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Abstract. In this paper we present the computation of the Thom polynomial of Σ14 with
the aid of a new method based on the generalized Pontryagin-Thom construction [RSz] and
announce some other results obtained with similar methods.

1. Introduction

The novelty presented in this paper is a new method to compute Thom polynomials. The
basic tool of these new techniques is the “generalized Pontryagin-Thom construction” of [RSz],
whose idea goes back as far as 1979 (see references therein). According to these results the
properties of all maps with described singularities can be studied by considering only one such
map, one which is universal in some sense. E.g. when we want to determine the coefficients
of a particular Thom polynomial we only have to consider one map, the universal one. The
disadvantage is that this map is between spaces that are not finite dimensional manifolds. Still,
there are many similarities, which turn the theory manageable. Let us also remark that Szűcs
conjectured in 1985 [Sz] that this ‘universal map method’ is capable to find Thom polynomials.

The new results, i.e. the new Thom polynomials will be presented in [R2]. However, to
prove the strength of the method let us cite here the Thom polynomials of Σ1n (n = 1, . . . , 8)
between equal dimensional manifolds, since this was the setting where the most activity took
place in the past:

n = 1 c1
n = 2 c21 + c2
n = 3 c31 + 3c1c2 + 2c3
n = 4 c41 + 6c21c2 + 2c22 + 9c1c3 + 6c4
n = 5 c51 + 10c31c2 + 25c21c3 + 10c1c

2
2 + 38c1c4 + 12c2c3 + 24c5

n = 6 c61 + 15c41c2 + 55c31c3 + 30c21c
2
2 + 141c21c4+

+79c1c2c3 + 5c32 + 202c1c5 + 55c2c4 + 17c23 + 120c6
n = 7 c71 + 21c51c2 + 105c41c3 + 70c31c

2
2 + 399c31c4 + 301c21c2c3 + 35c1c

3
2 + 960c21c5+

+467c1c2c4 + 139c1c
2
3 + 58c22c3 + 1284c1c6 + 326c2c5 + 154c3c4 + 720c7

n = 8 c81 + 28c61c2 + 182c51c3 + 140c41c
2
2 + 952c41c4 + 868c31c2c3 + 3383c31c5+

+140c21c
3
2 + 2229c21c2c4 + 642c21c

2
3 + 7552c21c6 + 501c1c

2
2c3 + 3455c1c2c5+

+1559c1c3c4 + 9468c1c7 + 14c42 + 364c22c4 + 202c2c
2
3 + 2314c2c6+

+954c3c5 + 332c24 + 5040c8.

In this paper we give a detailed description of the calculation of the Thom polynomial Σ14 .
This polynomial has been known since [G]. The reason for giving this as an example on one
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hand is that this is probably more easily achievable than e.g Σ18 but when dealing with this
we have to face the typical problems (‘competing singularities’, see [G]). On the other hand
this is the case which is probably the better exposed in the literature, so one might take the
effort to understand the connections between this new method and the former one, which is
usually called the desingularization method. The author believes that there is a close connection
between the desingularization process and the incidence class defined here, see section 5.

In what follows Ai will be a shorthand notation for Σ1i . We will call a (multi)singularity η
more difficult than another one ζ , if near an η-point in the target there is necessarily a ζ-point.
For example, Ai is more difficult than Aj for i > j, or e.g. a singularity A1 (Cn −→ Cn+1)
is more difficult than a double point. We will use Mather’s notation I2,2 for the simplest
germ of type Σ2 between equal dimensional manifolds (i.e. it is the germ with local algebra
C[[x, y]]/(x2, y2)).

2. On Thom polynomials

Recall that the Thom polynomial pη of a singularity η is a polynomial in the Chern classes of
the map f between complex analytic manifolds M , P , and this polynomial equals the Poincaré
dual [η(f)] of the cycle carried by the closure of

η(f) = {x ∈M | the singularity of f at x is η }

for most maps. Here by Chern classes of a map f :M −→ P we mean the Chern classes of the
virtual bundle f ∗TP − TM over M .

