,b))

)
= θ
(xa+1,b

xab

)
or θ

(xσ(σ−1(a,b))

xσ(a,b+1)~

)
= θ
( xab
xa,b+1~

)
,

which vanishes at ν. Hence σ must fix (a, b) and the lemma holds.

Lemma 3. If
N σ

Dσ

∣∣∣∣
ν

6= 0

then σ preserves the set of boxes of λ.

Proof. We proceed by induction on the diagonals. For the initial step, we need to show that the box with
least content in λ, denoted by (1, b), is fixed by σ. If (1, b+ 1) ∈ ν̄, then (2, b+ 1) ∈ ν̄, and σ fixes (1, b) by
Lemma 2. Now assume that (1, b + 1) ∈ ν\λ. Let X1 = (1, b + 1), X2, · · · be the boxes in the diagonal of
ν\λ with one less content than (1, b). Since ρXi < 0 < ρ1,b, by Lemma 2 we always have in N σ the factor∏

m≥1

θ
(xσ(Xm)

xσ(1,b)

)
=
∏
m≥1

θ
( xXm
xσ(1,b)

)
,

which vanishes at ν unless σ(1, b) has no box to the left of it. This implies σ(1, b) = (1, b).
Now assume that σ preserves the l-th diagonal of λ. Consider the (l + 1)-th diagonal. There are several

cases.
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• Both the l-th and (l + 1)-th diagonals of ν\λ are empty. The lemma holds trivially for l + 1.

• ν\λ is empty in the l-th diagonal, but has one box X l+1
1 in the (l + 1)-th diagonal.

In this case, let Y l1 , Y
l
2 , · · · be boxes in the l-th diagonal of λ. In N σ, there is the theta factor∏

m≥1

θ
( xσ(Y lm)

xσ(Xl+1
1 )~

)
=
∏
m≥1

θ
( xY lm
xσ(Xl+1

1 )~

)
,

which vanishes at ν unless σ(X l+1
1 ) = X l+1

1 . Hence σ preserves the (l + 1)-th diagonal of λ.

• The l-th diagonal of ν\λ is nonempty.

In this case, let X l
1, X

l
2, · · · be the boxes in the l-th diagonal of ν\λ, and consider a general box Y in

the (l + 1)-th diagonal of λ. We have in N σ the factor∏
m≥1

θ
(xσ(Xlm)

xσ(Y )

)
=
∏
m≥1

θ
( xXlm
xσ(Y )

)
.

If σ(Y ) 6∈ λ, then it must be in ν\λ. Let Z be the box to the left of σ(Y ), which must either also lie
in ν\λ and has to be one of those X l

i ’s, or lie in λ. In the former case the product vanishes at ν; in

the latter case we have another factor θ
( xZ
xσ(Y )

)
, which also vanishes at ν.

The lemma holds by induction.

Consider the subgroups in Sn,k defined as

Sν\λ := {σ | σ fixes each box in λ ∪ ν̄}, Sλ̄ := {σ | σ fixes each box in λ}.

Lemma 4. If
N σ

Dσ

∣∣∣∣
ν

6= 0,

then σ ∈ Sµ\λ.

Proof. The proof is exactly the same as Lemma 2, by induction on the ρ-values of boxes.

Now we would like to restricted the formula to the fixed point ν, in a specific choice of limit. We call the
following the row limit for λ: first take

xI = xJ

for each pair of boxes I, J ∈ λ; then take any limit xI → ϕνI of the remaining variables.
By previous lemmas, we see that only σ ∈ Sν\λ survives. Moreover, under the row limit, one can see

that only one tree t (which contains all rows of λ) survives, and one can write all terms independent of trees
in λ:

Rσ(t, t̄) = (−1)m(λ)Rσ (̄t), Wσ(t, t̄) =Wσ (̄t),

where m(λ) =
∑
l∈Z

(dl(λ)− 1), and

R(̄t) :=

∏
cI+1=cJ , ρI=ρJ+1

(I↔J)∈Γλ̄\t̄

θ
(xJ~
xI

) ∏
cI+1=cJ , ρI+1=ρJ

(I↔J)∈Γλ̄\t̄

θ
(xI
xJ

)
∏

cI=cJ , ρI=ρJ+2
I,J∈λ̄

θ
( xI
xJ~

) ,

W (̄t) :=

θ
(a2~
xr̄

∏
I∈[r̄,̄t]

z−1
cI ~−v(I)

)
θ
( ∏
I∈[r̄,̄t]

z−1
cI ~−v(I)

) ∏
e∈t̄

θ
(xt(e)ϕλh(e)

xh(e)ϕ
λ
t(e)

∏
I∈[h(e),̄t]

z−1
cI ~−v(I)

)
θ
( ∏
I∈[h(e),̄t]

z−1
cI ~−v(I)

) .
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For N σ, Dσ and σ ∈ Sλ̄, we have the factorization

N σ

Dσ
=
Nλ
Dλ
· Ñ

′,−
λ ·

N σ
λ̄

Dσ
λ̄

,

where

Θ(Ñ
′,−
λ ) = (−1)k(n−k)−1

∏
cI=k
I 6∈λ

θ
( a1

xI~

) ∏
cI=n−k
I∈λ

θ
(a2~
xI

) ∏
cI+1=cJ
I∈λ, J∈λ̄

θ
(xJ~
xI

) ∏
cI+1=cJ
I∈λ̄, J∈λ

θ(
xI
xJ

)

∏
cI=cJ

I∈λ, J∈λ̄

θ
(xI
xJ

)
θ
( xI
xJ~

) ,

N σ
λ̄ =

∏
cI=n−k, i∈λ̄
i 6=(n−k,k)

θ
(a2~
xI

) ∏
cI+1=cJ , ρI>ρJ
(I↔J)6∈Γλ̄, I,J∈λ̄

θ
(xσ(J)~

xσ(I)

) ∏
cI+1=cJ , ρI<ρJ
(I↔J)6∈Γλ̄, I,J∈λ̄

θ
(xσ(I)

xσ(J)

)

Nλ =
∏

cI=k, I∈λ
I 6=(1,1)

θ
(xI
a1

) ∏
cI+1=cJ , ρI>ρJ
(I↔J)6∈Γλ, I,J∈λ

θ
(xJ~
xI

) ∏
cI+1=cJ , ρI<ρJ
(I↔J) 6∈Γλ, I,J∈λ

θ
(xI
xJ

)
,

Dσλ̄ =
∏

cI=cJ , ρI>ρJ
I,J∈λ̄

θ
(xσ(I)

xσ(J)

) ∏
cI=cJ , ρI>ρJ+2

I,J∈λ̄

θ
( xσ(I)

xσ(J)~

)
, Dλ =

∏
cI=cJ , ρI>ρJ

I,J∈λ

θ
(xI
xJ

) ∏
cI=cJ , ρI>ρJ+2

I,J∈λ

θ
( xI
xJ~

)
.

In summary, we have the following refined formula:

Proposition 3. For any choice of limit xi → ϕνi for i ∈ λ̄, we have

Stab′(λ)
∣∣
ν

= ε(λ) Θ(Ñ
′,−
λ )

∣∣∣
ν
·
∑

σ∈Sν\λ ,̄t

N σ
λ̄

Dσ
λ̄

Rσ (̄t)Wσ (̄t)

∣∣∣∣
ν

,

where
ε(λ) := (−1)m(λ)

∏
cI+1=cJ

(I↔J) 6∈Γλ, I,J∈λ

(−1).

As a corollary, we have the following identity in elliptic cohomology:

Stab′(λ) = ε(λ) Θ(Ñ
′,−
λ )

∑
σ∈Sλ̄ ,̄t

N σ
λ̄

Dσ
λ̄

Rσ (̄t)Wσ (̄t). (40)

Proof. Computations above show that

Stab′(λ)
∣∣
ν

= (−1)m(λ)Nλ
Dλ

∣∣∣∣
ν

·Θ(Ñ
′,−
λ )

∣∣∣∣
ν

·
∑

σ∈Sν\λ ,̄t

N σ
λ̄

Dσ
λ̄

Rσ (̄t)Wσ (̄t)

∣∣∣∣
ν

.

The refined formula is proved by the following lemma.

Lemma 5.
Nλ
Dλ

∣∣∣∣
ν

=
∏

cI+1=cJ
(I↔J) 6∈Γλ, I,J∈λ

(−1).

