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Abstract. The combinatorially and the geometrically defined partial orders on the set of per-
mutations coincide. We extend this result to p0, 1q-matrices with fixed row and column sums.
Namely, the Bruhat order induced by the geometry of a Cherkis bow variety of type A coincides
with one of the two combinatorially defined Bruhat orders on the same set.

1. Introduction

Let BCTpr, cq denote the set of 01 matrices with row sum vector r and column sum vector c—
BCT stands for binary contingency table. Recent advances in enumerative geometry identified
a class of smooth varieties Xpr, cq, called Cherkis bow varieties of type A (“bow varieties”),
that are parameterized by pairs of vectors r, c. Bow varieties are endowed with a torus action,
and the torus fixed points of Xpr, cq are naturally identified with BCTpr, cq. Bow varieties are
very general (eg. they contain Nakajima quiver varieties of type A as special cases), they have
significance in physics [3], and they have favorable properties for enumerative geometry [14, 2]
(eg. bow varieties are closed for “combinatorial 3d mirror symmetry”).

For r “ c “ p1, 1, . . . , 1q P Nn the bow variety is the total space of the cotangent bundle over
the full flag variety Flpnq, and the torus action is the natural pCˆ

qn action. The fixed point set
is BCTpp1, . . . , 1q, p1, . . . , 1qq which is the set of n ˆ n permutation matrices. More generally, if
only c “ p1, 1, . . . , 1q then the bow variety is the total space of the cotangent bundle of a partial
flag variety on Cn, with its natural pCˆ

qn action. The fixed point set is BCTpr, p1, . . . , 1qq which
is indeed in obvious bijection with Sn{pˆiSriq.

In these Schubert Calculus examples one can use geometry to define a partial order, called
geometric Bruhat order, on the set of fixed points. Namely, after fixing a reference flag the variety
is partitioned into Schubert cells, with each Schubert cell containing one torus fixed point (we
can forget the cotangent directions for now). The “containment in the closure” relation then
defines a partial order on the set of Schubert cells, and hence also on the set of fixed points.

It turns out that there is an analogous partial order on the torus fixed points of general bow
varietiesXpr, cq. The role of the reference flag is played by a general cocharacter of the torus. The
role of Schubert cells will be played by attracting sets with respect to this cocharacter. In fact,
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one needs to work with iterated attracting sets (a.k.a. full attracting sets). The “containment
in the closure” part of the definition is also modified: we consider which fixed points belong to
the closure of which attracting sets. Nevertheless, there is a notion of geometric Bruhat order
on BCTpr, cq for general r, c vectors that generalizes the notion of geometric Bruhat order in
Schubert Calculus. This Bruhat order plays an important role in the theory of Stable Envelopes
developed by Okounkov and his coauthors [10, 12, 1].

Our paper is about finding a combinatorial characterization of the geometric Bruhat order on
BCTpr, cq. In fact, combinatorists already studied “natural” partial orders on 01 matrices with
prescribed row and column sums [4]. The surprising outcome of their studies is that there are two
different combinatorially natural partial orders, that they named Bruhat order and secondary
Bruhat order. We will call them the combinatorial Bruhat order and the combinatorial secondary
Bruhat order. The two orders coincide if c “ p1, 1, . . . , 1q and it is a well-known fact of Schubert
Calculus that in this case the geometric Bruhat order is also the same.

In this paper we prove that the geometric Bruhat order on BCTpr, cq is the same as the
combinatorial secondary Bruhat order.

After introducing the necessary combinatorics and geometry, we first define the geometric
Bruhat order using the geometry of Xpr, cq. Then we present a characterization of the partial
order using invariant curves on Xpr, cq. In Sections 4 and 5 we give two proofs of our main
theorem. The first one relies on the recent work [8] describing all invariant curves on Xpr, cq,
and the second one relies on a technique, called geometric resolution, developed in [2] to prove
the so-called 3d mirror symmetry property of bow varieties.

We will use the notation N “ t0, 1, 2, . . .u and kn “ pk, k, . . . , kq P Nn.

Acknowledgements. The first author was supported as a part of NCCR SwissMAP, a National
Centre of Competence in Research, funded by the Swiss National Science Foundation (grant
number 205607) and grant 200021 196892 of the Swiss National Science Foundation. The third
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2. Combinatorial Bruhat orders

Let r P Nm and c P Nn satisfy
řm

i“1 ri “
řn

j“1 cj. Define BCTpr, cq to be the set of m ˆ n
matrices whose entries are all 0 or 1, and whose row sum vector is r and column sum vector is c.

Example 2.1. The set of nˆn permutation matrices is a special case for r “ c “ p1, 1, . . . , 1q. A
more general special case will play a role in this paper: let r “ pr1, r2, . . . , rmq, n “

ř

ri, c “ p1nq.
In Algebra this BCTpr, cq is in bijection with Sn{pˆiSriq, and in Geometry it parametrizes the
torus fixed points (or the Schubert cells) of the partial flag variety tV‚ : V r1

1 Ă V r1`r2
2 Ă . . . Ă

V
r1`r2`...`rm´1

m´1 Ă Cn
u.

Combinatorial properties of BCTpr, cq have been extensively studied, see [4] for a survey. For
example, the Gale-Ryser theorem [16, Ch. 6, Thm. 1.1] provides a simple necessary and sufficient
condition for BCTpr, cq to be non-empty. Another fundamental result is that the graph whose
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vertex set is BCTpr, cq and whose edges are pairs of matrices that only differ in the intersection
of two rows and two columns by

(1) L2 “

ˆ

0 1
1 0

˙

Ø

ˆ

1 0
0 1

˙

“ I2

is connected [15] (the rows and columns are not necessarily adjacent). In this paper we will be
concerned with partial orders on BCTpr, cq.

2.1. The combinatorial Bruhat order. For M P BCTpr, cq let ΣM “ pσpMqi,jq be the mˆ n
matrix where

σpMqi,j “

i
ÿ

k“1

j
ÿ

l“1

mkl.

Define the combinatorial Bruhat order by M1 ďB M2 if ΣM1 ě ΣM2 entrywise.

2.2. The combinatorial secondary Bruhat order. The combinatorial secondary Bruhat or-
der is defined by letting M1 ďB̂ M2 if M2 can be transformed into M1 by a sequence of L2 Ñ I2
interchanges, see (1). Nota bene, we permit the surgery depicted in (1) in the intersection of
two (not necessarily consecutive) rows and two (not necessarily consecutive) columns only in one
direction: from L2 to I2.
Recall that the covering relation of a (finite) partial order ď is defined by: M covers M 1

provided M 1 ă M and there is no M2 with M 1 ă M2 ă M . A combinatorial description for the
covering relation of ďB̂ is proved by Brualdi and Deaett.