The cohomology class [η(f)] is most easily understood when η(f) is a submanifold, which
is often the case if f has no more complicated singularities than η. In this case η(f) carries
a fundamental homology class. We take the image of this class in the homology of M and
apply Poincaré duality. The resulting class is [η(f)] ∈ H∗(M ;Z). Although the definition
of [η(f)] is not much more difficult when η(f) is not a manifold (it has singularities along
smaller dimensional strata), the interesting thing is that we will not need this. We will only
use the definition of [η(f)] in the mentioned case. Observe that this is a difference from the
desingularization method, where the behaviour of η(f) near the singular part is studied.

Let us make a few words about the history of Thom polynomials. The concept itself and
the first computations go back to Thom [T]. A different approach is taken and new results
are obtained by Porteous [P] (Σi(f : Mn −→ P n+k) for any k) and Ronga [R] (an algorithm
for Σij). Their method in a more sophisticated form led Gaffney to [G] (Σ1111, k = 0), whose
method is used also in [Tu] (Σ11111, k = 0). A different — geometrical — approach gives
mod 2 results in [O] (e.g. T.P.(A7) ≡ c1 · T.P.(A6) mod 2). Some more points about Thom
polynomials can be found in the reviews [AVGL] or [SS].

3. Review on the generalized Pontryagin-Thom construction

Now we recall some notions and results from [RSz], with the notation of that paper. Please
note that, overlines ( ) are not meaning closures.
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We will restrict ourselves to the case of maps between equal dimensional manifolds. Let τ
be the following set of their multisingularities:

codim

0 u0A0 u0 ≤ 5
1 A1 + u1A0 u1 ≤ 3
2 A2 + u2A0, 2A1 + u4A0 u2 ≤ 2, u4 ≤ 1
3 A3 + u3A0, A1 + A2 u3 ≤ 1
4 A4, I2,2

Here, by e.g. A2 + 2A0 we mean a multisingularity (Cn, 0) ∪ (Cn, 0) ∪ (Cn, 0) −→ (Cn, 0)
whose restriction to one of the Cn’s is A2 and the restriction to the other two is A0.

1 A map
f :Mn −→ P n a called a τ -map if for any y ∈ P the singularity of f at f−1(y) is from τ . Thus
τ -maps are the maps between equal dimensional manifolds which have no more complicated
multisingularities than A4 and I2,2.

Associated to this set τ a map fτ : Y τ −→ Xτ is constructed in [RSz]. First let us describe
the spaces Y τ , Xτ . These topological spaces are stratified by submanifolds. By this we mean
that Y τ is the union of its subspaces K̄η for η ∈ τ , and for each η ∈ τ a neighbourhood Ūη of
K̄η in

Y τ \ { K̄ζ | ζ is more difficult than η }

is fixed. Moreover Ūη is homeomorphic to the total space of a vector bundle ξ̄η over K̄η (the
0-section being K̄η itself). The space Xτ is stratified in the same way by the ‘submanifolds’ Kη

and their fixed neighbourhoods Uη are homeomorphic to the total space of a vector bundle ξη
over Kη. We also have a concrete description of the bundles ξ̄η, ξη, which we present here only
for η = A1, A2, A3, A4, I2,2, since we will only need these cases and the other cases are slightly
more difficult.

Let κ : (Cm, 0) −→ (Cm, 0) be the “prototype” of η, i.e. let all germs (Cn, 0) −→ (Cn, 0)
of singularity η be right-left equivalent to a suspension2 of κ. Denote the maximal compact
subgroup of the right-left automorphism group

Aut κ = { (ψ, φ) ∈ Diff(Cm, 0)×Diff(Cm, 0) | φ ◦ κ ◦ ψ−1 = κ }

by Gη. Well, Aut κ is not a Lie group (at least not a finite dimensional Lie group), but — since
it has many similarities with Lie groups — we can talk about its maximal compact subgroup
[W], [R1]. Let Gη’s representations on the source and target spaces be λ1(η) and λ2(η). The
fact is ([RSz]) that K̄η and Kη are homeomorphic to BGη (the base space of the universal
principal Gη-bundle) and the vector bundles ξ̄η and ξη are the vector bundles associated to the
universal principal Gη-bundle using the representations λ1(η) and λ2(η).