Proof. Let t1 = ~−1, t2 = 1, xI 7→ xI/a1 in Proposition 10 of [46]. We have

Nλ
Dλ

∣∣∣∣
ν

=
Nλ
Dλ

∣∣∣∣
λ

=
∏

cI+1=cJ , ρI<ρJ
(I↔J)6∈Γλ, I,J∈λ

(−1) ·
∏

cI+1=cJ , ρI>ρJ
(I↔J)6∈Γλ, I,J∈λ

(−1).
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6 The Mother function

6.1 Bijection on fixed points

Recall that the set XT consists of n!/((n − k)!k!) fixed points corresponding to k-subsets p = {p1, . . . ,pk}
in the set n = {1, 2, . . . , n}. On the dual side, the set (X ′)T

′
consists of the same number of fixed points,

labeled by Young diagrams λ which fit into the rectangle Rn,k with dimensions (n−k)×k. There is a natural
bijection

bj : (X ′)T
′ ∼−→ XT (41)

defined in the following way.
Let λ ∈ (X ′)T

′
be a fixed point. The boundary of the Young diagram λ is the graph of a piecewise linear

function with exactly n-segments. Clearly, we have exactly k-segments where this graph has slope −1. This
way we obtain a k-subset in p ⊂ {1, 2, . . . , n} which defines a fixed point in XT. For example, consider a
Young diagram λ = [4, 4, 4, 3, 3, 2] in R10,4 as in the Fig.4. Clearly, the boundary of λ has negative slope at
segments 4, 7, 9, 10, thus p = {4, 7, 9, 10}.

1 2 3 4 5 6 7 8 9 10

Figure 4: The point λ = [4, 4, 4, 3, 3, 2] ⊂ R10,4 corresponds to p = {4, 7, 9, 10} ⊂ {1, 2, . . . , 10}.

We note that this bijection preserves the standard dominant ordering on the set of fixed points. For
instance in the case n = 4, k = 2 the fixed points on X are labeled by 2-subsets in {1, 2, 3, 4}, which are
ordered as:

XT = {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}.

The fixed points on X ′ correspond to Young diagrams which fit into 2 × 2 rectangle. The bijection above
gives the following ordered list of fixed points in X ′:

(X ′)T
′

= {∅, [1], [1, 1], [2], [2, 1], [2, 2]}.

6.2 Identification of equivariant and Kähler parameters

Recall that the coordinates on the abelian variety Ôp = ET×EPic(X) are the equivariant parameters ui/ui+1, ~
and the Kähler parameter z. The coordinates on Ô

′
λ = ET′×EPic(X′) are the equivariant parameters a1/a2, ~

and Kähler parameters z1, . . . , zn−1. Let us consider an isomorphism identifying the equivariant and Kähler
tori on the dual sides

κ : T′ → K, K′ → T,
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defined explicitly by

a1

a2
7→ z~k−1, ~ 7→ ~−1, zi 7→


ui~
ui+1

, i < k,

ui
ui+1

, k ≤ i ≤ n− k,
ui

ui+1~
, i > n− k.

(42)

Recall that the stability and chamber parameters for X are defined by the following vectors:

σ = (1, 2, . . . , n) ∈ LieR(A), θ = (−1) ∈ LieR(K).

Using the map (42) we find that:

dκ−1(σ) = (−1, . . . ,−1) = −θ′, dκ−1(θ) = (1) = −σ′.

We see that the isomorphisms κ is chosen such that the stability parameters are matched to chamber
parameters on the dual side.

6.3 Mother function and 3d mirror symmetry

For the (T× T′)-variety X ×X ′ we consider equivariant embeddings defined by fixed points:

X = X × {λ} iλ−→ X ×X ′ ip←− {p} ×X ′ = X ′ (43)

We consider X × {λ} as a T× T
′

variety with trivial action on the second component. This gives

EllT×T′ (X × {λ}) = EllT(X)× ET′ = ET(X),

where in the last equality we used the isomorphism κ to identify EPic(X) = ET′ . Similarly,

EllT′ ({p} ×X
′) = ET′ (X

′).

We conclude that T × T
′
-equivariant embeddings (43) induce the following maps of extended elliptic coho-

mologies:

ET(X)
i∗λ−→ EllT×T′(X ×X ′)

i∗p←− ET′(X
′).

Here is our main result.

Theorem 5.

• There exists a line bundle M on EllT×T′(X ×X ′) such that

(i∗λ)∗(M) = M(p), (i∗p)∗(M) = M′(λ).

where p = bj(λ).

• There exists a holomorphic section m (the Mother function) of M, such that

(i∗λ)∗(m) = Stab(p), (i∗p)∗(m) = Stab′(λ),

where p = bj(λ)

We will prove this theorem in Section 9. This theorem implies that (up to normalization by diagonal
elements) the restriction matrices of elliptic stable envelopes of X and X ′ are related by transposition:

(Similarly with notations in Definition 2, we denote T ′λ,µ := Stab′(λ)|
Ô
′
µ
; we also use the simplified

notation (−)|p for (−)|Ôp
.)
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Corollary 2. Restriction matrices of elliptic stable envelopes for X and X ′ are related by:

Tp,pT
′
λ,µ = T ′µ,µTq,p (44)

where p = bj(λ), q = bj(µ) and parameters are identified by (42).

Proof. For fixed points λ, µ ∈ (X ′)T
′
, let p = bj(λ), q = bj(µ) denote the corresponding fixed points in XT.

Note that (X ×X ′)T×T′ = XT × (X ′)T
′
. Let us consider the point (p, µ) from this set. By Theorem 5 we

have
Stab(q)|p = m|(p,µ) = Stab′(λ)

∣∣
µ

By definition (21) (29) we have Stab′(λ)
∣∣
µ

= Θ′λT
′

λ,µ, Stab(q)|p = ΘqTq,p. In the standard normalization

of elliptic stable envelope, the diagonal elements of the restriction matrix are given by normal bundles of
repelling part of the normal bundles:

Tp,p = Θ(N−p ), T ′λ,λ = Θ(N
′−
λ ),

with N−p and N
′−
λ as in (16), (28). We see that Θ′λ = Tp,p, Θq = T ′µ,µ.

As we will see in Section 8, the equality (44) encodes certain infinite family of highly nontrivial identities
for theta function.

7 The Mother function in case k = 1

Before we prove the Theorem 5 in general, it might be very instructive to check its prediction in the case
k = 1. In this case the formulas for stable envelopes for X and X ′ are simple enough to compute the Mother
function explicitly.

7.1 Explicit formula for the mother function

In the case k = 1 both X and X ′ are hypertoric, X = T ∗Pn−1 and X ′ is isomorphic to the An−1 surface
(resolution of singularity C2/Zn). The map κ has the following form:

κ : ~ 7→ 1

~
,

a1

a2
7→ z, z1 7→

u1

u2
, · · · , zn−1 7→

un−1

un
. (45)

We denote by y = y1 the Chern root of the tautological bundle on X and by xi = xi,1, i = 1, · · · , n− 1 the
Chern roots of tautological bundles on X ′. For symmetry, we also denote by x0 = a1 and xn = a2. In these
notations we have:

Theorem 6. In the case k = 1, the Mother function equals:

m =

n∏
i=0

θ
( xi~
xi−1

uiy
)
. (46)

7.2 Stable envelope for X ′

First, let us consider the elliptic stable envelopes of the fixed points in X ′. In the case k = 1 the fixed points
on the variety X ′ are labeled by Young diagrams inside the 1× (n− 1) rectangle. There are exactly n such
Young diagrams λm = [1, 1, . . . , 1︸ ︷︷ ︸

m−1

] with m = 0, · · · , n − 1. To compute the stable envelope of λm, we need

to consider trees in λm and λ̄m. Obviously, there is only one possible tree in this case, see Fig.5:
For (32) we obtain:

Sn,1λm
= (−1)n−1θ

(x1

a1

)
θ
( a2~
xn−1

)m−2∏
i=1

θ
( xi
xi+1

)
× θ
( xm~
xm−1

)
×
n−2∏
i=m

θ
(xi+1~

xi

)
.
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1 ... m-1 m ..... n-1

Figure 5: The tree for the fixed point representing [1m−1] ⊂ Rn,1

To compute the Kähler part of the stable envelope (35) we note that β
(2)
λm

= 0 for all boxes of Rn,1 and β
(1)
λ

is equal to zero for all boxes except the box (m− 1, 1) where it is equal to 1. Thus βλ((i, 1)) = δi,m−1.

WEll
( )

= WEll
( )

×WEll
( )

= φ
(a1

x1
, ~−1

m−1∏
i=1

z−1
i

)m−2∏
i=1

φ
( xi
xi+1

, ~−1
m−1∏
j=i+1

z−1
j

)
× φ

( a2~
xn−1

,

n−1∏
i=m

z−1
i

) n−2∏
i=m

φ
(xi+1~

xi
,

m∏
j=i

z−1
j

)
.