Theorem 2.2. [5, Thm. 3.1] LetM “ pmijq be a matrix in BCTpr, cq whereM rti, ju, tk, lus “ L2

(cf. (1)). Let M 1 be the matrix obtained from M by the L2 Ñ I2 interchange that replaces
M rti, ju, tk, lus with I2. Then M covers M 1 in the combinatorial secondary Bruhat order on
BCTpr, cq if and only if

(1) mpk “ mpl for i ă p ă j,
(2) miq “ mjq for k ă q ă l,
(3) mpk “ 0 and miq “ 0 imply mpq “ 0 for i ă p ă j, k ă q ă l,
(4) mpk “ 1 and miq “ 1 imply mpq “ 1 for i ă p ă j, k ă q ă l.

Example 2.3. For r “ c “ p2, 1, 2q the combinatorial Bruhat order and the combinatorial
secondary Bruhat order on BCTpr, cq are the same. The Hasse diagram (only drawing the cover
relations) is on the left of Figure 1.

2.3. The two combinatorial Bruhat orders are different. It is clear thatM1 ďB̂ M2 implies
M1 ďB M2. However, the two partial orders are not the same. The counterexample from [5,
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˜

1 1 0
0 0 1
1 0 1

¸˜

1 0 1
1 0 0
0 1 1

¸

˜

1 0 1
0 1 0
1 0 1

¸

˜

0 1 1
1 0 0
1 0 1

¸˜

1 0 1
0 0 1
1 1 0

¸

ă ă

ăă
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Figure 1. Left: The Hasse diagram of BCTpp2, 1, 2q, p2, 1, 2qq for either of the two
combinatorial Bruhat orders ďB, ďB̂. Observe that the two leftmost matrices (as
well as the two rightmost matrices) are connected by an interchange (1), but that
relation is not a cover relation. Right: The fixed points and the invariant curves
(together with their weights) of the bow variety Xp/2/3/5\3\2\q. The combs of
blue lines around the middle indicate two 1-parameter families of invariant curves.
The geometric Bruhat order, that is, the “alarge{asmall flow” in the right picture
coincides with the ą relation in the left picture. The bijective correspondence
between interchanges of type (1) in the left picture and the “bounded” curves in
the right picture holds for this example, but not in general.

Sect. 2] is the pair of matrices

M1 “

¨

˚

˚

˚

˚

˚

˝

1 0 0 0 0 0
1 0 1 1 1 0
1 1 1 1 1 0
0 0 0 1 1 0
0 0 0 1 0 0
0 0 0 1 1 1

˛

‹

‹

‹

‹

‹

‚

, M2 “

¨

˚

˚

˚

˚

˚

˝

0 0 0 1 0 0
1 1 0 1 1 0
1 0 1 1 1 1
1 0 0 1 0 0
0 0 0 0 1 0
0 0 1 1 1 0

˛

‹

‹

‹

‹

‹

‚

,

for which M1 ďB M2 but M1 ďB̂ M2. This pair is the smallest counterexample the authors are
aware of. They live in BCTpp1, 4, 5, 2, 1, 3q, p3, 1, 2, 5, 4, 1qq which is an 89-element set.
A well known fact is that for r “ c “ 1n, that is, for permutation matrices, the two com-

binatorial Bruhat orders coincide. However, a complete characterization of pairs of vectors r, c
for which the two combinatorial Bruhat orders coincide is not known. For some examples and
counterexamples see [7, 18]. For example, it is proved that the orders ďB and ďB̂ coincide for
r “ c “ pknq if and only if either 0 ď n ď 5 or k P t0, 1, 2, n´ 2, n´ 1, nu with n ě 6. Note that



5

|BCTp36, 36q| “ 297200. It is also proved that the orders ďB and ďB̂ coincide if either r or c
equals either p1nq or p2nq. In particular, the two orders coincide for the set corresponding to the
partial flag variety of Example 2.1.

3. The geometric Bruhat order

3.1. Bow varieties. Combinatorial objects like D “ /2\2/2\4/3/3/4\3/2\2\ are called (type
A) brane diagrams. The red forward-leaning lines are called NS5 branes, denoted by Z. The
blue backward-leaning lines are called D5 branes, denoted by A. The positions between 5-branes
are called D3 branes, denoted by X , and the integer sitting there is called its multiplicity or
dimension dX .

If all NS5 branes are to the left of all D5 branes, we call the diagram separated, if all NS5
branes are to the right of all D5 branes, we call the diagram co-separated.
Let A`, Z` be the D3 brane to the right, and A´, Z´ be the D3 brane to the left of A,Z.

The charge of 5-branes are defined by

chpZq “ dZ` ´ dZ´ ` |tD5 branes left of Zu| for NS5 branes Z,
chpAq “ dA´ ´ dA` ` |tNS5 branes right of Au| for D5 branes A.

To a brane diagram D one associates a smooth holomorphic symplectic variety called Cherkis
bow variety XpDq with a torus T “ AˆCˆ

ℏ action, where A “ pCˆ
qD5 branes, see [11, 14]. The

action has finitely many fixed points. The fixed points are in an explicit bijection with BCTpr, cq
where r is the vector of charges of NS5 branes read from left to right, and c is the vector of
D5 brane charges read from left to right. For instance, the vertices of the graph on the left of
Figure 1 are in bijection with the torus fixed points of Xp/2/3/5\3\2\q, or with the torus fixed
points of Xp/2/3\2/3\2\q. Spaces with the same charge vectors are in fact isomorphic as we
will see in the next section.

Assumption. In the whole paper we assume that XpDq has at least one fixed point. Equivalently,
that for the associated charge vectors r, c the set BCTpr, cq is not empty.

3.2. Hanany-Witten transition. The local surgery on a brane diagram a\b/c Ø a/a+c-b+1\c

(in either direction) is called Hanany-Witten (HW) transition, cf. [9]. The charge vectors form
a complete invariant of the HW equivalence class of brane diagrams.

The HW transition induces an explicit isomorphism between the associated bow varieties. Let
the D5 brane involved in the HW transition be A (ie. the blue \ brane that moves over an NS5
brane in the surgery). The HW isomorphism is equivariant for the torus T “ AˆCˆ

ℏ under the
automorphism of A obtained by re-scaling Cˆ

A by ℏ.
Since the Cˆ

ℏ action will not concern us, we will not distinguish between XpDq varieties asso-
ciated to HW equivalent brane diagrams, and use the notation Xpr, cq for XpDq for any D with
charge vectors r and c. If we wish, we can choose the separated

D “ /r1/r1 ` r2/r1 ` r2 ` r3/...\cn´2 ` cn´1 ` cn\cn´1 ` cn\cn\

representative.
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3.3. Geometric Bruhat order. Let us choose a permutation σ P Sn. It induces a cocharacter

λσ : Cˆ
Ñ AˆCˆ

ℏ , t ÞÑ ptσp1q, tσp2q, . . . , tσpnq, 1q.

For a torus fixed point f P XpDq we define the corresponding attractive manifold

Attσpfq “ tx P XpDq : lim
tÑ0

λσptq ¨ x “ fu.

