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Abstract. We consider the rational dynamical quantum group Ey(gl2) and introduce an Ey(gl2)-

module structure on ⊕n
k=0H

∗
GLn×C×(T*Grk(Cn))′, where H∗

GLn×C×(T*Grk(Cn))′ is the equivari-

ant cohomology algebra H∗
GLn×C×(T*Grk(Cn)) of the cotangent bundle of the Grassmannian

Grk(Cn) with coefficients extended by a suitable ring of rational functions in an additional
variable λ. We consider the dynamical Gelfand-Zetlin algebra which is a commutative alge-
bra of diffference operators in λ. We show that the action of the Gelfand-Zetlin algebra on
H∗

GLn×C×(T*Grk(Cn))′ is the natural action of the algebra H∗
GLn×C×(T*Grk(Cn)) ⊗ C[δ±1] on

H∗
GLn×C×(T*Grk(Cn))′, where δ : ζ(λ)→ ζ(λ+ y) is the shift operator.

The Ey(gl2)-module structure on ⊕n
k=0H

∗
GLn×C×(T*Grk(Cn))′ is introduced with the help of

dynamical stable envelope maps which are dynamical analogs of the stable envelope maps intro-
duced by Maulik and Okounkov, [MO]. The dynamical stable envelope maps are defined in terms
of the rational dynamical weight functions introduced in [FTV] to construct q-hypergeometric
solutions of rational qKZB equations. The cohomology classes in H∗

GLn×C×(T*Grk(Cn))′ in-

duced by the weight functions are dynamical variants of Chern-Schwartz-MacPherson classes of
Schubert cells.
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1. Introduction

In [MO], Maulik and Okounkov study the classical and quantum equivariant cohomology of
Nakajima quiver varieties for a quiver Q. They construct a Hopf algebra YQ, called the Yangian
of Q, acting on the cohomology of these varieties, and show that the Bethe algebra Bq of this
action, depending on some parameters q and acting on the cohomology of these varieties coincides
with the algebra of quantum multiplication. If q → ∞, the limiting Bethe algebra B∞, called
the Gelfand-Zetlin algebra, is isomorphic to the algebra of the standard multiplication on the
cohomology. The construction of the Yangian and the Yangian action is based on the notion of
the stable envelope maps introduced in [MO]. In this paper we construct the dynamical analog
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of the stable envelope maps for the equivariant cohomology algebras of the cotangent bundles of
Grassmannians.

Let (C×)n ⊂ GLn be the torus of diagonal matrices. The groups (C×)n ⊂ GLn act on Cn

and hence on the cotangent bundle T*Grk(Cn) of a Grassmannian. Extend these (C×)n ⊂ GLn
actions to the actions of T = (C×)n × C× ⊂ GLn × C× in such a way that the extra C× acts
on the fibers of T*Grk(Cn) → Grk(Cn) by multiplication. Consider the equivariant cohomology
algebra H∗T (T*Grk(Cn)). In this situation Maulik and Okounkov define the stable envelope maps

Stabσ : ⊕nk=0H
∗
T ((T*Grk(Cn))T )→ ⊕nk=0H

∗
T (T*Grk(Cn)),

where (T*Grk(Cn))T ⊂ T*Grk(Cn) is the fixed point set with respect to the action of T and σ is
an element of the symmetric group Sn. They describe the composition maps Stab−1

σ′ ◦ Stab σ in
terms of the standard gl2 rational R-matrix and these R-matrices give a Yangian Y (gl2)-module
structure on ⊕nk=0H

∗
T (T*Grk(Cn)), see also [RTV1].

A similar construction can be performed for the equivariant K-theory algebras KT (T*Grk(Cn)),
see [RTV2]. In that case the composition maps Stab−1

σ′ ◦ Stab σ are described in terms of the
standard gl2 trigonometric R-matrix and these R-matrices give a gl2 quantum loop algebra action
on ⊕nk=0KT ((T*Grk(Cn))T ) similar to the quantum loop algebra action studied by Ginzburg and
Vasserot in [GV, Vas1, Vas2].