We conclude that:

Stab′(λm) = Sn,1λm
WEll

λm = (−1)n

m−1∏
i=1

θ
( xi
xi−1

~
m−1∏
j=i

zj

)
× θ
( xm
xm−1

~
)
×

n∏
i=m+1

θ
( xi
xi−1

~
i−1∏
j=m

z−1
j

)
m−1∏
i=1

θ
(
~
m−1∏
j=i

zj

)
×

n∏
i=m+1

θ
( i−1∏
j=m

z−1
j

) (47)

where we denote x0 = a1 and xn = a2. The restriction of stable envelope to fixed points is given by evaluation
of Chern roots (24). In this case the restriction to to m-th fixed point is given by:

{x1 = a1, · · · , xm−1 = a1, xm = a2~n−m, · · · , xn−1 = a2~} (48)

Thus, for the diagonal matrix elements of restriction matrix we obtain:

T ′λm,λm = Stab′(λm)
∣∣
λm

= (−1)nθ
(a2

a1
~n−m+1

)
.

Finally, the stable envelope written in terms of parameters of X, i.e., all with the parameters substituted by
(45), equals:

Stab′(λm) = (−1)n

n∏
i=1

θ
( xi
xi−1~

ui
um

)
m−1∏
i=1

θ
( ui
um~

) n∏
i=m+1

θ
( ui
um

) , (49)

with diagonal elements of the restriction matrix:

T ′λm,λm = (−1)nθ(z−1~−n+m−1). (50)

7.3 Stable envelope for X

Under the bijection of fixed points we have bj(λm) = {m} ⊂ n. From (20) for the stable envelope of X in
the case k = 1 we obtain:

Stab(m) = (−1)n−m
m−1∏
i=1

θ
(yui

~

)
× θ(yumz

−1~−n+m−1)

θ(z−1~−n+m−1)
×

n∏
i=m+1

θ(yui). (51)

The restriction to the m-th fixed point is given by substitution y = u−1
m . Thus, for diagonal of restriction

matrix we obtain:

Tm,m = (−1)n−m Stab(m)|m = (−1)n−m
m−1∏
i=1

θ(
ui
um~

)

n∏
i=m+1

θ(
ui
um

) (52)
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7.4 Stable envelopes are restrictions of the Mother functions

We are now ready to check Theorem 6 in the k = 1 case. Note that (52) gives exactly the denominator of
(49) and we obtain:

Stab′(λm) = Tm,m Stab′(λm) = (−1)m
n∏
i=1

θ(
xi

xi−1~
ui
um

) = (−1)m m|m

where m is defined by (46) by m|m we denotes the restriction of this class to the m-th fixed point on X, i.e.
the evaluation y = u−1

m . Similarly, we note that (50) is exactly the denominator of (51) and we obtain:

Stab(m) = T ′λm,λm Stab(m) = (−1)m
m−1∏
i=1

θ(
yui
~

)× θ(yumz−1~−n+m−1)×
n∏

i=m+1

θ(yui) = (−1)m m|λm

where m|λm denoted the restriction to λm on X ′, i.e. the substitution (48) (one should not forget to substitute

~→ ~−1 in (48), as all formulas written in terms of the parameters of X). Theorem 6 for k = 1 is proven.

8 Simplest non-abelian case n = 4, k = 2

8.1 Identification of parameters and fixed points

In the case k = 1 considered in the previous section, the matrix elements of restriction matrices T ′λ,µ and
Tp,q factorize into a product of theta functions and Theorem 5 can be proved by explicit computation.
In contrast, when k ≥ 2 the matrix elements are much more complicated. In particular, Theorem 5 (and
Corollary 2) gives a set of very non-trivial identities satisfied by the theta functions. In this section we
consider the simplest example with n = 4 and k = 2. In this case the fixed points on X are labeled by
2-subsets in {1, 2, 3, 4}. We consider the basis ordered as:

XT = {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}.

The fixed points on X ′ correspond to Young diagrams which fit into a 2 × 2 square. The bijection on the
fixed points described in the Section 6.1 gives the corresponding points on X ′ (in the same order):

(X ′)T
′

= {∅, [1], [1, 1], [2], [2, 1], [2, 2]}.

The identification of Kähler and equivariant parameters (42) in this case reads:

κ :
a1

a2
7→ z~, ~ 7→ ~−1, z1 7→

u1h

u2
, z2 7→

u2

u3
, z3 7→

u3

u4h
. (53)

We will denote a fixed point simply by its number m = 1, · · · , 6. For example, T2,3 will denote the coefficient
of the restriction matrix for X given by T{1,3},{1,4}. Similarly, T ′1,4 denotes T ′∅,[2] on the dual side X ′.

8.2 Explicit expressions for stable envelops

Using (20),(21),(39), (29) one can compute explicit expressions for stable envelopes. We list two of them
here for example (after applying κ (53) ):

Stab(6) =
θ
(y1u1

~

)
θ
(y1u2

~

)
θ
(y1u3

z~

)
θ(y−1

1 u−1
4 )θ

(y2u1

~

)
θ
(y2u2

~

)
θ
(y2u3

~

)
θ
(y2u4

z~2

)
θ
(y1

y2

)
θ
(y1~
y2

) + (y1 ↔ y2)

Stab′(1) =

θ
(u1

u4

)
θ
(u2

u4

)
θ
( xmu3u4

~x2,2u2u1

)
θ
( x2,2u3

x1,2~u1

)
θ
(x2,2u4

x2,1u3

)
θ
(x1,2u3

x1,1u2

)
θ
( x2,1

x1,1~

)
θ
( ~x0

x1,1

)
θ
( ~x0

x2,2

)
θ
( xm
x1,1~

)
θ
(u3u4

u1u2

)
θ
(u4

u3

)
θ
(x1,1

x2,2

)
θ
(~x1,1

x2,2

)
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−
θ
(u1

u3

)
θ
(u2

u3

)
θ
( xmu3u4

~x2,2u1u2

)
θ
( x2,2u4

x1,2~u1

)
θ
(x1,2u4

x1,1u2

)
θ
(x1,1u4~
x2,1u3

)
θ
(x2,2

x2,1

)
θ
( ~x0

x1,1

)
θ
( ~x0

x2,2

)
θ
( xm
~x1,1

)
θ
(u3u4

u1u2

)
θ
(u4

u3

)
θ
(x1,1

x2,2

)
θ
(~x1,1

x2,2

)
+ (x1,1 ↔ x2,2) ,

where we denote x0 = a1, xm = a2.

8.3 Theorem 5 in case n = 4, k = 2

The Corollary 1 means that the functions above are related by the following identities:

Stab(a)|b = Stab′(b)
∣∣
a
,

where the restriction to the fixed points on X is given by substitution of variables yi (12). The restrictions
to the fixed points on X ′ are defined by (24) (together with identification of parameters (53)!). We only
compute non-zero restrictions and only those Stab(a)|b with a 6= b (the case a = b is trivial).

For example:
Case a = 2, b = 1:

Stab′(1)
∣∣
2

= θ
(
z~3

)
θ (~) θ

(
u1

u3

)
θ

(
zu2~3

u3

)
θ

(
u1

u4

)
θ

(
u2

u4

)
,

Stab(2)|1 = θ
(
z~3

)
θ (~) θ

(
u1

u3

)
θ

(
zu2~3

u3

)
θ

(
u1

u4

)
θ

(
u2

u4

)
.

We see that for (a, b) = (2, 1) the two are trivially equal as product of theta functions, which also happens
in cases (a, b) = (3, 2), (4, 2), (5, 2), (5, 3), (4, 3), (6, 3), (5, 4), (6, 5). However, the identity is nontrivial for the
remaining cases (a, b) = (3, 1), (4, 1), (5, 1), (6, 1), (6, 2), (6, 4).

Case a = 3, b = 1:

Stab′(1)
∣∣
3

=
θ (~) θ

(
u1
u4

)
θ
(
u1
u3

)(
θ
(
zu3~2

u4

)
θ
(
zu2~3

u3

)
θ
(
u2
u4

)
θ (~)− θ

(
u2
u3

)
θ
(
hu4
u3

)
θ
(
z~2

)
θ
(
zu2~3

u4

))
θ
(
u3
u4

) ,

Stab(3)|1 = θ

(
u1

u3

)
θ

(
u1

u4

)
θ (h) θ

(
~u2

u3

)
θ

(
z~2u2

u4

)
θ
(
z~3

)
.

Case a = 4, b = 1:

Stab′(1)
∣∣
4

= θ

(
u1

u4

)
θ

(
u2

u4

)
θ (~) θ

(
~u2

u3

)
θ
(
z~3

)
θ

(
z~2u1

u3

)
,

Stab(4)|1 =
θ (~) θ

(
u1
u4

)
θ
(
u2
u4

)(
θ
(
u1
u3

)
θ
(
z~2u1
u2

)
θ (~) θ

(
zu2~3

u3

)
− θ

(
u2
u3

)
θ
(

~u2
u1

)
θ
(
zu1~3

u3

)
θ
(
z~2

))
θ
(
u1
u2

) .