Remark 3.1. Since the tangent A-weights at the fixed points in XpDq are of the form ai{aj,
their pullback by λσ are nontrivial. As a consequence, the Cˆ-action on XpDq is generic, i.e. we

have XpDqC
ˆ

“ XpDqA.

For torus fixed points f, g P XpDq we define

f ď g if f P Attσpgq,

and its transitive closure will be called the geometric Bruhat order and denoted by ďG.

Remark 3.2. This definition of geometric partial order applies to any smooth quasiprojective
variety X Ď PN equipped with the action of a torus T and does not exploit extra geometric
structure carried by bow varieties. In particular, the fact that this is really a partial order, i.e.
that f ďG g and g ďG f imply f “ g, follows from smoothness, which in turn ensures that the
embedding X Ď PN can be made T-equivariant [6, Theorem 5.1.25].

Notice that ďB, ďB̂, ďG are partial orders on the same set BCTpr, cq, the last one depending
on the choice of the permutation σ.

Remark 3.3. In the c “ 1n special case, which is relevant in Schubert Calculus, the three partial
orders are the same (where ďG is meant with the identity permutation). The coincidence of the
first two is proved in [5, 7] and the equality of ďB and ďG is the content of [13, Thm.5A].

The main theorem of our paper is the identification of the geometric Bruhat order with one of
the combinatorial ones, for arbitrary r, c.

Theorem 3.4. The geometric Bruhat order for the identity permutation is the same as the
secondary combinatorial Bruhat order.

The theorem implies that the geometric Bruhat order for another permutation σ coincides
with an appropriate modification of the combinatorial secondary Bruhat order—one where a σ-
permutation of the columns is taken into account. In Sections 4 and 5 we will give two different
proofs for Theorem 3.4.

Assumption. In theory the vectors r and c can have 0 components. However, simply erasing
those components effects none of our notions or statements. Hence, from now on in the whole
paper we assume that r and c have no 0 components.
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3.4. More on the geometric Bruhat order. Since the union of all attracting sets in a bow
variety is closed, cf. [2, Lemma 5.12], the geometric Bruhat order admits the following equivalent
characterization: f ďG g iff there exists a collection of A-fixed points f “ f0, f1, . . . , fn´1, fn “ g
connected by a chain of attracting A-orbits. Namely, if there exist A-orbits Oi Ď XpDq such
that fi, fi´1 P Oi and

lim
tÑ0

λσptq ¨ x “ fi´1 @x P Oi .

In general, the dimension of these orbits can be up to rkpAq ´ 11 However, in Lemma 3.6 we
will show that we can restrict ourselves to closures of one-dimensional orbits. Before proving
this result, let us discuss its consequences. By an easy adaptation of Lemma A.1, it follows that
one dimensional orbit closures admit the following evocative description: two distinct points
f, g P XA belong to the closure O Ă XpDq of a one dimensional A-equivariant orbit O iff there
exists an embedding γ : P1

Ñ O whose restriction to Cˆ
“ P1

zt0,8u is onto O and such that
γp0q “ f , γp8q “ g. In particular, this implies

lim
tÑ0

λσptq ¨ x “ f lim
tÑ8

λσptq ¨ x “ g

for every x P O. Hence, a compact one dimensional A-orbit closure can be thought of as a
P1

Ď XpDq preserved by the A-action and whose poles 0,8 P P1 are A-fixed. We call such
curves A-invariant curves. For convenience, we always parametrize the domain in such a way
that γp8q ďG γp0q. This in particular implies that the tangent weight at 0 P P1 of an A-invariant
curve is always attractive, i.e. its pullback by λσ is of the form λ˚

σχptq “ tk for some k ą 0.

Remark 3.5. Not all one dimensional orbit closures are compact. For example, consider the

bow variety Xp/1/2\1\q “ T* P1
. The fibers T ˚

0 P1 and T ˚
8 P1 are one dimensional orbit closures,

with boundaries given by the base-points 0,8 P P1. A similar situation can be observed in Figure
1, where both compact and non-compact invariant curves are drawn. In particular, notice that
non-compact invariant curves do not affect the geometric Bruhat order. This is indeed a general
fact, which directly follows from the characterization of the geometric Bruhat order discussed
above.

We now characterize the geometric Bruhat order in term of one dimensional attracting curves.

Lemma 3.6. Let f, g P XpDqA. Then f ďG g iff there exist A-fixed points f “ f0, f1, . . . , fn “ g
and a chain of A-invariant curves γi : P1

Ñ XpDq such that γip0q “ fi´1 and γip8q “ fi for all
i “ 1, . . . , n

Proof. To save on notation, set X “ XpDq. Notice that the geometric Bruhat order only depends
on A via the character λ : Cˆ

Ñ A. Since the latter is generic in the sense of Remark 3.1, it
follows that f ďG g iff f is connected to g via a chain of a Cˆ-invariant curves. As a consequence,
it suffices to show that an attractive Cˆ-invariant curve γ : P1

Ñ X degenerates to a chain of
attractive A-invariant curves. As we will see in the proof, the existence of such degeneration
requires some amount of compactness. Although bow varieties are non-compact in general, they

1In principle, it could be up to rkpAq, but the one dimensional torus consisting of elements the form pa, . . . , aq

acts trivially on the bow variety.
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are defined as GIT quotients of some affine variety with respect to the action of a reductive
group. As a consequence, any bow variety X comes with a canonical proper T-equivariant map
π : X Ñ X0 “ SpecpΓpOXqq.This relative compactness will be sufficient for the proof.

Consider the composition P1 γ
ÝÑ X

π
ÝÑ X0. Since X0 is affine, π ˝ γ is constant. Let x P XA

0

be its image. Since π is equivariant, the fiber Z :“ π´1pxq is preserved by A and contains the
image of γ. Moreover, since π is proper, Z is complete. As a result, to prove the lemma it
suffices to show that the Cˆ-invariant curve γ : P1

Ñ Z Ă X degenerates to a chain of attractive
A-invariant curves inside Z, which is complete.
Let χ1, . . . χd be set of attractive tangent weights of XA Ă X. This set is really finite because

the XpDqA is a finite set and is nonempty unless X is zero dimensional, in which case the lemma
is trivial. Set Ad`1 :“ A, Ak :“ Xd

j“kKerpχjq Ď A for all k “ 1, . . . , d and choose splittings
Ak “ Ak´1 ˆAk {Ak´1. Notice that A1 Ă ¨ ¨ ¨ Ă Ad Ă A, the tori Ak {Ak´1 are one dimensional,
and A1 acts trivially on X. The cocharacter λ and the weight χ factor as

