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K-theoretic Pieri rule via iterated residues
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Abstract. We prove a new formulation of the K-theoretic Pieri rule regarding multipli-
cation of stable Grothendieck polynomials using iterated residues. We also deploy our
method to establish straightening laws to transform Grothendieck polynomials corre-
sponding to general integer sequences to linear combinations of those corresponding
to partitions. The technique of iterated residues appears at once similar to raising
operators; however, the connection to path integrals in the complex plane provides a
different perspective.
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1 Introduction

To each permutation, the seminal work of Lascoux and Schützenberger associates a
(double) Grothendieck polynomial to represent the (torus equivariant) K-class of the corre-
sponding Schubert variety in the complete flag variety [8]. Analogous to the method by
which the Stanley symmetric functions are obtained from the Schubert polynomials, the
stable (double) Grothendieck polynomial is obtained as the limit of embedding permu-
tations into larger symmetric groups [7]. Their many interesting properties have been
studied via geometry, e.g. [3] and tableaux combinatorics, e.g. [5].

Motivated by the study of quiver polynomials Buch instituted a systematic combina-
torial description of the bialgebra of stable Grothendieck polynomials [5]. Every element
of this bialgebra can be expressed as a polynomial in stable Grothendieck polynomials
corresponding to Grassmannian permutations and hence partitions. We apply the tech-
nique of iterated residues to study the structure of this bialgebra. In this note we focus on
a special case of the multiplicative structure, the K-theoretic Pieri rule.

The (double) stable Grothendieck polynomials for partitions are representatives for
the (torus equivariant) K-classes of Schubert varieties in Grassmannians and their multi-
plication gives the K-theoretic generalization of the Littlewood–Richardson rule [5]. In the
setting of quiver polynomials, Buch [6] proved that the stable Grothendieck polynomials
provide the proper basis in which to formulate conjectures regarding K-theoretic positiv-
ity and stability properties. The second author (joint with Szenes) formulated analogous
results for K-theoretic Thom polynonials [11].
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En route to an iterated residue attack on these problems, the first author proved
a new residue formula for the K-theoretic quiver polynomials [1] and the paper [11]
reports an iterated residue formula for K-theoretic Thom polynomials. Our hope is that
the methods initiated in the present note will be applicable to these larger contexts.

1.1 Notation and terminology

Consider a sequence I = (I1, I2, . . .) of integers. Each integer Ii is called a part of I. The
sequence I is called finite if only finitely many of its parts are nonzero. For a finite integer
sequence I, we define its length `(I) = max{i : Ii 6= 0} and its weight |I| = ∑i Ii. A finite
integer sequence λ is called a partition if λ1 ≥ λ2 ≥ · · · ≥ λ`(λ) > 0. Throughout, we
will identify the partition λ with its Young diagram of boxes, e.g.

λ = (4, 2, 1) ! .

Given partitions µ ⊃ λ, we let µ/λ denote the resulting skew diagram, which is a
horizontal n-strip if |µ| − |λ| = n and no two boxes of µ/λ appear in the same column.
Given two finite integer sequences I and J of respective lengths k and l we define the
sequence I, J to be the concatenation (I1, . . . , Ik, J1, . . . , Jl) and the sequence I + J to be
(I1 + J1, . . . , Im + Jm) where m = max{k, l} and it is understood that Ii = 0 for i > k
and likewise Jj = 0 for j > l. We analogously define I − J. For an integer a, we
abuse notation by letting I, a, J denote the sequence (I1, . . . , Ik, a, J1, . . . , Jl). For variables
u = {u1, u2, . . .}, we let Z[u±1] denote the ring of Laurent polynomials. Finally, for any
positive integer n, we set [n] = {1, 2, . . . , n}.