Case a = 5, b = 1:

Stab′(1)
∣∣
5

=
θ (~)

(
−θ

(
z~2u1
u4

)
θ
(

~u2
u4

)
θ
(

~u4
u3

)
θ
(
z~2

)
θ
(
u1
u3

)
θ
(
u2
u3

)
+ θ

(
zh2u1
u3

)
θ
(

~u2
u3

)
θ
(
zu3~2

u4

)
θ
(
u1
u4

)
θ
(
u2
u4

)
θ (~)

)
θ
(
u3
u4

) ,

Stab(5)|1 =
θ (~)

(
θ
(
u1
u3

)
θ
(
u1
u4

)
θ
(
zh2u1
u2

)
θ
(

~u2
u3

)
θ
(
z~2u2
u4

)
θ (~)− θ

(
u2
u3

)
θ
(
u2
u4

)
θ
(

~u1
u3

)
θ
(
z~2u1
u4

)
θ
(

~u2
u1

)
θ
(
z~2

))
θ
(
u1
u2

) .

Case a = 6, b = 1:

Stab′(1)
∣∣
6

=
1

θ
(
u1u2
u3u4

)
θ
(
u3
u4

) (
θ

(
~u2

u3

)
θ

(
~u1

u3

)
θ

(
u3~
u4

)
θ
(
z~2

)
θ

(
zu1u2

u3u4

)
θ

(
u1

u4

)
θ

(
u2

u4

)
θ (~)
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−θ
(
~u2

u4

)
θ

(
~u1

u4

)
θ

(
~u4

u3

)
θ
(
z~2

)
θ (~) θ

(
zhu1u2

u3u4

)
θ

(
u1

u3

)
θ

(
u2

u3

)
− θ

(
u2

u3

)
θ

(
z~2u2u1

u3u4

)
θ
(
~2

)
θ

(
u1

u3

)
θ

(
u3

u4

)
θ (z~) θ

(
u1

u4

)
θ

(
u2

u4

))
,

Stab(6)|1 =
θ (~)2

(
θ
(
u1
u4

)
θ
(

~u1
u2

)
θ
(
z~u1
u3

)
θ
(

~u2
u3

)
θ
(
z~2u2
u4

)
− θ

(
u2
u4

)
θ
(
z~u2
u3

)
θ
(

~u1
u3

)
θ
(
z~2u1
u4

)
θ
(

~u2
u1

))
θ
(
u1
u2

) .

Case a = 6, b = 2:

Stab′(2)
∣∣
6

= θ

(
u3~
u2

)
θ (~) θ

(
~u1

u2

)
θ

(
z~u1

u4

)
θ
(
z~2

)
θ

(
u3~
u4

)
,

Stab(6)|2 =
θ (~) θ

(
~u1
u2

)
θ
(
u3~
u2

)(
θ
(
u1
u4

)
θ
(
z~u1
u3

)
θ
(
zu3~2

u4

)
θ (~)− θ (z~) θ

(
z~2u1
u4

)
θ
(
u3~
u1

)
θ
(
u3
u4

))
θ
(
u1
u3

)
.

Case a = 6, b = 4:

Stab′(4)
∣∣
6

= θ

(
u3~
u1

)
θ

(
~u2

u1

)
θ

(
z~u2

u4

)
θ

(
u3~
u4

)
θ (~) θ

(
z~2

)
,

Stab(6)|4 =
θ (~) θ

(
~u2
u1

)
θ
(
u3~
u1

)(
θ
(
u2
u4

)
θ
(
z~u2
u3

)
θ
(
zu3~2

u4

)
θ (~)− θ (z~) θ

(
z~2u2
u4

)
θ
(
u3~
u2

)
θ
(
u3
u4

))
θ
(
u2
u3

)
.

8.4 Identities for theta functions

In all these nontrivial cases the identity follows from the well-known 3-term identity

θ
(ay1

x

)
θ
(hy2

x

)
θ
(hy1

y2

)
θ(a) = θ

(ahy2

x

)
θ
(y2

x

)
θ
(y1

y2

)
θ
(a
h

)
+ θ
(hy2

x

)
θ
(ay2

x

)
θ(h)θ

(ay1

y2

)
, (54)

and 4-term identity for theta functions:

θ (h) θ
(y1

y2

)
θ
(hy1

x1

)
θ
(a2hy2

x1

)
θ
(a1a2hy1

x2

)
θ
(x2

y2

)
θ
(a1x2

x1

)
−θ
(a1a2hy1

x1

)
θ
(x1

y2

)
θ
(hy1

x2

)
θ
(a2hy2

x2

)
θ
(hx2

x1

)
θ
(y1

y2

)
θ (a1)

= −θ (h) θ
(x1

x2

)
θ
(a1a2hy2

x1

)
θ
(a2hy1

x2

)
θ
(a1y1

y2

)
θ
(hy1

x1

)
θ
(x2

y2

)
+θ
(hy2

x1

)
θ
(x2

y1

)
θ
(x1

x2

)
θ
(hy1

y2

)
θ
(a1a2hy1

x1

)
θ
(a2hy2

x2

)
θ (a1)

(55)

Let us show the identity for the most complicated case a = 6, b = 1. The other cases are analyzed in the
same manner. First, we specialize the parameters in the 4-term relation (55) to the following values:{

a1 = ~−1, a2 = z~, x1 = u3, x2 = u4, y1 = u2, y2 = u1, h = ~
}
.

After this substitution the above 4-term (up to a common multiple θ(~)) takes the form:

−θ
(
u1

u4

)
θ
(

~u3

u4

)
θ
(
u1

u2

)
θ
(
zu1~2

u3

)
θ
(
z~u2

u4

)
θ
(

~u2

u3

)
+ θ

(
u1

u2

)
θ
(

~u2

u4

)
θ
(

~u4

u3

)
θ
(
u1

u3

)
θ
(
zhu2

u3

)
θ
(
zu1~2

u4

)
= −θ

(
u1

u4

)
θ
(
u3

u4

)
θ
(

~u1

u2

)
θ
(
z~u1

u3

)
θ
(
z~2u2

u4

)
θ
(

~u2

u3

)
+ θ

(
u3

u4

)
θ
(
u2

u4

)
θ
(

~u1

u3

)
θ
(

~u2

u1

)
θ
(
zhu2

u3

)
θ
(
zu1~2

u4

) (56)

Now, the identity for a = 6, b = 1 has the form:

A1 +A2 +A3 = B1 +B2
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where the terms have the following explicit form (after clearing the denominators):

A1 = θ
(
u1

u2

)
θ
(

~u2

u3

)
θ
(

~u1

u3

)
θ
(

~u3

u4

)
θ
(
zh2
)
θ
(
z~u1u2

u3u4

)
θ
(
u1

u4

)
θ
(
u2

u4

)
θ (~)

A2 = −θ
(
u1

u2

)
θ
(

~u2

u4

)
θ
(

~u1

u4

)
θ
(

~u4

u3

)
θ
(
z~2
)
θ (~) θ

(
z~u1u2

u3u4

)
θ
(
u1

u3

)
θ
(
u2

u3

)
A3 = −θ

(
u1

u2

)
θ
(
u2

u3

)
θ
(
z~2u2u1

u3u4

)
θ
(
~2
)
θ
(
u1

u3

)
θ
(
u3

u4

)
θ (z~) θ

(
u1

u4

)
θ
(
u2

u4

)
B1 = θ (~)

2
θ
(
u1u2

u3u4

)
θ
(
u3

u4

)
θ
(
u1

u4

)
θ
(

~u1

u2

)
θ
(
z~u1

u3

)
θ
(

~u2

u3

)
θ
(
z~2u2

u4

)
B2 = −θ (~)

2
θ
(
u1u2

u3u4

)
θ
(
u3

u4

)
θ
(
u2

u4

)
θ
(
z~u2

u3

)
θ
(

~u1

u3

)
θ
(
zu1~2

u4

)
θ
(

~u2

u1

)
For some values of the parameters the three term relation (54) can be written in the form:

θ
(
z~2
)
θ
(
u2

u4

)
θ
(

~u1

u3

)
θ
(
z~u1u2

u3u4

)
= −θ

(
~u4

u2

)
θ
(
zh2u2u1

u3u4

)
θ
(
u1

u3

)
θ (z~) + θ

(
u1u2

u3u4

)
θ (h) θ

(
z~u2

u4

)
θ
(
zu1~2

u3

)
and thus for A1 we can write:

A1 = −θ
(
~u4

u2

)
θ

(
u1

u2

)
θ

(
~u2

u3

)
θ

(
~u3

u4

)
θ

(
u1

u4

)
θ (~) θ

(
u1

u3

)
θ

(
z~2u2u1

u3u4

)
θ (z~)

+θ

(
zu1~2

u3

)
θ

(
z~u2

u4

)
θ

(
~u2

u3

)
θ

(
u1

u4

)
θ (~)2 θ

(
u1

u2

)
θ

(
u1u2

u3u4

)
θ

(
~u3

u4

)
.