Let λ be a new variable. In this paper we extend the coefficients H∗T ((T*Grk(Cn))T ) ⊂
H∗T ((T*Grk(Cn))T )′ and H∗T (T*Grk(Cn)) ⊂ H∗T (T*Grk(Cn))′ by suitable rational functions in
λ and then define dynamical stable envelope maps

Stabσ : ⊕nk=0H
∗
T ((T*Grk(Cn))T )′ → ⊕nk=0H

∗
T (T*Grk(Cn)))′, σ ∈ Sn.(1)

We describe the composition maps Stab−1
σ′ ◦ Stab σ in terms of the rational dynamical R-matrix

R(λ, z, y) =


1 0 0 0

0 (λ+y)z
λ(z−y)

− (λ+z)y
λ(z−y)

0

0 − (λ−z)y
λ(z−y)

(λ−y)z
λ(z−y)

0

0 0 0 1


and define on ⊕nk=0H

∗
T (T*Grk(Cn))′ a module structure over the rational dynamical quantum

group Ey(gl2).
The elliptic dynamical quantum group Eτ,η(gl2) was introduced by G. Felder in [F1, F2], see

also [FV1]-[FV3], [FTV]. The rational dynamical group Ey(gl2) is a suitable semi-classical limit
τ → i∞ of Eτ,η(gl2), where τ is the modular parameter.

Having the Ey(gl2)-module structure on ⊕nk=0H
∗
T (T*Grk(Cn))′ we consider the Gelfand-Zetlin

algebra B of that module, the dynamical analog of the Gelfand-Zetlin subalgebra of the Yangian
Y (gl2). The Gelfand-Zetlin algebra B is a commutative algebra of difference operators with
respect to the variable λ. The Gelfand-Zetlin algebra preserves each of the termsH∗T (T*Grk(Cn))′.
Let δ : ζ(λ)→ ζ(λ+ y) be the shift operator. We show that the action of B on H∗T (T*Grk(Cn))′

is the natural action of H∗
GLn×C×(T*Grk(Cn)) ⊗ C[δ±1] on H∗T (T*Grk(Cn))′, where C[δ±1] is the

algebra of Laurent polynomials in δ, see Theorem 10.3.
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We show that the space ⊕nk=0H
∗
GLn×C×(T*Grk(Cn))′ ⊂ ⊕nk=0H

∗
T (T*Grk(Cn))′ is an Ey(gl2)-

submodule and show that for any k, the action of B on H∗
GLn×C×(T*Grk(Cn))′ is the natural

action of H∗
GLn×C×(T*Grk(Cn))⊗ C[δ±1] on H∗

GLn×C×(T*Grk(Cn))′, see Corollary 10.9.

We define the dynamical stable envelope maps for the cotangent bundles of Grassmannians by
explicit formulas in terms of the gl2 rational dynamical weight functions introduced in [FTV].
Our motivation of this construction is the fact that the stable envelope maps for the equivariant
cohomology (resp. K-theory) of cotangent bundles of Grassmannians were defined in terms of
the rational (resp. trigonometric) gl2 weight functions from [TV1], and our goal was to study
the stable envelope maps in the dynamical setting.

The rational dynamical weight functions were introduced in [FTV] to construct q-hypergeometric
solutions of the rational qKZB equations. The arguments of the weight functions in [FTV] are
λ, y, z1, . . . , zn, t1, . . . , tk, where λ runs through the one-dimensional Cartan subalgebra of sl2,
y is the parameter of the dynamical quantum group Ey(gl2), variables z1, . . . , zn are evaluation
parameters of tensor factors and t1, . . . , tk are the integration variables in the q-hypergeometric
integrals. Another interpretation in [FTV] of variables t1, . . . , tk is that they are variables in
the Bethe ansatz equations associated with the dynamical XXX model. In this paper, variable
λ is an auxiliary parameter, which could be interpreted as the parameter corresponding to the
hyperplane sections of Grassmannians, variables y, z1, . . . , zn are interpreted as the equivariant
parameters corresponding to the torus T and the arguments t1, . . . , tk are interpreted as the
Chern roots of the associated bundle over Grk(Cn). This correspondence between the variables
in the Bethe ansatz equations and the Chern roots is the indication of a dynamical Landau-
Ginzburg mirror correspondence.

In [MO] in the case of Grassmannians, the commutative Bethe algebra Bq depends on quantum
parameter q which also corresponds to the hyperplane sections of Grassmannians. The limit
q → ∞ of Bq gives the Gelfand-Zetlin algebra. In the dynamical setting our Gelfand-Zetlin
algebra does not have obvious deformations and it is not clear if there is a quantum parameter.
One may speculate that the dynamical parameter λ is an analog of the quantum parameter q in
quantum cohomology.