We have not said anything about the map fτ yet. The following knowledge — its behaviour
near K̄η — will be sufficient for us: restricted to Ūη (= the total space of ξ̄η) the map fτ can

1In fact, the upper bounds for u0 . . . u4 are not very important. We might as well allow them to take any
nonnegative values. The only reason to put the upper bounds is that e.g., near A4 or I2,2 there are only 5-tuple
points and not 6-tuple ones — so τ is the smallest ascending set of multisingularities consisting A4 and I2,2.

2by suspension (= trivial unfolding) of κ : (Cm, 0) −→ (Cm, 0) we mean a germ Sκ : (Cm+v, 0) −→ (Cm+v, 0),
(x, u) 7→ (κ(x), u))
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be identified with a fibrewise map
ξ̄η −→ ξη





y





y

K̄η

∼=
−→ Kη

so, restricted to K̄η it is a homeomorphism to Kη (η = A1, A2, A3, A4, I2,2). In fact in each fibre
above the map is right-left equivalent to the appropriate κ.

The main property of the map fτ is that it is a universal τ -map in the following sense.
Whenever a τ -map f : Mn −→ P n is given, it can be induced from fτ , i.e. there is a
commutative diagram

P
g

−→ Xτ
x





f

x





fτ

M
h

−→ Y τ

such that η(f) = h−1(K̄η), f(η(f)) = g−1(Kη) and a tubular neighbourhood of η(f) in

M \ { ζ(f) | ζ is more difficult than η }

is diffeomorphic to the total space of a vector bundle induced from ξ̄η by h|η(f). Also a tubular
neighbourhood of f(η(f)) in

P \ { f(ζ(f)) | ζ is more difficult than η }

is diffeomorphic to the total space of a vector bundle induced from ξη by g|f(η(f)).

In order to effectively study the topology of fτ , of course, we need a better knowledge of the
Lie groupGη (η = A1, A2, A3, A4, I2,2) and its representations λ1(η), λ2(η). A general framework
of their computation (for all stable singularities) is given in [R2]. However, the results for the
occurring η’s are easily checked, so we only give the groups and the representations with no
proof here.

Theorem 3.1. The prototype κi of Ai maps from (Ci, 0) to (Ci, 0); Gκi
= U(1) and the repre-

sentations are

λ1(Ai) =

i
⊕

j=1

ρj λ2(Ai) =

i+1
⊕

j=2

ρj .

(Here ρ is the standard 1-dimensional representation of U(1) and its powers are meant tensor
powers.)

Theorem 3.2. The prototype κ of I2,2 maps from (C4, 0) to (C4, 0); Gκ has an index 2 subgroup
G′

κ = U(1)× U(1) and the representations restricted to G′

κ are

λ1(I2,2) = ρ1 ⊕ ρ2 ⊕ (ρ−1
1 ⊗ ρ22)⊕ (ρ21 ⊗ ρ−1

2 ) λ2(I2,2) = ρ21 ⊕ ρ22 ⊕ (ρ−1
1 ⊗ ρ22)⊕ (ρ21 ⊗ ρ−1

2 ).

(Here ρ1 and ρ2 are the standard representations on the 1st and the 2nd factor.)

In fact one can easily write up κi and κ explicitly:

κi : (x, u1, . . . , ui−1) 7→ (xi+1 +
∑i−1

j=1 ujx
j , u1, . . . , ui−1)

κ : (x, y, u, v) 7→ (x2 + uy, y2 + vx, u, v).
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Remark 3.3. Although it is not necessary to work with G′

κ instead of Gκ, it makes computa-
tions and (definitely) notations easier, and it will be enough for our purposes.