Similarly we can write the 3-term relation as:

θ
(
z~2
)
θ
(
u2

u3

)
θ
(

~u1

u4

)
θ
(
z~u1u2

u3u4

)
= −θ

(
~u3

u2

)
θ
(
z~2u2u1

u3u4

)
θ
(
u1

u4

)
θ (zh) + θ

(
u1u2

u3u4

)
θ (h) θ

(
z~u2

u3

)
θ
(
zu1~2

u4

)
and thus:

A2 = θ

(
~u3

u2

)
θ

(
u1

u2

)
θ

(
u1

u4

)
θ (~) θ

(
~u2

u4

)
θ

(
~u4

u3

)
θ

(
u1

u3

)
θ

(
z~2u2u1

u3u4

)
θ (zh)

−θ
(
u1

u2

)
θ (~)2 θ

(
~u2

u4

)
θ

(
~u4

u3

)
θ

(
u1

u3

)
θ

(
u1u2

u3u4

)
θ

(
z~u2

u3

)
θ

(
zu1~2

u4

)
Finally,

θ
(
~2
)
θ
(
u2

u3

)
θ
(
u2

u4

)
θ
(
u3

u4

)
= θ (~) θ

(
~u2

u4

)
θ
(

~u4

u3

)
θ
(

~u3

u2

)
− θ

(
~u4

u2

)
θ
(

~u2

u3

)
θ (~) θ

(
~u3

u4

)
which gives:

A3 = θ

(
~u4

u2

)
θ

(
u1

u2

)
θ

(
~u2

u3

)
θ

(
~u3

u4

)
θ

(
u1

u4

)
θ (~) θ

(
u1

u3

)
θ

(
z~2u2u1

u3u4

)
θ (zh)

−θ
(
~u3

u2

)
θ

(
u1

u2

)
θ

(
u1

u4

)
θ (~) θ

(
~u2

u4

)
θ

(
~u4

u3

)
θ

(
u1

u3

)
θ

(
z~2u2u1

u3u4

)
θ (z~) .

Several terms in the sum A1 +A2 +A3 cancels and we obtain:

A1 +A2 +A3 = θ (~)2 θ

(
u1

u2

)
θ

(
u1u2

u3u4

)(
θ

(
zu1~2

u3

)
θ

(
z~u2

u4

)
θ

(
~u2

u3

)
θ

(
hu3

u4

)
θ

(
u1

u4

)
−θ

(
~u2

u4

)
θ

(
~u4

u3

)
θ

(
zhu2

u3

)
θ

(
zu1~2

u4

)
θ

(
u1

u3

))

Now, modulo a common multiple θ (~)
2
θ
(
u1u2

u3u4

)
the relation A1 +A2 +A3 = B1 +B2 is exactly the 4-term

relation (56).
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9 Proof of Theorem 5

Let us first discuss the idea of the proof. We denote the restriction matrices for the elliptic stable envelopes
in (holomorphic normalization) by:

Tq,p = Stab(q)|Ôp
, T

′

λ,µ = Stab
′
(λ)
∣∣∣
Ô
′
µ

.

Recall that the isomorphism κ induces an isomorphism of extended orbits Ô
′

µ
∼= Ôp

∼= ET×T′ . First, we show
that under this isomorphism we have the following identity

T
′

λ,µ = Tq,p, for p = bj(λ), q = bj(µ). (57)

By Theorem 2, to prove this identity it is enough to check that the matrix elements T
′

λ,µ satisfies the
conditions 1),2), 3).

The condition 1) says that for fixed µ the set of functions T
′

λ,µ is a section of the line bundle M(q) see

(22). By Proposition 1, to check this property it is enough to show that T
′

λ,µ has the same quasiperiods in
equivariant and Kähler variables as sections of M(q)|Ôp

and that it satisfies the GKM conditions:

T
′

λ,µ

∣∣∣
ui=uj

= T
′

ν,µ

∣∣∣
ui=uj

, (58)

if the fixed points p = bj(λ) and s = bj(ν) are connected by equivariant curve, i.e., if p = s \ {i} ∪ {j} as
k-sets. We prove it in the next Subsection 9.2.

The condition 2) is trivial and follows from our choice of holomorphic normalization.
The condition 3) says that T

′

λ,µ must be divisible by some explicit product of theta functions and the
result of division is a holomorphic function in variables ui. We will refer to these properties as divisibility and
holomorphicity. These properties of the matrix T

′

λ,µ will be proven in Subsections 9.3 and 9.4 respectively.
Let us consider the following scheme:

S(X,X
′
) := ET×T′ × S

k(E)×
n−1∏
i=1

Svi(E). (59)

Here Sk(E) denotes k-th symmetric power of the elliptic curve E. We assume that coordinates on Sk(E)
are given by symmetric functions on Chern roots of tautological bundle on X. Similarly, Svi(E) denotes the
scheme with coordinates given by Chern roots of i-th tautological bundle on X

′
, i.e., symmetric functions

in x� with c� = i, see Section 4.2 for the notations.

Recall that the stable envelopes Stab(q) and Stab
′
(λ) are defined explicitly by (20) and (39). In

particular, they are symmetric functions in the Chern roots of tautological bundles. This means that the
function defined by

m̃ :=
∑

p∈XT

∑
λ∈(X′)T

′

T−1
q,p Stab(q) Stab

′
(λ). (60)

can be considered as a meromorphic section of certain line bundle on S(X,X
′
). We denote the corresponding

line bundle by M̃.3

Let us consider the map
c̃ : EllT×T′ (X ×X

′)→ S(X,X ′)

which is defined as follows: the component of c̃ mapping to the first factor of (59) is the projection to
the base. The components of the map c̃ to Sk(E) and to Svl(E) are given by the elliptic Chern classes of
the corresponding tautological classes. For the definition of elliptic Chern classes see Section 1.8 in [18] or
Section 5 in [16]. It is known that c̃ is an embedding [32], see also Section 2.4 in [1] for discussion.

Finally, the line bundle and the section of the Theorem 5 can be defined as M = c̃∗M̃ and m = c̃∗(m̃).
Indeed, from the very definition (60) and (57) it is obvious that

(i∗λ)∗(m) = m̃|λ = Stab(p), (i∗p)∗(m) = m̃|p = Stab′(λ).

i.e., the section m is the Mother function.

3Note that Tq,p it triangular matrix with non-vanishing diagonal, thus it is invertible and the sum in (60) is well defined.
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9.1 Cancellation of trees

Before checking Conditions 1)-3), we need a key lemma which describes that, under specialization of some
ui parameters, contributions from trees will cancel with each other and simply the summation dramatically.

Define the boundary of λ̄ to be the set

{(i, j) ∈ λ̄ | (i− 1, j − 1) 6∈ λ̄}.

Define the upper boundary of λ̄ to be the set

U := {(i, j) ∈ λ̄ | j = k}.

Consider a 2× 2 square in λ̄, consisting of (c, d), (c+ 1, d), (c, d+ 1), (c+ 1, d+ 1), where (c+ 1, d) is in the
a-th diagonal. Let t̄ be a tree, which contains the edge (c+ 1, d+ 1)→ (c+ 1, d).

The involution of t̄ at the box (c + 1, d) is defined to be the tree inv(̄t, (c + 1, d)) obtained by removing
(c+ 1, d+ 1)→ (c+ 1, j) from t̄ and adding the edge (c, d)→ (c+ 1, d). We abbreviate the notation as inv(̄t)
if there’s no confusion. Define inv(inv(̄t)) = t̄. Involution is a well-defined operation on all trees at all boxes
that are not in U or the boundary of λ̄.

Let s̄ be the subtree
s̄ := [(c+ 1, d), t̄] = [(c+ 1, d), inv(̄t)].

The u-parameter contributed from s̄ is

u(s̄) :=
∏
I∈s̄

ucI+1

ucI
.

Lemma 6 (Cancellation lemma).

R(̄t)W (̄t)

R(inv(̄t))W(inv(̄t))

∣∣∣∣
u(s̄)=1

= −1.

As a corollary, ∑
σ∈Sλ̄

N σ
λ̄

Dσ
λ̄

Rσ (̄t)Wσ (̄t) = −
∑
σ∈Sλ̄

N σ
λ̄

Dσ
λ̄

Rσ(inv(̄t))Wσ(inv(̄t)).