2 Residues and Grothendieck polynomials

2.1 Iterated residue operations

For a meromorphic function φ(z) in the single complex indeterminate z, define

Res
z=0,∞

(φ(z) dz) := Res
z=0

(φ(z) dz) + Res
z=∞

(φ(z) dz) (2.1)

Now, for f (z) a meromorphic function in z = (z1, . . . , zp) we define

Res
z=0,∞

(
f (z) dzp · · · dz1

)
= Res

z1=0,∞
· · · Res

zp=0,∞

(
f (z) dzp · · · dz1

)
. (2.2)

2.2 Stable Grothendieck polynomials

Let I = (I1, . . . , Ip) be a finite integer sequence and z = {z1, z2, . . . , zp} a set of complex-
valued indeterminates; we take as many variables zi as there are entries in I. Given
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sets of variables α = {α1, α2, . . . , αk} and β = {β1, β2, . . . , βl} we define a (Laurent)
polynomial GI(α; β), actually a polynomial in the variables α−1

i and β j, as follows. Set

∆(z) = ∏
1≤i<j≤p

(
1−

zj

zi

)
, P(z|α; β) =

p

∏
i=1

(1− zi)
k−l ∏l

b=1(1− ziβb)

∏k
a=1(1− ziαa)

,

and define

GI(α; β) := Res
z=0,∞

(
∏

p
i=1(1− zi)

Ii−i

z1 · · · zp
P(z|α; β)∆(z) dzp · · · dz1

)
(2.3)

called the double stable Grothendieck polynomial. When a result is independent of the
choice of variables α and β, we simply write GI . Remarkably, the second author and
Szenes have proven in [11] that when I is a partition, Equation (2.3) agrees with previous
formulations of the polynomial GI , e.g. [5, 8]. Often in the literature, for example when
comparing to [5], we make the substitutions 1− α−1

i = xi and 1− β j = yj. Throughout
the remainder of the note, let Γ =

⊕
λ ZGλ, a Z-linear span over partitions λ.

Remark 2.1. Since the meromorphic function of which we compute residues in Equation
(2.3) does not blow up along any hyperplane zi = zj, Fubini’s Theorem implies that the
residues can be taken in any order. As a corollary of this fact, we may actually per-
mute the z variables in (2.3) and the residue operation evaluates to the same polynomial
GI(α; β). We will use this observation in the sequel.

2.3 An application: straightening laws for GI

In 2002, Buch also defined a stable Grothendieck polynomial associated to any finite
integer sequence I (not necessarily a partition) [4, Section 3]. In that work, GI is given
by a determinant, whose size grows with the number of α variables. We now show
that Equation (2.3) implies the straightening laws obtained by Buch in [4] and hence our
iterated residue description gives the value of GI (with I a partition or not) by a single
formula, independent of the size of the sets of variables α and β. The goal is to write GI
as a finite sum over partitions λ, i.e. GI = ∑λ dλ

I Gλ; the coefficients dλ
I ∈ Z will auto-

matically be uniquely determined since the polynomials Gλ are Z-linearly independent.
The two “straightening laws” described in the following theorem are sufficient, c.f. [4,
Equation (3.1)].

Theorem 2.2. For any integer sequences I and J, and any a, b ∈ Z, we have

GI,a,b,J − GI,a+1,b,J = GI,b,a+1,J − GI,b−1,a+1,J . (2.4)

Furthermore, if J has only non-positive parts, then we have

GI,J = GI . (2.5)

Observe that a consequence of (2.4) is that GI,b−1,b,J = GI,b,b,J .
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Proof. We prove (2.4) in the case that I and J are empty. The general case is analogous,
only with more notation. For the righthand side of (2.4), we consider the result of
applying Resz=0,∞ to[

(1− z1)
b−1(1− z2)

a−1 − (1− z1)
b−2(1− z2)

a−1
] (

1− z2

z1

)
P(z|α; β)

z1z2
dz2dz1. (2.6)

Using the observation of Remark 2.1 we apply the simple transposition z1 ↔ z2 and
Fubini’s theorem to obtain[

(1− z1)
a−1(1− z2)

b−2 − (1− z1)
a−1(1− z2)

b−1
] (z1

z2

)
︸ ︷︷ ︸

♣

(
1− z2

z1

)
P(z|α; β)

z1z2
dz2dz1.