Cˆ Ad`1

Cˆ
ˆCˆ Ad ˆAd`1 {Ad

λ

∆

λ1ˆλ2

Ad`1 Cˆ

Ad`1 {Ad

χd

Consider the induced action of Cˆ
ˆCˆ on Z Ă X and fix a point t P P1

zt0,8u. Since Z is
complete, Lemma A.2 (i) provides a map

Γ : P1
ˆP1 p´1

ÝÝÑ Graphpγptqq Ñ X

such that γ is recovered as the composition P1 ∆
ÝÑ P1

ˆP1
Ñ X. Moreover, since λ is generic, the

same holds for λ1 and λ2. As a consequence, Lemma A.2 (ii)-(iii) implies that γd : t0u ˆ P1
Ñ

Z Ă X is fixed by Ad and its image is the closure of an Ad`1 {Ad orbit, which must be either
constant or one dimensional with tangent weight χd. Hence, combining the two diagrams above
we conclude that γd is either constant or an attractive A-invariant curve (with tangent weight
χd at 0 P P1). Similarly, we see that the map γ1 : P1

ˆt8u Ñ Z Ă X is either constant or an
attractive Cˆ-invariant curve for the Cˆ-action induced by the character λ1 : Cˆ

Ñ Ad.
Overall, we have shown that we may replace the curve γ with the concatenation of γd and

γ1. Iterating the argument for all pairs pAk,Ak`1q, we see that we may replace γ by a chain of
attracting orbits γk : P1

Ñ Z Ă X (with tangent weight χk at 0 P P1) connecting f to g2. This
proves the lemma.

□

Remark 3.7. Since every A-fixed point in a bow variety is also T-fixed, cf. [14, Section 4],
the argument above actually shows that the T-invariant curves are sufficient to characterize the
geometric Bruhat order as in Lemma 3.6.

For completeness, we give a counterexample to stress that the argument above fails in absence
of completeness.

2Notice that in general n ď d because some maps γi : P1
Ñ X might be constant, so we can neglect them.
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Counterexample 3.8. Consider the bow variety X “ T*Grp2, 4q, and set Y “ Grp2, 4q. The
affinization map π : X Ñ X0 is the Springer resolution of a nilpotent orbit in X0 Ă gl4 and all
the fixed points XA are contained in the zero fiber π´1p0q “ Y .
The A-fixed points Y A “ XA are the coordinate planes fij “ Cai ‘Caj Ă C4 for 1 ď i ă j ď 4.

Set Y 0 “ Y ztf13, f14, f23, f24u and let λid : C˚
Ñ A be the character t ÞÑ pt, t2, t3, t4q. Unlike Y ,

Y0 is not complete and hence the argument above fails. Indeed, it is easy to check that there
exists a C˚-invariant curve connecting f12 to f34 in Y 0 (and hence f24 P Attσpf12q or vice versa)
but no chain of A-invariant curves. On the contrary, this chain of curves exists in X, and consists
of two copies of P1 glued at a pole. In particular, the pole at the intersection of the two P1 in X
must be one of the fixed points tf13, f14, f23, f24u, which are not contained in Y 0.

4. The proof via combinatorial description of invariant curves

4.1. Classification of Compact Invariant Curves. For a bow variety XpDq, the T-invariant
curves can be read directly from the BCTs of fixed points. First, we restate the classification
from [8] for the compact invariant curves.

Definition 4.1. Let M P BCTpr, cq. A submatrix M “
`

mpq

˘p“i,i`1,...,j

q“k,l
with only two columns is

called a matched block if
řj

p“impk “
řj

p“impl. We call M a minimal matched block if it cannot
be partitioned into two matched sub-blocks.

Definition 4.2. Let M P BCTpr, cq. A block swap move ψ on M consists of swapping the
columns of a matched block M within M . If M is minimal, then ψ is called indecomposable.

Note that if a minimal matched block has top row equal to p0, 1q then the bottom row is
p1, 0q, and vice-versa. Moreover, every block swap move uniquely decomposes into simultaneous
indecomposable block swap moves with minimal matched blocks separated by p0, 0q and p1, 1q

rows.
Before classifying invariant curves in XpDq, it is important to note that bow varieties generally

contain pencils of invariant curves, by which we mean a family of invariant curves whose tangent
directions at a fixed point span one weight space. For an example, consider pP1qk with the
diagonal action by Cˆ. In fact, all compact invariant pencils in a bow variety are of this form [8].
Also pencils can occur non-compactly, as in Figure 1, to no effect on ďG.

Theorem 4.3. Let D be a separated brane diagram with charge vectors r and c.

(1) The block swap moves in BCTpr, cq are in bijection with the pencils of compact invariant
curves in XpDq.

(2) If a block swap move decomposes into k simultaneous indecomposable block swap moves,
then the associated pencil has dimension k.

(3) For a block swap move from M to M 1, let i be the index of the topmost affected row.
Let pi, q0q be the index of the 0 that becomes a 1 and let pi, q1q be the index of the 1 that
becomes a 0. Then the associated pencil has tangent weight

aq1
aq0

ℏ1`siq0´siq1 in TMXpDq,

where spq “
řp

p1“1mp1q.
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Remark 4.4. These block swap moves contain the same data as “butterfly surgeries”, which
are the natural way to explicitly define these curves and were first described in [14] and [17].
Checking that these are the only compact invariant curves is done in [8].

4.2. First proof of Theorem 3.4. With compact invariant curves now classified, we return to
the geometric Bruhat order on fixed points with greater clarity. First note that we do not need
pencils of dimension greater than 1, as the indecomposable block swap moves are sufficient to
generate the geometric order. Now define the relation ăG such that M 1 ăG M if there exists
an indecomposable block swap move from M to M 1 with tangent weight aN

an
ℏd with any d P Z

and N ą n. In other words, ăG corresponds to the relation on fixed points given by directed
invariant curves. Note that ăG does generate ďG by transitive closure, but it is not a covering
relation, as triangles may still appear in ăG, as in Figure 1.

Proof. Let ÌB̂ be the covering relation for ďB̂. We first show that if M 1 ÌB̂ M , then M 1 ăG M .
By Theorem 2.2, the L2 Ñ I2 interchange on M rti, ju, tk, lus yields M 1, and with condition (1),

mpk “ mpl for i ă p ă j. This means thatM “
`

mpq

˘p“i,i`1,...,j

q“k,l
is a minimal matched block, as all

the middle rows of M are either p0, 0q or p1, 1q. By Theorem 4.3, since the L2 Ñ I2 interchange
has the same effect as the block swap move swapping the columns of M , there is an invariant
curve between M 1 and M . It has tangent weight al

ak
ℏ1`sik´sil . Since l ą k, we have M 1 ăG M .

Next we show if M 1 ăG M , then M 1 ďB̂ M . Let there be an indecomposable block swap move
from M to M 1 with tangent weight al

ak
ℏd with l ą k. Let this block swap move have minimal

matched block M “
`

mpq

˘p“i,i`1,...,j

q“k,l
. By the form of its tangent weight, Theorem 4.3 says that

the ith row is p0, 1q. By minimality, the jth row is p1, 0q. We seek a sequence of L2 Ñ I2
interchanges to swap the columns of M .