4. Computation of the Thom polynomial of A4

Definition 4.1. For each η ∈ τ let c(λi(η)), e(λi(η)) denote the total Chern class and the
Euler class of the vector bundle associated to the universal principal Gη-bundle using the rep-
resentation λi(η) (i = 1, 2). Let us define

c(η) =
c(λ2(η))

c(λ1(η))
and e(η) = e(λ1(η)).

What allows us to compute the Thom polynomial of A4 is the following result.

Theorem 4.2. If p(c) = p(c1, c2, c3, c4) is the (degree 4 weighted homogeneous) Thom polyno-
mial of A4 then

• p(c(η)) = 0 for η = A1, A2, A3, I2,2 and
• p(c(A4)) = e(A4).

This theorem can be justified in two ways. The first is more illuminating but making it
precise needs more techniques. Here we are going to present this proof without the details.
The second, which avoids the technical apparatus will be given in [R2].

Proof . The map fτ : Y τ −→ Xτ , although not a map between finite dimensional manifolds —
can be regarded a τ -map, too. So, if p(c) is the Thom polynomial of A4 then [K̄A4

] = [A4(fτ)]
can be expressed as

[K̄A4
] = p(c(fτ)) ∈ H4(Y τ).

We restrict this cohomological identity to K̄η for η = A1, A2, A3, A4, I2,2. For this we must know
the restriction of [K̄A4

] and c(fτ) to the K̄η’s.

Lemma 4.3.

[K̄A4
]|K̄η

=

{

e(A4) if η = A4

0 if η = A1, A2, A3, I2,2
c(fτ)|K̄η

= c(η).

Proof . The first statement is a standard fact from differential topology, i.e. that the Poincaré
dual of a submanifold restricted to the same submanifold is equal to the Euler class of its normal
bundle. The second — [K̄A4

]|K̄η
= 0 for η = A1, A2, A3, I2,2 — comes from the construction

of Y τ . Indeed, the total spaces of the bundles ξ̄η do not contain points of K̄A4
, so a 4-cycle

in K̄η (perturbed) does not intersect K̄A4
at all. Let us remark, that this fact is based on the

property that the η’s are not more difficult singularities than A4.
The third statement is proved as follows.

c(fτ)|K̄η
=
fτ ∗c(Xτ)

c(Y τ)

∣

∣

∣

K̄η

=
c(Xτ)|Kη

c(Y τ)|K̄η

=
c(ξη ⊕ T (BGη))

c(ξ̄η ⊕ T (BGη))
=
c(ξη)

c(ξ̄η)
=
c(λ2(η))

c(λ1(η))
= c(η).

The proof of the theorem is now complete. The only problem with this proof was that
we worked with Y τ , Xτ like manifolds, we used their tangent bundles, characteristic classes,
Poincaré duality etc. As mentioned before the theorem, these computation can be made precise
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by a careful definition of [K̄A4
] (easy) and c(fτ) (a bit more delicate). This — and another

way which avoids these difficulties — will appear in [R2].

Theorems 3.1, 3.2 yield

Corollary 4.4.

c(Ai) = 1+(i+1)a
1+a

= 1 + ia− ia2 + ia3 − . . . ∈ Z[[a]]
e(A4) = 1 · 2 · 3 · 4 · a4 ∈ Z[a].