Proof. Direct computation shows that

R(̄t)

R(inv(̄t))
=

θ
(xc+1,d~

xc,d

)
θ
(xc+1,d+1

xc+1,d

) . (61)

The quotientW (̄t)/W(inv(̄t)) has contribution from an edge e if the subtree [h(e), t̄] or [h(e), inv(̄t)] contains
(c+ 1, d+ 1) or (c, d). Those contributions are all of the form

θ
(xt(e)ϕλh(e)

xh(e)ϕ
λ
t(e)

∏
I∈[h(e),inv(̄t)]

ucI+1

ucI
· u(s̄)

)
θ
(xt(e)ϕλh(e)

xh(e)ϕ
λ
t(e)

∏
I∈[h(e),inv(̄t)]

ucI+1

ucI

) or

θ
(xt(e)ϕλh(e)

xh(e)ϕ
λ
t(e)

∏
I∈[h(e),̄t]

ucI+1

ucI

)
θ
(xt(e)ϕλh(e)

xh(e)ϕ
λ
t(e)

∏
I∈[h(e),̄t]

ucI+1

ucI
u(s̄)

)
which are both 1 under u(s̄) = 1, and the only remaining factor comes from the edges (c+1, d+1)→ (c+1, d)
and (c, d)→ (c+ 1, d):

θ
(xc+1,d+1

xc+1,d

ϕλc+1,d

ϕλc+1,d+1

u(s̄)
)

θ
( xc,d
xc+1,d

ϕλc+1,d

ϕλc,d
u(s̄)

)
∣∣∣∣∣∣∣∣∣∣
u(s̄)=1

=

θ
(xc+1,d+1

xc+1,d

)
θ
( xc,d
xc+1,d

~−1
) .

The lemma follows.
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9.2 GKM conditions

The goal of this section is to prove that the elliptic stable envelopes Stab′(λ) satisfy the GKM condition
(58). For simplicity we assume that (1, k) ∈ λ̄; in other words, λ̄ starts with diagonal 1. The general case
can be easily reduced to this.

A subtree of t̄ is called a strip if it contains at most one box in each diagonal. We will also abuse the
name strip for a connected subset in a partition that contains at most one box in each diagonal. We call a
strip that starts from diagonal i to j − 1 an (i, j)-strip.

Let λ and µ be two partitions, and p = bj(λ), q = bj(µ). Suppose that as fixed points in X, p and q are
connected by a torus-invariant curve, which means that

q = p \ {i} ∪ {j},

for some 1 ≤ i, j ≤ n (assume i < j). On the dual side, that means µ ⊃ λ, and µ\λ is an (i, j)-strip, lying
the boundary of λ̄.

Recall the GKM condition:

Proposition 4. For partitions λ and µ as above,

Stab′(λ)
∣∣
ui=uj

= Stab′(µ)
∣∣
ui=uj

.

By localization and the triangular property of stable envelopes, it suffices to show that for any partition
ν ⊃ λ,

Stab′(λ)
∣∣
ν,ui=uj

= Stab′(µ)
∣∣
ν,ui=uj

.

Before proving the GKM condition, we need some analysis on the specialization of the stable envelopes under
ui = uj .

9.2.1 Specialization of Stab′(λ) under ui = uj

Recall that p ⊂ n and i ∈ p, j 6∈ p, i < j. We would like to study the specialization ui = uj .
By definition

Stab′(λ) = Tp,p · Stab′(λ),

where
Tp,p =

∏
i∈p, j∈n\p, i<j

θ
(ui
uj

) ∏
i∈p, j∈n\p, i>j

θ
( uj
ui~

)
.

In particular, Tp,p contains a factor θ
(ui
uj

)
.

For any tree t̄ in λ̄, consider all subtrees of t̄ that are (i, j)-strips

B = {Bi, Bi+1, · · · , Bj−1},

where Bl is the box in the l-th diagonal. We define B(̄t, i, j) to be one whose Bi has the smallest height. If
t̄ does not contain any (i, j)-stripes as subtrees, define B(̄t, i, j) = ∅. A tree t̄ in λ̄ is called distinguished, if
its strip B(̄t, i, j) 6= ∅, and lies in the boundary of λ̄.

A simple observation is that, for the contribution from t̄ to Stab′(λ) to be nonzero under ui = uj ,
B(̄t, i, j) has to be nonempty.

Lemma 7. Let B be an (i, j)-strip in t̄ which is a subtree. Let BU be the box in B∩U with largest content.
We have

• if Bi 6∈ U , then Bi is the root of B;

• if Bi ∈ U , then BU is the root of B.

Proof. If Bi 6∈ U , and the root of B is some box other than Bi. Then the unique path from Bi to U has a
box � in its interior with local maximal content. � must be connected to both the boxes to the left and
above it, which is not allowed.

If Bi ∈ U , then every box in B from Bi to BU is in U . It is clear that the root of B is BU .
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Lemma 8. Let B be an (i, j)-strip in t̄ which is a subtree. If Bi lies in the boundary of λ̄, then B lies
entirely in the boundary of λ̄; in other words, B(̄t, i, j) = B.

Proof. Suppose Bi lies in the boundary, but B does not. Then there exists a box in the boundary of λ̄, not
in B, but in a diagonal less than j − 1. Since t̄ is a tree, there is a unique path from that box to some box
in U . This path would contain a box with local maximal content in its interior. Contradiction.

Lemma 9. Under the specialization ui = uj ,

Stab′(λ)
∣∣
ui=uj

= Tp,p · ε(λ) Θ(Ñ
′,−
λ )

∑
σ∈Sλ̄

t̄ disinguished

N σ
λ̄

Dσ
λ̄

Rσ (̄t)Wσ (̄t)

∣∣∣∣
ua=ub

.

Proof. Let B = B(̄t, i, j). Since Tp,p contains a zero ui/uj , if B = ∅, it is clear that the stable envelope will
vanish. Now assume B 6= ∅.

If i = 1, then Bi = (1, k). By Lemma 8 B lies in the boundary and t̄ is distinguished.
If i 6= 1, it is easy to see that Bi 6∈ U (otherwise as a subtree B must contain (1, k)). If moreover Bi is

not in the boundary, then one can construct its involution inv(̄t). By Lemma 6, the contributions from t̄ and
inv(̄t) cancel with each other. Therefore, in the summation over trees, we are left with those t̄ whose Bi lies
in the boundary of λ̄, which by Lemma 8 are distinguished.

Fix a distinguished tree t̄, and B = B(̄t, i, j). Let’s consider the restriction of Stab′(λ) to a certain fixed
point ν ⊃ λ. For an individual contribution from given t̄ and σ, we take the following limit, called B-column
limit for ν\λ: first, for each pair of I, J ∈ ν\λ such that I is above J and I, J 6∈ B, take

xI = xJ~;

for any I ∈ B, take xI = ϕνI ; finally take any well-defined evaluation of the remaining variables. Note that
this limit only depends on the partition λ and the pair i, j, and does not depend on t̄.

Lemma 10. The restriction
N σ
λ̄

Dσ
λ̄

Rσ (̄t)Wσ (̄t)

∣∣∣∣
ν

under the B-column limit vanishes unless σ fixes B.

Proof. Suppose that the restriction does not vanish under the chosen limit. Recall that Bl, i ≤ l ≤ j − 1 is
the box in the l-th diagonal of B. We use induction on l, from j− 1 to i. Recall that by the refined formula,
σ lies in Sν\λ.

First we show that Bj−1 is fixed by σ. Let Y1, Y2, · · · be the boxes in the j-th diagonal of ν\λ, such that
the heights of Ym’s are increasing. Since j 6∈ p, Y1 is the box to the right of Bj−1. Hence we have the theta
factors ∏

m≥1

θ
(xσ(Bj−1)

xYm~

)
,

as ρBj−1 > ρYm and Bj−1 is not connected to Y1. Under the B-column limit for ν\λ, this product vanishes
unless σ(Bj−1) has no box below it, which implies σ(Bj−1) = Bj−1.

Next, suppose that Bl+1 is fixed by σ, consider Bl. Let e be the edge connecting Bl and Bl+1. Let
X1 = Bl, X2, · · · and Y1 = Bl+1, Y2, · · · be respectively the boxes in the l-th and (l+ 1)-th diagonals of ν\λ.

If e is horizontal, then we have factors ∏
m≥2

θ
(xσ(Xm)

xBl+1

)
,

since we know ρXm < ρBl+1
and X2 is not connected to Bl+1. If σ(Xm) = X1 = Bl for some m 6= 1, then

the factor θ
(xσ(Xm)

xBl+1

)
= θ
( xBl
xBl+1

)
vanishes under the B-column ordering. Hence σ(Bl) = Bl.
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If e is vertical, then we have factors∏
m≥2

θ
( xσ(Bl)

xσ(Ym)~

)
=
∏
m≥2

θ
(xσ(Bl)

xYm~

)
,

since we know ρBl > ρYm and Bl is not connected to Y2. If σ(Bl) = Xm for some m 6= 1, then the factor

θ
(xσ(Bl)

xYm~

)
= θ
( xXm
xYm~

)
vanishes under the B-column ordering, since Xm is the box above Ym and they are

not in B for m ≥ 2. Hence σ fixes Bl.