We will induct on the number of p0, 1q rows in M . If there is only 1 row of the form p0, 1q,
then it is the top row, and only one L2 Ñ I2 interchange is needed. If there are n ` 1 rows of
the form p0, 1q, then find the first row under the ith row that is either p0, 1q or p1, 0q, and call

its index t. Note that if row t is p1, 0q, then minimality is violated, as
`

mpq

˘p“i,i`1,...,t

q“k,l
would be

a minimal matched subblock. Thus, row t is p0, 1q and all rows between i and t are p0, 0q or
p1, 1q. Similarly, there is a lowest row t1 of the form p1, 0q that is above row j, and between t1

and j are only p0, 0q or p1, 1q rows. First, perform the J2 Ñ I2 interchange on rows i and j.
The part between t and t1 is unchanged and has n rows of p0, 1q. By inductive hypothesis, a

sequence of L2 Ñ I2 interchanges will do the swap
`

mpq

˘p“t,t`1,...,t1

q“k,l
Ñ

`

mpq

˘p“t,t`1,...,t1

q“l,k
. Note that

this matched block from rows t to t1 may not be minimal, in which case break it into minimal
matched subblocks and apply the inductive hypothesis multiple times. We now have the total
block swap move produced from L2 Ñ I2 interchanges, so M 1 ďB̂ M .

We have proven if M 1 ÌB̂ M , then M 1 ăG M , so by transitive closure, if M 1 ďB̂ M , then
M 1 ďG M . We have proven if M 1 ăG M , then M 1 ďB̂ M , so by transitive closure, if M 1 ďG M ,
then M 1 ďB̂ M . □
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¨

˚

˝

0 1
0 1
1 0
1 0

˛

‹

‚

¨

˚

˝

0 1
1 0
0 1
1 0

˛

‹

‚

¨

˚

˝

0 1
1 0
1 0
0 1

˛

‹

‚

¨

˚

˝

1 0
0 1
0 1
1 0

˛

‹

‚

¨

˚

˝

1 0
0 1
1 0
0 1

˛

‹

‚

¨

˚

˝

1 0
1 0
0 1
0 1

˛

‹

‚

Figure 2. A graph with vertex set BCTpp1, 1, 1, 1q, p2, 2qq. A blue edge means
a compact invariant curve connecting the corresponding fixed points on the bow
variety, and the comb of blue edges indicate a pencil of such curves. A red edge
indicates an L2 Ñ I2 interchange. A purple edge means we have both an invariant
curve and an interchange.

Note that Theorem 3.4 is not just a perfect matching of L2 Ñ I2 interchanges and invariant
curves. Although they do generate the same partial order, they are fundamentally different. We
illustrate this phenomenon in Figure 2 for the example Xp/1/2/3/4\2\q, whose fixed point set is

BCTpp1, 1, 1, 1q, p2, 2qq. This bow variety is also a Nakajima quiver variety N
´

1 2 1

2

¯

, cf. [14,

Sect. 6] and is the “3d mirror dual” of T*Grp2, 4q, cf. [2].

5. The proof via brane-resolution

5.1. Column resolutions for BCT tables. Let r P Nm and c P Nn satisfying
řm

i“1 ri “
řn

j“1 cj. For any k “ 1, . . . n, let c̃ P Nn`1 be the vector obtained from c by replacing an entry
ck ě 2 with a pair of consecutive entries c1

k, c
2
k P Ną0 such that c1

k`c2
k “ ck. We call this operation

a resolution of the charge vector c. Let BCTpr, c̃, cq Ă BCTpr, c̃q the subset consisting of those
ĂM “ pm̃ijq P BCTpr, c̃q such that rmik ` rmik`1 P t0, 1u for all i “ 1, . . . ,m. There is a well defined
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map

q : BCTpr, c̃, cq Ñ BCTpr, cq, ĂM Ñ qpĂMq

sending a matrix ĂM “ p rmijq to

qpĂMqij “

$

’

&

’

%

rmij if j ă k

rmik ` rmik`1 if j “ k

rmij`1 if j ą k

Thus, the map q merges the k-th and pk ` 1q-th columns. Because of the defining condition of
BCTpr, c̃, cq, this operation really produces a BCT table for BCTpr, cq.
The fiber q´1pMq is in one to one correspondence with the Sck{pSc1

k
ˆ Sc2

k
q ways of producing

a BCT table ĂM P BCTpr, cq by replacing the k-th column M‚k of M with two adjacent columns
that sum to M‚k. This observation motivates the following definition:

Definition 5.1. Let M P BCTpr, cq. The elements ĂM P q´1pMq Ă BCTpr, c̃, cq are called
resolutions of the k-th column of M .

Example 5.2. Let M P BCTpr, cq be of the form

M “

¨

˚

˚

˝

1

♥ 0 ♦
1
1

˛

‹

‹

‚

.

The central column is the k-th column and the placeholders ♥ and ♦ are put in place of the other
columns. Notice that ck “ 3. Let c̃ be the resolution of c such that c1

k “ 2 and c2
k “ 1. Then the

set q´1pMq Ă BCTpr, c̃q consists of the three column resolutions

ĂM1 “

¨

˚

˚

˝

1 0

♥ 0 0 ♦
1 0
0 1

˛

‹

‹

‚

ĂM2 “

¨

˚

˚

˝

1 0

♥ 0 0 ♦
0 1
1 0

˛

‹

‹

‚

ĂM3 “

¨

˚

˚

˝

0 1

♥ 0 0 ♦
1 0
1 0

˛

‹

‹

‚

.

The following lemma, which directly follows from the definitions, shows that the BCT resolu-
tions introduced above are compatible with the secondary Bruhat order.

Lemma 5.3. Let M1,M2 P BCTpr, cq. Then M1 ěB̂ M2 if and only if for every resolution
ĂM1 P q´1pM1q Ă BCTpr, c̃, cq there exists ĂM2 P q´1pM2q such that ĂM1 ěB̂

ĂM2.

5.2. D5 resolutions. Throughout this section, we assume that all bow varieties are separated,
i.e. their brane diagrams are of the form D “ /d1/d2/. . . /dm “ hn\. . . \h2\h1\. The combina-
torics of the dimension vectors implies that

dk “

k
ÿ

i“1

ri hl “

n
ÿ

i“n´l`1

ci
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for all k “ 1 . . . ,m and l “ 1, . . . , n. In particular, constraint dm “ hn is exactly the one entering
in the definition of the set BCTpr, cq.
Let Dpr, cq be a separated brane diagram with charges r P Nm and c P Nn and let Dpr, c̃q be

the diagram obtained by replacing the charge vector c with a resolution c̃ of its k-th entry. In
other words, the diagram Dpr, c̃q is obtained via the local surgery

c1
k ` c2

k c1
k c2

k

We call this local modification of the brane diagram a D5 brane resolution.
Let Xpr, cq and Xpr, c̃q be the bow varieties associated with Dpr, cq and Dpr, c̃q respectively.