Notice that the dynamical quantum group has one more nontrivial commutative Bethe algebra
L̃11(w) + L̃22(w), studied in [F1, F2, FV1, FV2, FV3, FTV].

In the next paper we will extend the constructions and results of this paper to the case of the
elliptic dynamical quantum group Eτ, η(gl2). That will give us an elliptic dynamical version of
the H∗

GLn×C×(T*Grk(Cn))⊗ C[δ±1]-module H∗
GLn×C×(T*Grk(Cn))′.

This paper can be considered as a continuation of the series of papers [RSTV, GRTV, RTV1,
RTV2, TV3] devoted to the geometrization of the Bethe algebras in quantum integrable models.

The paper is organized as follows. In Section 2 we collect geometric information on Grassmanni-
ans. In Section 3 we introduce the rational dynamical weight functions {Wσ,I} and establish their
recursion and orthogonality properties. In Section 4 we discuss the diagrammatic interpretation
of the combinatorics encoded in the weight functions. In Section 5 the interpolation properties
of the weight functions are collected and important classes {κσ,I} ∈ ⊕nk=0H

∗
T (T*Grk(Cn))′ are
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introduced. The classes {κσ,I} are dynamical deformations of the Chern-Schwartz-MacPherson
classes of Schubert cells, see Remark 5.7 and [RV]. In Section 6 we define the dynamical stable
envelope maps

Stabσ : ⊕nk=0H
∗
T ((T*Grk(Cn))T )′ → ⊕nk=0H

∗
T (T*Grk(Cn)))′, 1I 7→ κσ,I ,

and calculate the composition maps Stab−1
σ′ ◦ Stab σ in terms of the dynamical R-matrix R(λ, z, y).

In Sections 7 and 8 we introduce a collection of elements {ξI}I∈Ik ∈ H∗T ((T*Grk(Cn))T )′ and
construct the map inverse to the map Stabid. In Section 9 we present information about the
rational dynamical quantum group Ey(gl2) and introduce the Gelfand-Zetlin algebra. We show
that the action of the Gelfand-Zetlin algebra onH∗T ((T*Grk(Cn))T )′ is diagonalizable. Proposition
9.5 says that the elements {ξI}I∈Ik form a basis of eigenfunctions of the Gelfand-Zetlin algebra.
In Section 10 we prove the main results: Theorem 10.3 and Corollary 10.9.

The second author thanks MPI in Bonn for hospitality.

2. Preliminaries from Geometry

2.1. Grasmannians. Fix a natural number n. For k ≤ n consider the Grassmannian Grk(Cn)
of linear subspaces of Cn, and its cotangent bundle π : T*Grk(Cn)→ Grk(Cn). Let

Xn =
n∐
k=0

T*Grk(Cn) .

The set of k-element subsets of [n] := {1, . . . , n} will be denoted by Ik. For I ∈ Ik let Ī = [n]−I.
Let ε1, . . . , εn be the standard basis of Cn. For I ∈ Ik let xI be the point in Grk(Cn) corre-

sponding to the coordinate subspace span{εi | i ∈ I}. We embed Grk(Cn) in T*Grk(Cn) as the
zero section and consider the points xI as points of T*Grk(Cn).

2.2. Schubert cells, conormal bundles. For any σ ∈ Sn we consider the full coordinate flag
in Cn

V σ : 0 ⊂ V σ
1 ⊂ V σ

2 ⊂ . . . ⊂ V σ
n = Cn,

where V σ
i = span{εσ(1), . . . , εσ(i)}. For I ∈ Ik define the Schubert cell

Ωσ,I = {F ∈ Grk(Cn) | dim(F ∩ V σ
q ) = #{i ∈ I | σ−1(i) ≤ q} for q = 1, . . . , n}.

The Schubert cell is isomorphic to an affine space of dimension

`σ,I = #{(i, j) ∈ [n]2 | i > j, σ(i) ∈ I, σ(j) ∈ Ī}.

For a fixed σ, the Grassmannian Grk(Cn) is the disjoint union of the cells Ωσ,I , see e.g. [FP,
Sect.2.2]. We have xI ∈ Ωσ,I for any σ.

For σ ∈ Sn we define the partial ordering on the set Ik. For I, J ∈ Ik, let

σ−1(I) = {i1 < . . . < ik}, σ−1(J) = {j1 < . . . < jk}.