(2.7)
The portion of the above expression labeled ♣ is equal to

(1− z1)
a−1(1− z2)

b−2 − (1− z1)
a+1−1(1− z2)

b−2

and hence the result of applying Resz=0,∞ to (2.7) is Ga,b − Ga+1,b as desired. We prove
(2.5) in the case that `(J) = 1; the general result follows inductively. Write J = (j) with
j ≤ 0 and assume that `(I) = p. Set z = (z1, . . . , zp) and apply Fubini’s theorem to get

GI,j(α; β) = Res
z=0,∞

(
∏

p
i=1(1− zi)

Ii−i

z1 · · · zp
P(z|α; β)∆(z) dzp · · · dz1

)

× Res
ζ=0,∞

(
(1− ζ)j−(p+1) · 1

ζ
· P(ζ|α; β) ·

p

∏
i=1

(
1− ζ

zi

)
dζ

)
. (2.8)

We concentrate on the residues corresponding to the ζ variable. Set

g(ζ) = (1− ζ)j−(p+1) · 1
ζ
· P(ζ|α; β) ·

p

∏
i=1

(
1− ζ

zi

)
and note ζ = 0 is a simple pole of g. Thus, Resζ=0(g dζ) = limζ→0(ζ · g) = 1. To compute
Resζ=∞(g dζ) we consider

g̃(ζ) = − 1
ζ2 g(1/ζ) = − 1

ζ2 · (1− 1/ζ)j−p−1 · ζ · P(1/ζ|α; β)
p

∏
i=1

(
1− 1

ζzi
·
)

and use that Resζ=∞(g dζ) = Resζ=0(g̃ dζ). A calculation shows that

g̃(ζ) = − 1
ζ j · (ζ − 1)j−p−1+k−l · ∏l

b=1(ζ − βb)

∏k
a=1(ζ − αa)

·
p

∏
i=1

(ζ − 1/zi).
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Since j ≤ 0, we see that g̃ is holomorphic at ζ = 0 and hence Resζ=0(g̃ dζ) = 0. This
implies Resζ=0,∞(g dζ) = 1 and hence Equation (2.8) becomes

GI,j(α; β) = Res
z=0,∞

(
∏

p
i=1(1− zi)

Ii−i

z1 · · · zp
P(z|α; β)∆(z) dzp · · · dz1

)
· 1 = GI(α; β)

as desired. Moreover, observe that the proof has been independent of k and l.

Example 2.3. Using the straightening laws (2.4) and (2.5) we obtain that G(−1,1,−2) =
G(−1,1) = G(0,1) + G(1,0) − G(0,0) = G(1,1) + G(1) − G∅. Observe the coefficients do not
satisfy a typical K-theory type of sign alternation, i.e. (−1)|λ|−|I|dλ

I is not necessarily
non-negative, a difficulty which we must confront in the sequel, e.g. Sections 3.2–3.4.

2.4 Related operations

Equation (2.3) motivates the following operation on a rational function f (z1, . . . , zp),

R(z|α;β)
(

f (z1, . . . , zp)
)

:= Res
z=0,∞

(
f (z1, . . . , zp)

∏
p
i=1(1− zi)

−i

z1 · · · zp
P(z|α; β)∆(z) dzp · · · dz1

)
.

Moreover, we define the Z-linear mapping Gt : Z[t±1]→ Γ by setting

Gt

(
tI
)
= GI (2.9)

for monomials tI = ∏
p
i=1 tIi

i . The following is a restatement of the content of (2.3).

Theorem 2.4. For any Laurent polynomial g(t1, . . . , tp) we have

Gt
(

g(t1, . . . , tp)
)
(α; β) = R(z|α;β)

(
g(1− z1, . . . , 1− zp)

)
.

In this language, we obtain the following “straightening laws”.