In summary, after restriction to ν in the B-column limit for ν\λ, only contributions from distinguished
t̄ and permutations σ that fix B survive. We are now ready to prove Proposition 4.

9.2.2 Proof of Proposition 4: µ is not contained in ν

In this case, the strip µ\λ is not entirely contained in ν\λ. Clearly we have Stab′(µ)
∣∣
ν

= 0.

Lemma 11.
Stab′(λ)

∣∣
ν,ui=uj

= 0.

Proof. By Lemma 9, only distinguished trees t̄, with strip B = B(̄t, i, j) contributes. Let Bi, · · · , Bj−1 be
boxes in B, and X be the first box in B that does not lie in ν\λ. For restriction to ν of an individual
contribution by given t̄ and σ, we take the column limit for ν̄, i.e. first let xI = xJ for any I, J ∈ ν̄ in the
same column, and then take any limit for the remaining variables.

If X 6= Bi, then there’s a box Y above it, which also lies in ν̄. Since Y 6∈ B, the edge connecting X and Y
is not in t̄. The contribution from t̄ then contains a factor θ(X/Y ), which vanishes under the column limit.

If X = Bi, then either i 6= 1, or i = 1, and the entire B ∩ U , and in particular BU , lie in ν̄. By Lemma
7 we know the root rB = Bi or BU respectively. Denote the box not in B and connected to r by C. The
factor in Wσ=1(̄t) that contributes the pole ui/uj is

θ
(xCϕλrB
xrBϕ

λ
C

uj
ui

)∣∣∣∣∣
ν

θ
(uj
ui

) = 1.

Stab′(λ)
∣∣
ν

= 0 under ui = uj because of the zero ui/uj in Tp,p.

9.2.3 Proof of Proposition 4: µ ⊂ ν

In this case B is contained entirely in ν\λ; in other words, λ ⊂ µ ⊂ ν. Let rB be the root of B, which if
i = 1, is BU ; and if i 6= 1, is Ba.

If (n− k, k) 6∈ B, let C ∈ t̄\B be the box connected to rB . C could be in or not in ν\λ. If (n− k, k) ∈ B,
we denote by convention that xC/ϕ

λ
C = 1. Then

θ
(uj
ui

)
Stab′(λ)

∣∣∣∣
ν,ui=uj

= θ
(uj
ui

)
ε(λ) Θ(Ñ

′,−
λ )

∣∣∣
ν
·

∑
σ∈Sν\µ ,̄t∩µ̄

N σ
µ̄

Dσµ̄
Rσ (̄t ∩ µ̄)Wσ (̄t ∩ µ̄)

∣∣∣∣
ν

·
∏

cI=n−k, I 6=(n−k,k)
I∈µ\λ

θ
(a2~
xI

)∣∣∣∣
ν

∏
cI+1=cJ , ρI>ρJ

(I↔J) 6∈t̄, I or J∈µ\λ

θ
(xσ(J)~
xσ(I)

)∣∣∣∣
ν

∏
cI+1=cJ , ρI<ρJ

(I↔J)6∈t̄, I or J∈µ\λ

θ
(xσ(I)

xσ(J)

)∣∣∣∣
ν

·
∏

cI=cJ , ρI>ρJ
I or J∈µ\λ

θ
(xσ(I)

xσ(J)

)−1

θ
( xσ(I)

xσ(J)~

)−1
∣∣∣∣
ν

·
θ
(xCϕλrB
xrBϕ

λ
C

uj
ui

)∣∣∣∣∣
ν

θ
(uj
ui

) ∏
e∈B\U

θ
(xt(e)ϕλh(e)

xh(e)ϕ
λ
t(e)

uj
uh(e)

)∣∣∣∣∣
ν

θ
(

uj
uh(e)

) ∏
e∈B∩U

θ
(xt(e)ϕλh(e)

xh(e)ϕ
λ
t(e)

ut(e)

ui

)∣∣∣∣∣
ν

θ
(ut(e)
ui

) ,
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which can be compared with Stab′(µ). Direct computation shows that

θ
(uj
ui

)Stab′(λ)

Stab′(µ)

∣∣∣∣
ν,ui=uj

= (−1)j−iθ(~−1)
∏

e∈B\U

θ
(xt(e)ϕλh(e)

xh(e)ϕ
λ
t(e)

uj
uh(e)

)∣∣∣∣∣
ν,ui=uj

θ
( uj
uh(e)

) ∏
e∈B∩U

θ
(xt(e)ϕλh(e)

xh(e)ϕ
λ
t(e)

ut(e)

ui

)∣∣∣∣∣
ν,ui=uj

θ
(ut(e)
ui

)

= (−1)j−iθ(~−1)
∏

i<m<j
m∈p

θ
(~uj
um

)
θ
( uj
um

) ∏
i<m<j
m∈n\p

θ
( uj
um~

)
θ
( uj
um

) ,
where the last equality is because for e ∈ B\U ,

θ
(xt(e)ϕλh(e)

xh(e)ϕ
λ
t(e)

uj
uh(e)

)∣∣∣∣∣
ν

θ
( uj
uh(e)

) =



θ
(
~
uj
uh(e)

)
θ
( uj
uh(e)

) , h(e) ∈ p, e 6∈ U

θ
(
~−1 uj

uh(e)

)
θ
( uj
uh(e)

) , h(e) 6∈ p, e 6∈ U

and for e ∈ B ∩ U ,

θ
(xt(e)ϕλh(e)

xh(e)ϕ
λ
t(e)

ut(e)

ui

)∣∣∣∣∣
ν,ui=uj

θ
(ut(e)
ui

) =

θ
(
~
ut(e)

uj

)
θ
(ut(e)
uj

) .
The proposition is proved by making the change of variable ~ 7→ ~−1 in the above result, and compare

with the following lemma.

Lemma 12.

θ
(ui
uj

)−1Tp,p
Tq,q

∣∣∣∣
ui=uj

= θ(~−1)−1
∏

i<m<j
m∈n\p

θ
( uj
um

) ∏
i<m<j
m∈p

θ
(um
uj

) ∏
i<m<j
m∈n\p

θ
( um
uj~

)−1 ∏
i<m<j
m∈p

θ
( uj
um~

)−1

Proof. Straightforward computation.

9.3 Divisibility

In this subsection we aim to prove the following divisibility result. Let p = bj(λ), q = bj(µ) ∈ XT be two
fixed points.

Proposition 5. The function
Tp,p
T ′µ,µ

· T ′λ,µ is of the form

fµ,λ ·
∏

i∈p, j∈n\p
i>j

θ
( uj
ui~

)
,

where fµ,λ is holomorphic in parameters ui.

Proof. Recall that

Tp,p =
∏

i∈p, j∈n\p, i<j

θ
(ui
uj

) ∏
i∈p, j∈n\p, i>j

θ
( uj
ui~

)
,

and T ′µ,µ does not depend on ui’s. By formula (40), we can see that all possible poles of T ′µ,λ take the form
ui/uj . Therefore, all possible poles of the function fµ,λ in the proposition are of the form ui/uj . Moreover,
by the proof of holomorphicity (Proposition 9) below, they have no poles at ui/uj . We conclude that fµ,λ is
holomorphic in ui.
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9.4 Holomorphicity

In this subsection we will prove the holomorphicity, i.e., the normalized restriction matrices of stable envelopes
on X ′ are holomorphic in ui’s. The idea is to apply general results for q-difference equations associated to
Nakajima quiver varieties.

9.4.1 Quantum differential equations

Let X be a Nakajima variety. For the cone of effective curves in H2(X,Z) we consider the semigroup algebra
which is spanned by monomials zd with d ∈ H2(X,Z)eff. It has a natural completion which we denote by
C[[zd]]. The cup product in the equivariant cohomology H•T(X) has a natural commutative deformation,
parametrized by z:

α ? β = α ∪ β +O(z) (62)

known as the quantum product.
The quantum multiplication defines a remarkable flat connection on the trivial H•T(X)-bundle over

Spec(C[[zd]]). Flat sections Ψ(z) of this connection, considered as H•T(X)-valued functions, are defined
by the following system of differential equations (known as the quantum differential equation or Dubrovin
connection):

ε
d

dλ
Ψ(z) = λ ?Ψ(z), Ψ(z) ∈ H•T(X)[[z]],

where λ ∈ H2(X,C) and the differential operator is defined by

d

dλ
zd = (λ, d)zd. (63)

9.4.2 Quantum multiplication by divisor

The equivariant cohomology of Nakajima varieties are equipped with a natural action of certain Yangian
Y~(gX) [48]. In the case of Nakajima varieties associated to quivers of ADE type this algebra coincides with
the Yangian of the corresponding Lie algebra (but in general can be substantially larger).