Notice that, according to our conventions, Xpr, cq is acted on by A “ pCˆ
qn while Xpr, c̃q is acted

on by rA “ pCˆ
qn`1. Throughout this section, we regard A as a subtorus of rA via the embedding

φ : A ãÑ rA pa1, . . . , ak, . . . , anq ÞÑ pa1, . . . , ak, ak, . . . , anq

and consider its induced action on Xpr, c̃q.

Theorem 5.4. [2, Section 6.1] There exists an A-equivariant embedding j : Xpr, cq ãÑ Xpr, c̃q.
Moreover, for any fixed point f P Xpr, cqA the A-fixed component F Ď Xpr, c̃qA such that jpfq P F
is isomorphic to the bow variety with brane diagram

/1/2/3/. . . /c1
k ` c2

k\c
2
k\

This theorem encodes all the data entering in the combinatorics described in the previous
section. Indeed, we have:

(i) the A-fixed points in Xpr, cq are in one to one correspondence with the set BCTpr, cq,

(ii) the rA-fixed points in Xpr, c̃q are in one to one correspondence with the set BCTpr, c̃q,

(iii) for any M P BCTpr, cq corresponding to some f P Xpr, cqA, the set F
rA is in one to one

correspondence with the fiber q´1pMq Ă BCTpr, c̃q.

5.3. Maximal resolutions. For any d P N such that d “
řm

k“1 rk, let Flpr, dq be the variety
parametrizing quotients3

Cd
“ Vm ↠ Vm´1 ↠ ¨ ¨ ¨ ↠ V1 ↠ V0 “ 0

where dimpVkq “ dk “
řk

i“1 rk. In particular, for 1d “ p1, 1, . . . , 1q P Nd we get the full flag

variety Flp1d, dq. The maximal torus rA Ă GLpdq naturally acts on Flpr, dq and hence also on its

cotangent bundle T*Flpr, dq. For a given c P Nn such that
řm

i“1 ci “
řm

i“1 ri, let A “ pCˆ
qn Ă rA

be the subtorus acting on Vm with weight decomposition Vm “ Cdm “ a1Cc1 ‘ ¨ ¨ ¨ ‘ anCcn .
Applying Theorem 5.4 ci times for every D5 brane in Xpr, cq, we get

3The choice of considering quotients rather than inclusions is due to our choice of stability condition on bow
varieties, see [14, 2].
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Corollary 5.5. There exists an A-equivariant embedding Xpr, cq ãÑ T*Flpr, dq. Moreover, for
any fixed point f P Xpr, cqA the A-fixed component F Ď T*Flpr, dqA such that jpfq P F is the
n-fold fiber product

(2) F “ T*Flp1c1 , c1q ˆ ¨ ¨ ¨ ˆ T*Flp1cn , cnq.

Definition 5.6. Let f P Xpr, cqA be a fixed point corresponding to an element M P BCTpr, cq.

The associated fixed points F
rA Ă X

rA are called maximal resolutions of f . Similarly, the BCT

tables corresponding to the fixed points F
rA Ă X

rA are called maximal resolutions of M .

The combinatorial interpretation of this corollary is a straightforward generalization of the
points (i)-(iii) above. Each term in the n-fold fiber product (2) corresponds to a column of M ,
and the ci! fixed points in T*Flp1ci , ciq correspond to all possible ways of “resolving” the i-th
column of M with ci columns with exactly one nonzero entry. Hence, altogether, the maximal

resolutions f̃ P F
rA correspond to the

śn
i“1 ci! ways of “maximally resolving” M . The resulting

matrices ĂM P BCTpr, 1dq are exactly the fixed points in T*Flpr, dq.

Example 5.7. Consider the bow variety Xpr, cq “ /1/2/4\2\. Then, r “ p1, 1, 2q and c “ p2, 2q,
and two fixed points in Xpr, cqA are described by the BCTs

M “

¨

˝

1 0
0 1
1 1

˛

‚ N “

¨

˝

0 1
1 0
1 1

˛

‚.

Each BCT admits four maximal resolutions:

M1 “

¨

˝

1 0 0 0
0 0 1 0
0 1 0 1

˛

‚ M2 “

¨

˝

0 1 0 0
0 0 1 0
1 0 0 1

˛

‚ M3 “

¨

˝

1 0 0 0
0 0 0 1
0 1 1 0

˛

‚ M4 “

¨

˝

0 1 0 0
0 0 0 1
1 0 1 0

˛

‚

N1 “

¨

˝

0 1 1 0
1 0 0 0
0 0 0 1

˛

‚ N2 “

¨

˝

1 0 1 0
0 1 0 0
0 0 0 1

˛

‚ N3 “

¨

˝

0 1 0 1
1 0 0 0
0 0 1 0

˛

‚ N4 “

¨

˝

1 0 0 1
0 1 0 0
0 0 1 0

˛

‚

The case when X has exactly two D5 branes, and hence its BCTs have two rows, will be the
most relevant for us. As a consequence, we invite the reader to keep in mind the example above.

5.4. Second proof of Theorem 3.4. Theorem 4.3 provides an explicit description of all invari-
ant curves in a bow variety Xpr, cq in terms of certain combinatorial operations for BCT tables
and, hence, opens the way to our first proof of Theorem 3.4. However, the results introduced in
the previous section suggest an alternative approach to its proof. Indeed, instead of classifying
all the invariant curves, we can exploit Corollary 5.5 to control them in terms of the invariant
curves in a partial flag variety Flpr, dq. As we will see, this will be the key idea behind our second
proof of the main theorem.

We begin with two technical lemmas. The first one characterizes the secondary Bruhat order
for BCT tables with two columns, and the second one provides a geometric analog of Lemma 5.3.
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Lemma 5.8. Let M,M 1 be two BCTs with n rows and exactly two columns. Then M 1 ďB̂ M if
and only if M 1 “ M ` Z where Z P Matpn, 2q such that

(i) each row of Z is either p0, 0q, p1,´1q or p´1, 1q.
(ii) #tp1,´1q among the first k rows of Zu ě #tp´1, 1q among the first k rows of Zu for all

k ď n.
(iii) #tp1,´1q in Zu “ #tp´1, 1q in Zu.

We invite the reader to test this result in the situation described in Figure 2.

Proof. For a given matrix A P Matp2, 2q, let Aij P Matpn, 2q be the matrix all whose rows are
p0, 0q except from the i-th and the j-th, which we set to be equal to the first and the second
row of A, respectively. Note that the matrices L2 and I2 involved in the transition defining the
secondary Bruhat order are related by

L2 `

ˆ

1 ´1
´1 1

˙

“ I2.