Theorem 2.5. With I, J, a, b as in Theorem 2.2, if `(I) = k− 1 then we have

Gt

(
tI,a,b,J(1− tk)

)
= Gt

(
−tI,b−1,a+1,J(1− tk)

)
. (2.10)

Furthermore, if f (t1, . . . , tk) is a Laurent polynomial such that the exponent of tk is non-positive
in every monomial, then

Gt ( f (t1, . . . , tk)) = Gt ( f (t1, . . . , tk−1, 1)) . (2.11)

Proof. Equations (2.10) and (2.11) respectively encode Equations (2.4) and (2.5).
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3 K-theoretic Pieri rule

We would like to extend the result of Theorem 2.4 to the case that g is a rational function.
We do not expect this to be possible for any rational function, but one class of interest
are functions of the form

f I,J(t) = tI,J
p

∏
i=1

q

∏
j=1

1− ti

1− ti/tp+j
(3.1)

where I ∈ Zp and J ∈ Zq. The reason is that a naive calculation shows

R(z,ζ|α;β)
(

f I,J(1− z1, . . . , 1− zp, 1− ζ1, . . . , 1− ζq)
)

= R(z|α;β)

(
p

∏
i=1

(1− zi)
Ii

)
R(ζ|α;β)

(
q

∏
j=1

(1− ζ j)
Jj

)
= GI(α; β) GJ(α; β). (3.2)

Hence, one hopes to understand multiplication of Grothendieck polynomials in terms
of the Gt operation. The goal then, is to make Gt ( f I,J(t)) a well-defined operation with
image in Γ.

3.1 The case q = 1

Observe that the function 1−ti
1−ti/tp+1

has Laurent expansion ∑∞
u=0(t

u
i /tu

p+1)−∑∞
r=1(t

r
i /tr−1

p+1).
Hence, we define

QN
i =

N

∑
u=0

tu
i

tu
p+1
−

N

∑
r=1

tr
i

tr−1
p+1

.

We need the following technical vanishing lemma.

Lemma 3.1. Let f ∈ Z[t±1
1 , . . . , t±1

p+1] be a Laurent polynomial and set

g(t1, . . . , tp+1) = f (t1, . . . , tp+1)
p

∏
i=1

1− ti

1− ti/tp+1
,

g̃N(t1, . . . , tp+1) = f (t1, . . . , tp+1)
p

∏
i=1

QN
i .

Then for large enough N and any choice of α and β, we have

R(z|α;β)(g(1− z1, . . . , 1− zp+1)) = R(z|α;β)(g̃N(1− z1, . . . , 1− zp+1)). (3.3)

Proof. Let ti = 1− zi for i ∈ [p + 1]. The difference of the two sides of (3.3) is

R(z|α;β)

(
f (1− z1, . . . , 1− zp+1)

(
p

∏
i=1

1− ti

1− ti/tp+1
−

p

∏
i=1

QN
i

))
(3.4)
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Calculation shows that

1− ti

1− ti/tp+1
−QN

i =
1− ti

1− ti/tp+1
·

tN+1
i

tN+1
p+1

·
1− tp+1

1− ti
.

Using this we obtain that

p

∏
i=1

1− ti

1− ti/tp+1
−

p

∏
i=1

QN
i =

p

∏
i=1

1− zp+1

1− zp+1/zi

1−
p

∏
i=1

(
1− (1− zi)

N+1

(1− zp+1)N+1

zp+1

zi

)
︸ ︷︷ ︸

♠

 . (3.5)

The expression ♠ expands to 2p − 1 terms which can each be written as(
zp+1

(1− zp+1)N+1

)r

ψ(z1, . . . , zp)

for some function ψ and some integer r ≥ 1. We obtain that (3.4) is the sum of 2p − 1
terms, each of the form

R(z|α;β)

(
f ·
(

p

∏
i=1

(1− zp+1)

1− zp+1/zi

)(
zp+1

(1− zp+1)N+1

)r

ψ(z1, . . . , zp)

)
. (3.6)

Tracing back the definition of R(z|α;β) we find that (3.6) is equal to

Res
z1=0,∞

· · · Res
zp=0,∞

[
Res

zp+1=0,∞

(
f ·

zr−1
p+1 P(zp+1|α; β)

(1− zp+1)rN+r+1 dzp+1

)
· φ(z1, . . . , zp) dzp · · · dz1

]
for some function φ independent of zp+1. Now by counting degrees of zp+1, we observe
that both Reszp+1=0 and Reszp+1=∞ evaluate to zero for N � 0. In the case that f is an
honest polynomial in tp+1, we remark that N > deg( f ; tp+1) suffices.