We say that J ≤σ I if ja ≤ ia for a = 1, . . . , k.
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The Schubert cell Ωσ,I is a smooth submanifold of Grk(Cn). Consider its conormal space

CΩσ,I = {α ∈ π−1(Ωσ,I) | α(Tπ(α)Ωσ,I) = 0} ⊂ T*Grk(Cn) .

It is the total space of a vector subbundle of T*Grk(Cn) over Ωσ,I .

2.3. Equivariant cohomology. Let (C×)n ⊂ GLn = GLn(C) be the torus of diagonal matrices.
The groups (C×)n ⊂ GLn act on Cn and hence on the cotangent bundle T*Grk(Cn). We extend
these (C×)n ⊂ GLn actions to the actions of T = (C×)n × C× ⊂ GLn × C× in such a way that
the extra C× acts on the fibers of T*Grk(Cn)→ Grk(Cn) by multiplication.

Consider the set of variables

Γ = {γ1,1, γ1,2, . . . , γ1,k, γ2,1, γ2,2, . . . , γ2,n−k}.

The group Sk ×Sn−k acts on Γ by permuting the γ1,∗ and γ2,∗ variables independently. Consider
also variables z = {z1, . . . , zn} and y. The group Sn acts on the set z by permutations. The
following presentation of the equivariant cohomology of the Grassmannian is well known. We
have

(2) H∗T (T*Grk(Cn)) = C[Γ, z, y]Sk×Sn−k/
k∏
i=1

(u− γ1,i)
n−k∏
i=1

(u− γ2,i)−
n∏
i=1

(u− zi).

Here the meaning of
∏k

i=1(u− γ1,i)
∏n−k

i=1 (u− γ2,i)−
∏n

i=1(u− zi) is that the coefficient of every
power of u in this expression is set to be a relation. In other words, the relations in this algebra
are of the form f(Γ) = f(z) for symmetric polynomials f . In this description the variables
γ1,∗ (resp. γ2,∗) are the Chern roots of the tautological subbundle (resp. quotient bundle) over
Grk(Cn). The variables zi are the Chern roots corresponding to the factors of T n.

Similarly we have the representation

(3) H∗GLn×C×(T*Grk(Cn)) = C[Γ, z, y]Sk×Sn−k×Sn/
k∏
i=1

(u− γ1,i)
n−k∏
i=1

(u− γ2,i)−
n∏
i=1

(u− zi).

We have the natural embedding

H∗GLn×C×(T*Grk(Cn)) ⊂ H∗T (T*Grk(Cn)).(4)

2.4. Denominators. The cohomology algebra H∗T (T*Grk(Cn)) is a module over the polynomial
algebra C[z, y]. Later in this paper this and other C[z, y]-modules will be considered with some
permitted denominators, as follows.

Let Lz,y be the algebra consisting of rational functions of the form

(5)
f(z, y)∏

i 6=j(zi − zj)kij
∏

i,j(zi − zj − y)lij

where f is a polynomial and kij, lij are arbitrary nonnegative integers.
Let L(z,y) be the algebra of all rational functions in z, y.
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Let λ be a new variable. Let Lλ,y be the algebra of rational functions of the form f/g, where
f is a polynomial in variables λ, y and g is a finite product of factors of the form λ + ly, where
l ∈ Z.

Let

Lλ,z,y = Lλ,y ⊗C[y] Lz,y, Lλ,(z,y) = Lλ,y ⊗C[y] L(z,y).(6)

For a module M over C[z, y] by M ⊗ Lz,y, M ⊗ Lλ,z,y or M ⊗ Lλ,(z,y) we mean the tensor
products over C[z, y].

2.5. Fixed point sets. The set (T*Grk(Cn))T of fixed points of the T -action is (xI)I∈Ik . We
have

(Xn)T = X1 × . . .×X1, (n factors).

Let the standard basis vectors of C2 be v1 and v2. The algebra H∗T
(
(Xn)T

)
is naturally isomorphic

to (C2)⊗n⊗C[z, y], with the isomorphism mapping the identity element 1I ∈ H∗T (xI) to the vector

vI = vi1 ⊗ . . .⊗ vin ,

where ij = 1 if j ∈ I and ij = 2 if j ∈ Ī. We denote by (C2)⊗nk the span of {vI | |I| = k}.

2.6. Equivariant localization. Consider the equivariant localization map

Loc : H∗T (T*Grk(Cn))→ H∗T ((T*Grk(Cn))T ) =
⊕
I∈Ik

H∗T (xI)

whose components are the restrictions to the fixed points xI . In the description (2), the I-
component LocI of this map is the substitution

{γ1,∗} 7→ {za | a ∈ I}, {γ2,∗} 7→ {za | a ∈ Ī}.