The image c′(I2,2) of c(I2,2) at the homomorphism H∗(BGκ) −→ H∗(BG′

κ) (see theorem 3.2)
is

c′(I2,2) = (1+2a)(1+2b)
(1+a)(1+b)

=

= 1 + (a+ b) + (−a2 + ab− b2) + (a3 − a2b− ab2 + b3) + . . . ∈ Z[[a, b]]

Now we are ready to determine the coefficients in p(c) = Ac41 +Bc21c2 + Cc1c3 +Dc22 + Ec4.
The substitutions η = A1, A2, A3, A4, I2,2 into the formulas of theorem 4.2 give the following
equations on A, B, C, D, E (in fact, we substitute c′(I2,2) instead of c(I2,2) for which the first
formula of theorem 4.2 clearly holds, too):

A(a)4 + B(a)2(−a2) + C(a)(a3) + D(−a2)2 + E(−a4) = 0
A(2a)4 + B(2a)2(−2a2) + C(2a)(2a3) + D(−2a2)2 + E(−2a4) = 0
A(3a)4 + B(3a)2(−3a2) + C(3a)(3a3) + D(−3a2)2 + E(−3a4) = 0
A(4a)4 + B(4a)2(−4a2) + C(4a)(4a3) + D(−4a2)2 + E(−4a4) = 24

A(a+ b)4 +B(a + b)2(−a2 + ab− b2) + C(a+ b)(a3 − a2b− ab2 + b3) +D(−a2 + ab− b2)2+

E(−a4 + a3b+ a2b2 + ab3 − b4) = 0

The first 4 of these equations give that









1 −1 1 1 −1
16 −8 4 4 −2
81 −27 9 9 −3
256 −64 16 16 −4









·













A
B
C
D
E













=









0
0
0
24









whose solution is A = 1, B = 6, C +D = 11, E = 6. We can substitute these values into our
last equation and get the result: D = 2, C = 9. So the computation of the Thom polynomial
of A4 between equal dimensional manifolds is complete:

c41 + 6c21c2 + 9c1c3 + 2c22 + 6c4.

5. Remarks

Remark 5.1. It turned out from the computation that considering I2,2 was necessary. Without
I2,2 we could have only found that

p(c) = c41 + 6c21c2 + Cc1c3 +Dc22 + 6c4 C +D = 11,

which is really the most general Thom polynomial of A4 for maps without I2,2 singularities.
(This can be seen by the fact that the Thom polynomial of I2,2 is c22 − c1c3, so for a map
without I2,2 the class c22 − c1c3 is 0.
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Remark 5.2. As we saw the computation of other Thom polynomials with the same method
basically depends on two things: the knowledge of the hierarchy of singularities (i.e. determining
which singularity is necessarily near another one) and the symmetries of them (i.e. an effective
method to determine the maximal compact subgroup of the right-left symmetry group of a given
singularity). However, if we have already computed the Thom polynomial of some singularity
then we can deduce some information on the mentioned two notions. The symmetries do not
seem to be interesting here, but one can define the incidence class of singularities as

I(η, ζ) := [K̄η]|K̄ζ
,

and compute it as

I(η, ζ) = Thom polynomial of η
(

c(ζ)
)

∈ H∗(BGζ),

which — the author thinks — is a well computable and very fine invariant of the incidence of
singularities. For some properties, see [R2].

Remark 5.3. The method used in this paper, just like in [RSz], works for maps Mn −→ P n+k

where k ≥ 0. So we can use the method to compute Thom polynomials for maps with positive
k, too, see [R2]. On the other hand, for k < 0 the techniques presented here do not work.

Remark 5.4. One can use the same method to compute so called multiple point formulas,
e.g. the classical Herbert-Ronga formulas for immersions [AVGL], which can be considered as
Thom polynomials of multisingularities.

Remark 5.5. Apparently one might use the same method to obtain Thom polynomials in
other settings. E.g. one might be able to compute the integer (rational, Zp) cohomology class
of some [η(f)] in terms of integer (rational, Zp) characteristic classes (Pontryagin classes).

The very results, i.e. the Thom polynomials associated to singularities Σ1n and some other
contact classes were circulated in a manuscript at the 5th Workshop on Real and Complex
Singularities at Sao Carlos 1998 and afterwards. The author is sorry for the numerical errors
in that manuscript — e.g. one in the Thom polynomial of Σ18 .
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