Definition 3.2. For f , g, g̃N, and N large enough such that Lemma 3.1 holds, we define

Gt

(
f (t1, . . . , tp+1)

p

∏
i=1

1− ti

1− ti/tp+1

)
= Gt

(
g(t1, . . . , tp+1)

)
:= Gt

(
g̃N(t1, . . . , tp+1)

)
.

3.2 K-theoretic Pieri rule as an iterated residue

Theorem 3.3. For any partition λ of length p and any n ∈ Z>0 we have

Gλ G(n) = Gt

(
tλ,n

p

∏
i=1

1− ti

1− ti/tp+1

)
. (3.7)
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Proof. Set g to be the argument of the righthand side of (3.7) and choose N > n. Lemma
3.1 holds for this g and N, and so the righthand side is given by Definition 3.2. We
combine this with Equation (3.2) using I = λ and J = (n) to see the desired product.

Fix λ and n throughout the remainder of the section. We wish to use the formula
(3.7) to study the K-theoretic Pieri rule, which we state below. The result is originally due
to Lenart [9, Theorem 3.2]

Theorem 3.4 (Lenart). There exist unique positive integers cµ
λ,n (only finitely many of which

are nonzero) such that
Gλ · G(n) = ∑

µ

(−1)|µ|−|λ|−n cµ
λ,nGµ

where the sum is over partitions µ satisfying certain combinatorial conditions.

We choose to emphasize the positivity and finiteness aspects of Lenart’s original paper.
We remark that in that work, a complete combinatorial description of the coefficients is
given. In short, the number cµ

λ,n is nonzero only if µ can be obtained from λ by adding
a horizontal strip, and is equal to an explicitly described binomial coefficient. We will
give a combinatorial translation for our iterated residue formula below, which (to our
knowledge) is a new formulation of the K-theoretic Pieri rule.

Notice that Lemma 3.1 and Definition 3.2 already imply the finiteness result. More-
over, by expanding the Laurent polynomial g̃n+1 = tλ,n ∏

p
i=1 Qn+1

i and making careful
cancelations (see [2] for details) we obtain the following manifestly positive formula.

Theorem 3.5. Summing over partitions µ ⊃ λ such that µ/λ is a horizontal n-strip gives

Gλ · G(n) = Gt

(
∑
µ

tµ
p

∏
i=1

(1− ti)
εi(µ)

)
. (3.8)

The numbers εi(µ) ∈ {0, 1} are determined by the following rules:

(a) ε1(µ) = 1 if and only if `(µ− λ) > 1;

(b) when i ≥ `(µ− λ) then εi(µ) = 0;

(c) when 1 < i < `(µ− λ) then εi(µ) = 0 if and only if λi−1 = µi.

Moreover, each of the polynomials tµ ∏
p
i=1(1− ti)

εi(µ) is “sorted” in the sense that every mono-
mial in its expansion has the form aν tν for a partition ν. Observe the sign of the integer coefficient
aν must necessarily be (−1)|ν|−|µ| = (−1)|ν|−|λ|−n.

Theorem 3.5 can be restated in the more pleasing form below.
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Theorem 3.6. For λ and n as above, we have

Gλ · G(n) = Gt

∑
µ

tµ ∏
i∈Aλ,µ

(1− ti)

 (3.9)

where the sum ranges over partitions µ such that µ/λ is a horizontal n-strip and moreover,
tµ ∏i∈Aλ,µ

(1− ti) is “sorted” as above. The sets Aλ,µ are described in the sequel.