For f(Γ, z, y) ∈ H∗T (T*Grk(Cn)) the result of this substitution will be denoted by f(zI , z, y).
Equivariant localization theory (see e.g. [ChG]) asserts that Loc is an injection of algebras.

Moreover, an element of the right-hand side is in the image of Loc if the difference of the I-th
and si,j(I)-th components is divisible by zi − zj in C[z, y] for any i 6= j. Here si,j ∈ Sn is the
transposition of i and j, and si,j(I) is the set obtained from I by switching the numbers i and j.
Hence the maps

(7) Loc : H∗T (Grk(Cn))⊗ Lz,y → ⊕I∈IkH∗T (xI)⊗ Lz,y,

Loc : H∗T (Grk(Cn))⊗ Lλ,z,y → ⊕I∈IkH∗T (xI)⊗ Lλ,z,y

are isomorphisms.



8 R. RIMÁNYI, A. VARCHENKO

2.7. Fundamental class of Ωσ,I at xI. Define the following classes

ehor
σ,I,+ =

∏
b<a

∏
σ(a)∈I
σ(b)∈Ī

(zσ(b) − zσ(a)), ehor
σ,I,− =

∏
b>a

∏
σ(a)∈I
σ(b)∈Ī

(zσ(b) − zσ(a)),

ever
σ,I,+ =

∏
b>a

∏
σ(a)∈I
σ(b)∈Ī

(zσ(a) − zσ(b) + y), ever
σ,I,− =

∏
b<a

∏
σ(a)∈I
σ(b)∈Ī

(zσ(a) − zσ(b) + y)

in H∗T (pt) = C[z, y]. Here hor and ver refer to horizontal and vertical.
Recall that if C× acts on a line C by α · x = αrx then the C×-equivariant Euler class of the

line bundle C→ {0} is e(C→ {0}) = rz ∈ H∗C×(point) = C[z]. Thus standard knowledge on the
tangent bundle of Grassmannians imply that

e(TΩσ,I |xI ) = ehor
σ,I,+, e(ν(Ωσ,I ⊂ Grk(Cn))|xI ) = ehor

σ,I,−,

where ν(A ⊂ B) means the normal bundle of a submanifold A in the ambient manifold B, and
ξ|x means the restriction of the bundle ξ over the point x in the base space. Therefore we also
have

e(CΩσ,I |xI ) = ever
σ,I,+, e((π−1(Ωσ,I)− CΩσ,I)|xI ) = ever

σ,I,−,

where CΩσ,I and π−1(Ωσ,I) are considered bundles over Ωσ,I . Now consider CΩσ,I as a submanifold
of T*Grk(Cn). Then we obtain

e(ν(CΩσ,I ⊂ T*Grk(Cn))|xI ) = ehor
σ,I,−e

ver
σ,I,−.

3. Weight functions

3.1. Definition and recursion of weight functions.

Definition 3.1. For i ∈ I ∈ Ik let

w(i, I) = −#{j ∈ [n] | j > i, j ∈ Ī}+ #{j ∈ [n] | j > i, j ∈ I},

The notation does not record it, but w(i, I) depends on n as well. For example for n = 6 we
have w(2, {1, 2, 4}) = −3 + 1 = −2, and for n = 7 we have w(2, {1, 2, 4}) = −4 + 1 = −3.

Definition 3.2. For I ∈ Ik, σ ∈ Sn, r ∈ Z define the rational functions

C
(r)
σ,I =

∏
i∈I

(λ− (w(σ−1(i), σ−1(I)) + r)y).

Let I = {i1 < i2 < . . . < ik} ⊂ [n]. For r = 1, . . . , k, a = 1, . . . , n let

lI(r, a) =


tr − za + y if a < ir

λ+ tr − za − w(ir, I)y if a = ir

tr − za if a > ir.

For σ ∈ Sn and I = {i1, . . . , ik} ⊂ [n] define σ(I) = {σ(i1), . . . , σ(ik)} ⊂ [n]. We will define
some functions in the variables λ, t = (t1, . . . , tk), z = (z1, . . . , zn), and y.
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Definition 3.3. Let

WI(λ, t, z, y) = yk · Symk

(
k∏
r=1

n∏
a=1

lI(r, a) ·
k∏
a=1

k∏
b=a+1

ta − tb + y

ta − tb

)
,

where Symk f means
∑

σ∈Sk f(tσ(1), . . . , tσ(k)). Define the (dynamical rational) weight function
by

Wσ,I(λ, t, z, y) = Wσ−1(I)(λ, t, zσ(1), . . . , zσ(n), y).