The Lie algebra gX has a root decomposition:

gX = h⊕
⊕
α

gα

in which h = H2(X,C) ⊕ center, and α ∈ H2(X,Z)eff. All root subspaces gα are finite dimensional and
g−α = g∗α with respect to the symmetric nondegenerate invariant form.

The quantum multiplication (62) for Nakajima varieties can be universally described in therms of the
corresponding Yangians:

Theorem 7 (Theorem 10.2.1 in [31]). The quantum multiplication by a class λ ∈ H2(X) is given by:

λ? = λ ∪+~
∑

(θ,α)>0

α(λ)
zα

1− zα
eαe−α + · · · (64)

where θ ∈ H2(X,R) is a vector in the ample cone (i.e., in the summation, θ selects the effective representative
from each ±α pair) and · · · denotes a diagonal term, which can be fixed by the condition λ ? 1 = λ.

Let zi with i = 1, · · · , n− 1 denote the Kähler parameters of the Nakajima variety X ′ from Section 4.

Corollary 3. The quantum connection associated with the Nakajima variety X ′ is a connection with regular
singularities supported on the hyperplanes

zizi+1 . . . zj = 1, 1 ≤ i < j ≤ n− 1.
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Proof. The variety X ′ is a Nakajima quiver variety associated with the An−1-quiver. Thus the corresponding
Lie algebra gX ∼= sln. The Kähler parameters zi associated to the tautological line bundles on X ′ correspond
to the simple roots of this algebra. In other words, in the notation of (63) they correspond to zi = zαi ,
where αi, i = 1, · · · , n − 1 are the simple roots of sln (more precisely, simple roots with respect to positive
Weyl chamber (θ′, αi) > 0 where θ′ is the choice stability parameters for X ′).

By (64), the singularities of quantum differential equation of X ′ are located at

zα = 1

for positive roots α. All positive roots of sln are of the form α = αi +αi+1 + · · ·+αj with 1 ≤ i < j ≤ n− 1.
Thus, the singularities are at

zα = zizi+1 · · · zj = 1.

9.4.3 Quantum difference equation

In the equivariant K-theory, the differential equation is substituted by its q-difference version:

Ψ(zqL)L = ML(z)Ψ(z) (65)

where L ∈ Pic(X) is a line bundle and q = eε and Ψ(z) ∈ KT(X)[[z]]. The theory of quantum difference
equations for Nakajima varieties was developed in [40]. In particular, the operators ML(z) ∈ End(KT(X))
were constructed for an arbitrary line bundle L. These operators are the q-deformations of (64), i.e., in the
cohomological limit they behave as:

ML(z) = 1 + λ ?+ · · ·

where . . . stands for the terms vanishing the the cohomological limit and λ = c1(L).
In K-theory the sum over roots in (64) is substituted by a product:

ML(z) = L
∏
w

Bw(z)

over certain set of affine root hyperplanes of an affine algebra ĝX .
The singularities of the quantum difference equations, i.e., the singularities of matrix ML(z) are located

in the union of singularities of Bw(z). The wall crossing operators Bw(z) are constructed in Section 5.3
of [40]. In particular, if zα = 1 are the singularities of the quantum differential equation in cohomology
then the singularities of (65) can only be located at zαqp~s = 1 for some integral p, s. This, together with
Corollary 3 gives:

Proposition 6. The singularities of the quantum difference equation associated with the Nakajima variety
X ′ are located at

zizi+1 · · · zjqp~s = 1, 1 ≤ i < j ≤ n, p, s ∈ Z.

9.4.4 Pole subtraction theorem

The elliptic stable envelope is closely related to q-difference equations (65). It describes the monodromy of
q-difference equations. More precisely, the q-difference equation (65) has two distinguished bases of solutions,
known as vertex functions, see Section 6.1 of [1]. The z-solutions are represented by functions Ψz which
are holomorphic in Kähler parameters in the neighborhood |zi| < 1. Similarly a-solutions Ψa are solutions
which are holomorphic in equivariant parameters in some neighborhood of zero.

From a general theory of q-difference equations, every two bases of solutions must be related by a q-
periodic transition matrix

Ψa = W (z)Ψz, (66)

known as the monodromy matrix from solutions Ψz to solutions Ψa. The central result of [1] (in the case
when XT is finite) is the following.
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Theorem 8 (Theorem 5 in [1]). Let X be a Nakajima variety and let

Tλ,µ(z) = Stab(λ)|µ , λ, µ ∈ XT

be the restriction matrix for elliptic stable envelope in the basis of fixed points. Then, the q-periodic matrix
W (z) from (66) in this basis equals:

W (z)λ,µ =
Tλ,µ(z)

Θ(T 1/2X)µ

where T 1/2X is the polarization bundle for X.

The singularities of solutions Ψa and Ψz are supported on the singularities of the corresponding q-
difference equation. It implies that the transition matrix also may have only these singularities (if W (z) is
singular on a hyperplane h, which is not a singularity of qde then, by (66) Ψa is also singular along h which
is not possible).

In particular, combining the last Theorem with Proposition 6 we obtain:

Corollary 4. Let T ′λ,µ be the restriction matrix of the elliptic stable envelope for the Nakajima variety X ′

in the basis of fixed points. Then, the singularities of T ′λ,µ are supported to the set of hyperplanes:

zizi+1 · · · zjqp~s = 1, 1 ≤ i < j ≤ n, p, s ∈ Z.

Note 1. The last corollary implies that all poles of the the restriction matrix T ′λ,µ in the coordinates ui
related to Kähler variables (42) are of the form:

ui
uj

~sij , i 6= j, (67)

where sij are some integers.

9.4.5 Holomorphicity of stable envelope

Let us return to the Nakajima varieties X and X ′ defined in Sections 3 and 4 respectively. We idenfity the
fixed points as in Section 6.1, and identify the equivariant and Kähler parameters by (42). Let T ′λ,µ and Tp,q
be the restriction matrices of the elliptic stable envelopes for the Nakajima varieties X ′ and X respectively.

Theorem 9. The functions
Tp,pT

′
λ,µ

are holomorphic in parameters ui.

Proof. By Corollary 4 and Note 1, we need to show that the denominators of functions Tp,pT
′
λ,µ do not

contain factors of the form ∏
i6=j

θ
(ui
uj

~sij
)
.

On the other hand, by Proposition 3, the explicit formula for the elliptic stable envelope on X ′ has the form:

T ′λ,µ = ε(λ)Θ(Ñ
′,−
λ )

∣∣
µ
·
∑

σ∈Sµ\λ ,̄t

N σ
λ̄

Dσ
λ̄

Rσ (̄t)Wσ (̄t)
∣∣
µ
,

where Θ(Ñ
′,−
λ )

∣∣
µ
, N σ

λ̄
, Dσ

λ̄
, Rσ (̄t) are independent of ui, and

Wσ (̄t) =

θ
( a2~
xσ(r̄)

∏
I∈[r̄,̄t]

ucI
ucI+1

)
θ
( ∏
I∈[r̄,̄t]

ucI
ucI+1

) ∏
e∈t̄

θ
(xσ(t(e))ϕ

λ
h(e)

xσ(h(e))ϕ
λ
t(e)

∏
I∈[h(e),̄t]

ucI
ucI+1

)
θ
( ∏
I∈[h(e),̄t]

ucI
ucI+1

) .
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Therefore, we conclude that among (67) only factors with sij = 0 may appear. To show that those are
actually not poles, it suffices to prove that

θ
(ui
uj

)
Tp,pT

′
λ,µ

∣∣∣∣
ui=uj

= 0.

As discussed before, the only possible nontrivial terms of the LHS come from trees t̄ which contains some
(i, j)-strip B.

If j ∈ p, one can see that λ̄\B contains a path in t̄ admitting a box with local maximal content, which
is not allowed. In other words, contributions from all t̄ are zero in this case.

If i ∈ n\p, then the boxes above and to the left of the root of B both lie in λ̄, and the involution inv(̄t)
is also a tree in λ̄. By the cancellation Lemma 6, contribution from t̄ cancels with that from inv(̄t). Sum
over all t̄ gives 0.

If i ∈ p and j ∈ n\p, then Tp,p contains a factor θ
(ui
uj

)
, and nontrivial terms come from trees t̄ that

contains at least two (i, j)-strips, e.g., B1, B2. At least one of them, say B1, is not contained in the boundary
of λ̄ and hence the involution of t̄ with respect to B1 is well-defined. Contribution from t̄ then cancels with
that from inv(̄t).

Therefore, we exclude all possible poles θ(ui/uj), and Tp,pT
′
λ,µ is holomorphic in ui.
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