3.3 A combinatorial description of the sets Aλ,µ

The skew diagram µ/λ is a horizontal strip if and only if µ and λ satisfy the following
“interlacing” property, see e.g. [10, Section I.1],

µ1 ≥ λ1 ≥ µ2 ≥ λ2 ≥ · · · (3.10)

Thus every horizontal strip µ/λ corresponds to a sequence of strict inequalities and
equalities (with only finitely many inequalities). We will call this sequence the code of
the horizontal strip, and denote it by Code(µ/λ). From this, we define the odd code
(respectively even code) which is the subsequence comprised of the terms of Code(µ/λ)
indexed by odd (resp. even) numbers; by convention, the first term of a sequence is in-
dexed by 1. These will be respectively denoted by OddCode(µ/λ) and EvenCode(µ/λ).
Example 3.7. For example, with µ = (3, 3, 2, 1, 1) and λ = (3, 2, 2, 1) the skew diagram
µ/λ is the horizontal 2-strip (shaded)

.

The interlacing property of Equation (3.10) takes the form

3 = 3 = 3 > 2 = 2 = 2 > 1 = 1 = 1 > 0 = · · ·
and the corresponding code is Code (µ/λ) = {=,=,>,=,=,>,=,=,>,=, . . .}. Hence,

OddCode (µ/λ) = {=,>,=,=,>,=, . . .} EvenCode (µ/λ) = {=,=,>,=, . . .}.
Proposition 3.8. If the last non-equality appearing in OddCode(µ/λ) occurs in its k-th term,
then `(µ− λ) = k. Furthermore

(a) 1 ∈ Aλ,µ if and only if k > 1;

(b) i /∈ Aλ,µ for all i ≥ k;

(c) for 1 < i < k, i ∈ Aλ,µ if and only if the (i − 1)st entry of EvenCode(µ/λ) is a strict
inequality.

Proof. The ith entry of the odd code compares µi to λi. For large enough i, both of these
numbers are zero and are therefore equal. Hence, the last occurrence of a “>” sign in
the odd code must be the length of the sequence µ− λ. Properties (a), (b), and (c) are
the straightforward translations of items (a), (b), and (c) from Theorem 3.5.
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µ `(µ− λ) ε(µ) Aλ,µ

= (5, 2, 2, 1) 1 εi = 0 ∀i ≥ 1 ∅

= (4, 3, 2, 1) 2
ε1 = 1

εi = 0 ∀i ≥ 2
{1}

= (4, 2, 2, 2) 4

ε1 = 1
µ2 6= λ1 =⇒ ε2 = 1
µ3 = λ2 =⇒ ε3 = 0

εi = 0 ∀i ≥ 4

{1, 2}

= (3, 3, 2, 2) 4

ε1 = 1
µ2 = λ1 =⇒ ε2 = 0
µ3 = λ2 =⇒ ε3 = 0

εi = 0 ∀i ≥ 4

{1}

= (3, 2, 2, 2, 1) 5

ε1 = 1
µ2 6= λ1 =⇒ ε2 = 1
µ3 = λ2 =⇒ ε3 = 0
µ4 = λ3 =⇒ ε4 = 0

εi = 0 ∀i ≥ 5

{1, 2}

= (3, 3, 2, 1, 1) 5

ε1 = 1
µ2 = λ1 =⇒ ε2 = 0
µ3 = λ2 =⇒ ε3 = 0
µ4 6= λ3 =⇒ ε4 = 1

εi = 0 ∀i ≥ 5

{1, 4}

= (4, 2, 2, 1, 1) 5

ε1 = 1
µ2 6= λ1 =⇒ ε2 = 1
µ3 = λ2 =⇒ ε3 = 0
µ4 6= λ3 =⇒ ε4 = 1

εi = 0 ∀i ≥ 5

{1, 2, 4}

Table 1: The lefthand column depicts all possible horizontal 2-strips added to
(3, 2, 2, 1). The length of the sequence µ− λ is the row number of the southernmost
added box.