We have Wid,I = WI . Despite the appearance of ta − tb factors in the denominators, WI and
Wσ,I are polynomials.

Example 3.4. For n = 2 we have

Wid,{1} = y(λ+ t1 − z1 + y)(t1 − z2) Wid,{2} = y(t1 − z1 + y)(λ+ t1 − z2),

Ws1,2,{1} = y(λ+ t1 − z1)(t1 − z2 + y) Ws1,2,{2} = y(t1 − z1)(λ+ t1 − z2 + y).

More generally, for k = 1, and {i} ⊂ [n] we have

Wid,{i} = y
i−1∏
a=1

(t1 − za + y) · (λ+ t1 − zi + (n− i)y) ·
n∏

a=i+1

(t1 − za).

Proposition 3.5 (Recursion for weight functions). If sa,a+1(I) = I then

WI(. . . , za+1, za, . . .) = WI(. . . , za, za+1, . . .)

If a ∈ I, a+ 1 6∈ I then

Wsa,a+1(I)(. . . , za+1, za, . . .) =

(za+1 − za)(λ− (w(a, I) + 2)y)

(za+1 − za + y)(λ− (w(a, I) + 1)y)
WI +

y(λ+ za+1 − za − (w(a, I) + 1)y)

(za+1 − za + y)(λ− (w(a, I) + 1)y)
Wsa,a+1(I).

If a 6∈ I, a+ 1 ∈ I then

Wsa,a+1(I)(. . . , za+1, za, . . .) =

(za+1 − za)(λ− (w(a+ 1, I)− 1)y)

(za+1 − za + y)(λ− w(a+ 1, I)y)
WI +

y(λ+ za+1 − za − w(a+ 1, I)y)

(za+1 − za + y)(λ− w(a+ 1, I)y)
Wsa,a+1(I).

Proof. Straightforward calculation, cf. [RTV1, Lemma 3.3], [RTV2, Theorem 6.10]. The state-
ment of this lemma is the rational degeneration of the statement of Lemma 6 in [FTV]. �

3.2. Some versions of weight functions. Denote

ek = ek(t, y) =
k∏
a=1

k∏
b=1

(ta − tb + y).
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Let s0 = (n, n− 1, . . . , 2, 1) be the longest permutation in Sn. We define the following modifica-
tions of weight functions:

W̃σ,I = W̃σ,I(λ, t, z, y) =
1

ek
Wσ,I(λ, t, z, y),

W̃−
K = W̃−

K (λ, t, z, y) =
(−1)k

ek
Ws0,K(−λ− (n− 2k)y, t, z, y),

W̃+
σ,J = W̃+

σ,J(λ, t, z, y) =
1

C
(0)
σ,JC

(1)
σ,Jek

Wσ,J(λ, t, z, y),

W̃+
J = W̃+

J (λ, t, z, y) = W̃+
id,J .

Example 3.6. For k = 1 we have

W̃−
{i} = −

i−1∏
a=1

(t1 − za) · (−λ+ t1 − zi + (i− n+ 1)y) ·
n∏

a=i+1

(t1 − za + y),

W̃+
{i} =

∏i−1
a=1(t1 − za + y) · (λ+ t1 − zi + (n− i)y) ·

∏n
a=i+1(t1 − za)

(λ+ (n− i)y)(λ+ (n− i− 1)y)
.

3.3. Orthogonality. Denote

RI = RI(z) =
∏
a∈I

∏
b∈Ī

(za − zb), QI = QI(z, y) =
∏
a∈I

∏
b∈Ī

(za − zb + y).(8)

Proposition 3.7 (Orthogonality of weight functions I). For any J and K we have∑
I∈Ik

Wid,J(λ, zI , z, y)Ws0,K(−λ− (n− 2k)y, zI , z, y)

CJ(λ, y)e2
k(zI)RI(z)QI(z, y)

= (−1)kδJ,K .

Proof. The proof is as in [RTV1, Lemma 3.4] and [RTV2, Theorem 6.6]. The statement of this
lemma is the rational degeneration of the statement of Theorem C.4 in [TV2]. �

Define the scalar product

(f(λ, t, z, y), g(λ, t, z, y)) =
∑
I∈Ik

f(λ, zI , z, y)g(λ, zI , z, y)

RI(z)QI(z, y)
.