As a consequence, if M 1 ďB̂ M then M 1 “ M `
ř

k `Z, where

(3) Z “

K
ÿ

k“1

ˆ

1 ´1
´1 1

˙ikjk

for some ik, jk ď n and K P N. As a consequence, the rows of Z are of the form n1p1,´1q `

n2p´1, 1q for some n1, n2 P N. But since the rows of M and M 1 are either p0, 0q, p1, 0q, p0, 1q

or p1, 1q, the condition M 1 “ M `
ř

k Z forces (i). Conditions (ii) and (iii) are then immediate
consequences of equation (3).

Conversely, given a Z satisfying (i)-(iii) such that M 1 “ M ` Z, let K be the number of
p1,´1q-type (equivalently p´1, 1q-type by (iii)) rows in Z. For k “ 1, . . . , K, let ik (resp. jk)
be the column where the k-th row of type p1,´1q (resp. of type p´1, 1q) appears. Then, Z is
of the form (3) and each term in the summation corresponds to a L2 Ñ I2 interchange, hence
M 1 ďB̂ M . □

Lemma 5.9. Let A “ A1 ˆ A2 be a torus acting on a complete variety X and let F,G be two
connected components for the action of the subtorus A1 Ă A. Let σ : Cˆ

Ñ A be a generic
cocharacter and denote by σ1 : Cˆ

Ñ A1 the composition of σ with the projection A Ñ A1. Then
Attσ1pF q X G ‰ 0 iff there exist A-fixed points f̃ P FA, g̃ P GA such that Attσpfq X g ‰ 0.

Proof. The proof is analog to Lemma 3.6. Assume first that AttσpF q X G ‰ 0, or, equivalently,
that there exists a point x P X and an orbit Cˆ

Q t ÞÑ σ1ptq ¨ x such that limtÑ0 σ1ptq ¨ x P F and
limtÑ8 σ1ptq ¨ x P G. The cocharacter σ : Cˆ

Ñ A splits as

Cˆ A1 ˆ A2

Cˆ
ˆCˆ

σ

∆
σ1ˆσ2
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with σ1 P C. Since σ is generic for the action of A, the cocharacters σ1 and σ2 are generic for the
actions of A1 and A2, respectively. Consider the action of Cˆ

ˆCˆ on X induced by σ1 ˆσ2 and
the map

(4) Γ : P1
ˆP1 p´1

ÝÝÑ Graphpxq Ñ X

introduced in Lemma A.2. The closure of the orbit Cˆ
Q t ÞÑ σ1ptq ¨ x is contained in the image

of (4), and in particular the limit points limtÑ0 σ1ptq ¨ x and limtÑ8 σ1ptq ¨ x are contained in the
images of t0u ˆ P1 and t8u ˆ P1 respectively. Since the cocharacter σ1 is generic, by the second
point of Lemma (4) these limit points are fixed by A1. Then, by connectedness, it follows that

(5) Γpt0u ˆ P1
q Ď F Γpt8u ˆ P1

q Ď G.

Now consider the orbit σptq ¨ x. It can be seen as the image of the composition

Cˆ ∆
ÝÑ Cˆ

ˆCˆ
Ñ P1

ˆP1 p´1

ÝÝÑ Graphpxq Ñ X

Its limit point limtÑ0 σptq¨x coincides with Γp0ˆ0q, hence (5) implies that f :“ limtÑ0 σptq¨x P F .
By the third point of Lemma A.2, the point f is fixed by the action of Cˆ

ˆCˆ induced by
σ “ σ1 ˆ σ2. Since the cocharacters are generic, the limit point f is even fixed by the whole
A “ A1 ˆ A2. Analogously, one can argue that g :“ limtÑ8 σptq ¨ x is equal to Γp8 ˆ 8q,
belongs to G, and is A-fixed. Overall, we have shown that limtÑ0 σptq ¨ x “ f P FA and

limtÑ0 σptq ¨ x “ g P GA, which implies that Attσpfq X g ‰ 0.
The opposite direction is analogue. In this case one assumes the existence of an orbit σptq ¨ x

with limit points at f and g and shows that the orbit σ1ptq ¨ x connects F to G. Details are left
to the reader. As before, the closure of σptq ¨ x corresponds to the diagonal ∆ : P1

Ñ P1
ˆP1,

while σ1ptq ¨ x corresponds to P1
ˆt1u ãÑ P1

ˆCˆ
Ă P1

ˆP1. □

We are now ready to give an alternative proof of our main theorem.

Second proof of Theorem 3.4. The tcombinatorialu ùñ tgeometricu direction is the easiest
part of the proof. Indeed, an attracting invariant curve connecting two fixed points such that
M ÌB̂ M 1 can be explicitly constructed following [17, Section 3.4.1]. Therefore, we only prove
the opposite direction.
For convenience, we denote by MX a BCT table defining a fixed point in the bow variety X.

It suffices to show that if there exists an invariant curve γ : P1
Ñ X with attractive tangent

weight χ P CharpAq at 0 and such that γp0q “ MX and γp8q “ M 1
X , then M

1
X ă MX .

First, we reduce ourselves to the case where there are only two D5 branes. This corresponds to
the case where the BCT table has only two columns. By [14, Section 4.6], the tangent weight χ
of γ at 0 must be of the form ai{aj for some i ‰ j P t1, . . . , nu. Let B Ă A be the sub-torus given
by the equation ai “ aj. Then, the curve γ is contained in some connected component Y Ă XB.
Moreover, its endpoints MX and M 1

X correspond to two A {B-fixed points in Y . By [2, Theorem
3.1], every fixed component in XB is isomorphic to a bow variety with exactly two branes (these
two branes correspond to the i-th and j-th D5 branes in X). LetMY andM 1

Y be the BCT tables
describing the fixed points γp0q, γp8q P Y A {B. The matrix MY (resp. M 1

Y ) is simply obtained
from MX (resp. M 1

X) by erasing all but the i-th and j-th columns. In particular, if we show
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that M 1
Y ăB̂ MY , then M

1
X ăB̂ MX follows. Moreover, since by construction γ is contained in

Y Ă X, it follows that M 1
Y ă MY . Overall, we have shown that

M 1
X ăG MX ùñ M 1

Y ăG MY M 1
Y ďB̂ MY ùñ M 1

X ďB̂ MX .

Hence, it suffices to prove that M 1
Y ăG MY ùñ M 1

Y ăB̂ MY . In words, we have reduced
ourselves to the case of a bow variety with only two D5 branes (equivalently, to the case of BCTs
with only two columns). This concludes the first step of the proof.

In the second step, we exploit the results of the previous section to constrain the BCT table
of a fixed point M 1

Y satisfying M 1
Y ăG MY . To ease the notation, we drop the subscripts in the

fixed points since there is no more risk of confusion. By Corollary 2, there is an A-equivariant
embedding Y ãÑ T*Fl, where Fl is a partial flag variety. Let F Ď T*Fl

A
(resp. G Ď T*Fl

A
)

be the A-fixed component containing M (resp. M 1). Let F0 (resp. G0) be the intersection of
F (resp. G) with the zero section Fl Ă T*Fl. They are both isomorphic to the fiber products
of two full flag varieties. Since by hypothesis M and M 1 are connected by a chain of invariant
curves, the same is true for F and G and hence for F0 and G0 via the projection T*Fl Ñ Fl.