3.4 An example computation

Let λ = (3, 2, 2, 1) and n = 2. The results of computing Gλ G(2) by applying Theorems
3.5 and Theorem 3.6 are compiled in Table 1. In the end, we are left with the following
sum of sorted polynomials

t(5,2,2,1) + t(4,3,2,1)(1− t1) + t(3,3,2,2)(1− t1)

+ t(4,2,2,2)(1− t1)(1− t2) + t(3,2,2,2,1)(1− t1)(1− t2)

+ t(3,3,2,1,1)(1− t1)(1− t4) + t(4,2,2,1,1)(1− t1)(1− t2)(1− t4)

(3.11)

which, after applying the Gt operator, becomes

G(5,2,2,1) + G(4,3,2,1) + G(3,3,2,2) + G(4,2,2,2) + G(3,2,2,2,1) + G(3,3,2,1,1) + G(4,2,2,1,1)

− G(5,3,2,1) − 2G(4,3,2,2) − G(5,2,2,2) − 2G(4,2,2,2,1) − 2G(3,3,2,2,1) − 2G(4,3,2,1,1) − G(5,2,2,1,1)

+ G(5,3,2,2) + 3G(4,3,2,2,1) + G(5,3,2,1,1) + G(5,2,2,2,1) − G(5,3,2,2,1). (3.12)
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4 The case q > 1

Consider the rational function f I,J(t1, . . . , tp+q) of Equation (3.1). We wish to define
Gt( f I,J) in such a way that the result of the operation is equal to the product GI GJ ∈ Γ.
When q = `(J) = 1, we have solved the problem in Section 3; here we consider q > 1.
The main obstruction is the analogue of the vanishing result, Lemma 3.1. We propose
the following approach. For any k ∈ [p] consider the mapping

E d
k : Z(t1, . . . , tp+q) −→ Z(t1, . . . , t̂k, . . . , tp, tp+1, . . . , tp+q)[t±1

k ]

which is the composition of sending f I,J to its expansion as a Laurent series about tk = 0,
followed by truncating the series to have only degree less than or equal to d. Observe
that every resulting term in the Laurent series will have degree exceeding Ik. Thus,
truncating to terms with degree less than d indeed results in a Laurent polynomial in
Z(t1, . . . , t̂k, . . . , tp, tp+1, . . . , tp+q)[t±1

k ].
For d > Ik + N, a computation shows that the coefficient of tIk+N

k in E d
k ( f I,J) is

h̃N
k (t1, . . . , t̂k, . . . , tp, tp+1, . . . , tp+q)

=

t Î,J ∏
i∈[p]\{k}

∏
j∈q

1− ti

1− ti/tp+j

 · ∑
(N1,...,Nq)`N

 q

∏
j=1

(1− tp+j)
1−δ(Nj,0)

t
Nj
j

 (4.1)

where Î is the integer sequence with Îi = Ii for all i 6= k but Îk = 0, (N1, . . . , Nq) ` N
denotes that ∑

q
j=1 Nj = N with Nj ≥ 0, and δ is the Kronecker delta function. The

following conjecture has been confirmed with many computer experiments.

Conjecture 4.1. Let N > max(J) and z = (z1, . . . , zp+q). For every choice of α and β, we have

R(z|α;β)

(
h̃N

k (1− z1, . . . , 1̂− zk, . . . , 1− zp, 1− zp+1, . . . , 1− zp+q)
)
= 0.

Iterating (4.1) leads to the realization that the composition E d1
1 E

d2
2 · · · E

dp
p results in

a Laurent polynomial in Z[t±1
1 , . . . , t±1

p+q] for any sequence of integers (di); i.e. the first
product in (4.1) will be empty. Hence, supposing the truth of Conjecture 4.1 we define

Gt( f I,J) := Gt

(
E d1

1 E
d2
2 · · · E

dp
p ( f I,J)

)
provided that each di exceeds Ii + max(J).
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