Corollary 3.8 (Orthogonality of weight functions II). We have

(W̃+
J , W̃

−
K ) = δJ,K .

Proof. The statement is a rephrasing of Proposition 3.7. �
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4. Combinatorics of the terms of the weight function

In this section we show a diagrammatic interpretation of the rich combinatorics encoded in
the weight function. Let I ∈ Ik. Consider a table with n rows and two columns. Number the
rows from top to bottom and number the columns from left to right (by 1 and 2). Certain boxes
of this table will be distinguished, as follows. In the first column distinguish boxes in the i’th
row if i ∈ I and distinguish all the boxes in the second column.

Now we will define fillings of the tables by putting various variables in the distinguished boxes.
First, put the variables z1, . . . , zn into the second column from top to bottom. Now choose a
permutation σ ∈ Sk and put the variables tσ(1), . . . , tσ(k) in the distinguished boxes of the first
column from top to bottom.

Each such filled table will define a rational function as follows. Let tr be a variable in the filled
table in the first column. If za is a variable in the second column, but above the position of tr
then consider the factor tr− za + y (‘type-1 factor’). If za is a variable in the second column, but
below the position of tr then consider the factor tr−za (‘type-2 factor’). If za is a variable directly
to the right of tr then consider the factor λ+ tr− za−wy where w is the number of distinguished
boxes below tr minus the number of non-distinguished boxes below tr (‘type-3 factor’).

Also, if tb is a variable in the first column, but below the position of ta then consider the factor
(ta − tb + y)/(ta − tb) (‘type-4 factor’). The rule is illustrated in the following figure.

za

tr

tr

za

tr za

ta

tb

(tr − za + y) (tr − za) (λ+ tr − za − wy)
(ta − tb + y)

(ta − tb)
type− 1 type− 2 type− 3 type− 4

For each variable ti in the table consider all these factors and multiply them together. This is
“the term associated with the filled table”.

One sees that WI/y
k is the sum of terms associated with the filled tables corresponding to all

choices of σ ∈ Sk. For example, if n = 3 then W{2,3} is y2 times the sum of two terms associated
with the filled tables

z1

t1 z2

t2 z3

,
z1

t2 z2

t1 z3

.

The term corresponding to the first filled table is

(t1 − z1 + y)(t2 − z1 + y)(t2 − z2 + y)︸ ︷︷ ︸
type−1

(t1 − z3)︸ ︷︷ ︸
type−2

(λ+ t1 − z2 − y)(λ+ t2 − z3)︸ ︷︷ ︸
type−3

t1 − t2 + y

t1 − t2︸ ︷︷ ︸
type−4

,

and the term corresponding to the second one is obtained by replacing t1 and t2.
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In the next section we will substitute za’s into the ti variables according to some rules. Thus
we obtain terms corresponding to tables filled with only za variables (no ti’s). If in such a

substitution we have a filled table containing
za

za

, then the term corresponding to that table

is 0. This phenomenon is behind the substitution lemmas of the next section.

5. Restrictions of weight functions to fixed points

5.1. Interpolation properties. For I ⊂ [n] denote zI = {zi | i ∈ I}. As before let k ≤ n,
σ ∈ Sn, I, J ∈ Ik.
Lemma 5.1. The polynomial Wσ,I(λ, zJ , z, y) is divisible by ek(zJ , y) for all σ, I, J . �

In other words, although W̃σ,I (see Section 3.2) are rational functions in the t variables, all
their zJ substitutions are polynomials.

Lemma 5.2. W̃σ,I(λ, zJ , z, y) = 0 unless J ≤σ I. �

Lemma 5.3. W̃σ,I(λ, zJ , z, y) is divisible by ever
σ,J,− for all σ, I, J . �

Lemma 5.4.
W̃σ,I(λ, zI , z, y) = (−1)(n+1)k+`σ,IC

(0)
σ,I · e

hor
σ,I,−e

ver
σ,I,−.

�

Lemma 5.5. W̃σ,I(λ, zJ , z, y) is a polynomial of degree k(n − k) + k, where deg λ = deg zi =
deg y = 1. Its λ-degree is at most k. It is divisible by y if J 6= I. �

Lemmas 5.1-5.5 are analogs of lemmas in [RTV2, Section 6.1] and proved similarly. The lemmas
follow from the diagrammatic presentation of weight functions in Section 4.