Therefore, we deduce that AttσpF0q X G0 ‰ H. Let rA Ą A be the maximal torus acting on Fl
from the framing.

Choose a splitting rA “ AˆrA{A and a cocharacter λσ̃ : Cˆ
Ñ rA such that its projection to A

is λσ : Cˆ
Ñ A. By Lemma 5.9 below, it follows that that there exist rA-fixed points ĂM, ĂM 1 P Fl

rA

such that Attσ̃pĂMqX ĂM 1 ‰ H. Notice that ĂM (resp. ĂM 1) is a maximal resolution ofM (resp.M 1)
in the sense of Definition 5.6. Since for flag varieties either combinatorial Bruhat orders coincide

with the geometric order—see Remark 3.3—we deduce that ĂM 1 is obtained from ĂM by a sequence
of L2 Ñ I2 interchanges. If one of these interchanges occurs among the columns resolving a single

column of ĂM , they leave M unchanged. If instead they involve columns of ĂM resolving both
columns of M , they have the effect of adding to M a matrix of the form

ˆ

1 ´1
´1 1

˙

.

Hence, we deduce that M 1 “ M ` Z, where

Z “
ÿ

k

ˆ

1 ´1
´1 1

˙ikjk

for some indices 1 ď ik, jk ď m. But then the same argument used in the proof of Lemma
5.8 shows that the assumptions of the latter are satisfied. Hence the M ăB̂ M 1 and the proof
follows. □

Appendix A.

In this appendix, we record some results about orbits of torus actions on complete algebraic
varieties. In the first lemma, which is classical, we recall the characterization of Cˆ-oribits
closures in terms of morphisms from P1. Then, we extend the result to rank two tori. Although
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this second lemma is also probably well known, we could not find a reference for it. Hence, we
provide a proof.

Lemma A.1 (Lemma 2.4.1 in [6]). Let X be a complete variety and let Cˆ be one dimensional

torus acting on X. Fix x P X and let Graphpxq be the closure in P1
ˆX of Graphpxq “ tpz, z ¨xq P

Cˆ
ˆX | z P Cˆ

u. Then

(1) The projection p : Graphpxq Ñ P1 is an isomoprhism.

(2) The image of the points 0,8 P P1 under the composition P1 p´1

ÝÝÑ Graphpxq Ñ X are fixed
points for the Cˆ-action.

With this well known result in mind, we extend the previous result to rank two tori. In
principle, we could admit an arbitrary rank, but this level of generality suffices for our scopes.

Lemma A.2. Let X be a complete variety and let Cˆ
ˆCˆ act on X via m : Cˆ

ˆCˆ
ˆX Ñ X.

Fix x P X and let Graphpxq be the closure in P1
ˆP1

ˆX of

tpz, w,mpz, w, xqq P Cˆ
ˆCˆ

ˆX | pz, wq P Cˆ
ˆCˆ

u.

Then

(1) The projection p : Graphpxq Ñ P1
ˆP1 is an isomorphism.

(2) The images of the curves t0u ˆ P1 and t8u ˆ P1 under the composition P1
ˆP1 p´1

ÝÝÑ

Graphpxq Ñ X are fixed by the action of the one dimensional torus Cˆ
ˆt1u Ă Cˆ

ˆCˆ.
Similarly, the images of P1

ˆt0u and P1
ˆt8u are fixed under the action of the one di-

mensional torus t1u ˆ Cˆ
Ă Cˆ

ˆCˆ.
(3) The images of the “corners” 0 ˆ 0, 0 ˆ 8,8 ˆ 0,8 ˆ 8 P P1

ˆP1 are fixed under the
action of Cˆ

ˆCˆ.

Proof. Since Graphpxq is connected and P1
ˆP1 is normal, it suffices to show that π : Graphpxq Ñ

P1
ˆP1 is bijective on C-points. The proof then essentially follows by iteration of Lemma A.1.

Fix z P Cˆ
Ă P1 and consider the following pullback diagram

Graphpxqz Graphpxq

tzu ˆ P1
ˆX P1

ˆP1
ˆX

By construction, Graphpxqz is closed in tzu ˆ P1
ˆX. Indeed, it coincides with the closure

of the orbit tpw,mpz, w, xqq P Cˆ
ˆX | w P Cˆ

u. By the previous Lemma A.1, we deduce

that the composition Graphpxqz Ñ tzu ˆ P1
ˆX Ñ tzu ˆ P1 is an isomorphism for all z P

Cˆ. As a consequence, it follows that the restriction of p on the preimage of Cˆ
ˆP1 is a

bijection. Swapping the order of the two Cˆ, one similarly shows that the restriction of p to
the preimage of P1

ˆCˆ is also a bijection. Altogether, we deduce that the restriction of p to
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P1
ˆP1

zt0 ˆ 0, 0 ˆ 8,8 ˆ 0,8 ˆ 8u is bijective. Now consider the pullbacks

Graphpxq∆ Graphpxq

P1
ˆX P1

ˆP1
ˆX

∆ˆid

Graphpxq∇ Graphpxq

P1
ˆX P1

ˆP1
ˆX

∇ˆid

along the diagonal ∆ : P1
Ñ P1

ˆP1 and the antidiagonal ∇ : P1
Ñ P1

ˆP1 respectively (here ∇
is the composition of ∆ with the inversion w Ñ 1{w on the second factor). The variety Graphpxq∆
corresponds to the image of the orbit tpz, z,mpz, z, xqq P Cˆ

ˆX | z P Cˆ
u. Likewise, the variety

Graphpxq∇ corresponds to the image of the orbit tpz, 1{z,mpz, 1{z, xqq P Cˆ
ˆX | z P Cˆ

u.
Again, by Lemma A.1 it follows that the restrictions of p to the preimages of ∆ and ∇ are
bijections. Since these restrictions clealry agree on their common intersection with the restriction
of p on the preimage of PˆP zt0ˆ0, 0ˆ8,8ˆ0,8ˆ8u, we conclude that p : Graphpxq Ñ P1

ˆP1

is bijective, as desired. This completes the proof of the first point.
We now prove the second point. By construction, the image of t0u ˆ Cˆ is fixed by Cˆ

ˆt1u.
Since fixed loci are closed, also the preimage of t0u ˆ P1 is closed. This proves the claim for the
first curve. The other cases are analog.

As for the third point, simply notice that by point (2) each of the “diagonal” points 0ˆ 0, 0ˆ

8,8 ˆ 0,8 ˆ 8 P P1
ˆP1 lie at the intersection of two curves. One of these curves is fixed by

Cˆ
ˆt1u, while the other is fixed by t1u ˆCˆ, hence their intersection if fixed by the whole torus

Cˆ
ˆCˆ.

□
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