5.2. Cohomology classes κσ,I.

Lemma 5.6. There exist elements κσ,I in H∗T (T*Grk(Cn))⊗Lλ such that for all torus fixed points
xJ in T*Grk(Cn) we have

κσ,I |xJ = W̃+
σ,I(λ, zJ , z, y).

Proof. The substitutions W̃+
σ,I(λ, zJ , z, y) belong to C[z, y]⊗ Lλ by Lemma 5.1 and they satisfy

obvious divisibility properties. This proves the statement. �

We can informally write that κσ,I = [W̃+
σ,I ]. Lemmas 5.2-5.5 give properties of restrictions of

classes κσ,I at the fixed points.

Remark 5.7. Each class κσ,I is a polynomial in λ of degree k. The coefficient of λk is the
class denoted by κσ,I in [RTV1]. The classes κσ,I of [RTV1] are the Chern-Schwartz-MacPherson
classes of Schubert cells, see [RV]. In that sense the classes κσ,I of Lemma 5.6 are dynamical
deformations of the Chern-Schwartz-MacPherson classes of Schubert cells.
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6. Stable envelope maps and R-matrices

6.1. Stable envelope maps. Recall from (7) that H∗T (Xn)⊗Lλ,z,y is a free module over Lλ,z,y.
For a fixed σ ∈ Sn the elements κσ,I form a basis in it, because of Theorem 5.6 and the triangu-
larity property of Lemma 5.2.

Definition 6.1. For σ ∈ Sn we define the stable envelope map

Stabσ : H∗T (X T
n )⊗ Lλ,z,y → H∗T (Xn)⊗ Lλ,z,y, 1I 7→ κσ,I ,

where I ∈ Ik for 0 ≤ k ≤ n.

The Stabσ map is an isomorphism of free Lλ,z,y-modules.
Recall that we identified H∗T (X T

n )⊗ Lλ,z,y with (C2)⊗n ⊗ Lλ,z,y via 1I 7→ vI and we identified

κσ,I with [W̃+
σ,I ]. Hence Stabσ,I can also be viewed as a map

Stabσ : (C2)⊗n ⊗ Lλ,z,y → H∗T (Xn)⊗ Lλ,z,y, vI 7→ [W̃+
σ,I ].

For example, for n = 2 we have

Stabid :

v{1} = v1 ⊗ v2 7→ [W̃+
id,{1}] =

[
1

λ(λ+ y)
(λ+ t1 − z1 + y)(t1 − z2)

]
v{2} = v2 ⊗ v1 7→ [W̃+

id,{2}] =

[
1

(λ− y)λ
(t1 − z1 + y)(λ+ t1 − z2)

]
Stabs1,2 :

v{1} = v1 ⊗ v2 7→ [W̃+
s1,2,{1}] =

[
1

(λ− y)λ
(λ+ t1 − z1)(t1 − z2 + y)

]
v{2} = v2 ⊗ v1 7→ [W̃+

s1,2,{2}] =

[
1

λ(λ+ y)
(t1 − z1)(λ+ t1 − z2 + y)

]
.

6.2. Geometric R-matrices. For σ, σ′ ∈ Sn we define the geometric R-matrix

Rσ′,σ = Stab−1
σ′ ◦ Stabσ ∈ End

(
H∗T (X T

n )⊗ Lλ,z,y
)

= End
(
(C2)⊗n ⊗ Lλ,z,y

)
.

For example, the calculation above yields that for n = 2 the matrix of Rid,s in the basis

v1 ⊗ v1, v1 ⊗ v2, v2 ⊗ v1, v2 ⊗ v2

is 
1 0 0 0

0 (λ+y)(z1−z2)
λ(z1−z2−y)

− (λ+z1−z2)y
λ(z1−z2−y)

0

0 − (λ−z1+z2)y
λ(z1−z2−y)

(λ−y)(z1−z2)
λ(z1−z2−y)

0

0 0 0 1

 .
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6.3. Dynamical R-matrix. Let λ, z, y be parameters. Consider the rational dynamical R-
matrix R(λ, z, y) ∈ End(C2⊗C2)⊗ Lλ,z,y given by the formula

R(λ, z, y) =


1 0 0 0

0 (λ+y)z
λ(z−y)

− (λ+z)y
λ(z−y)

0

0 − (λ−z)y
λ(z−y)

(λ−y)z
λ(z−y)

0

0 0 0 1

 .(9)

in the basis v1 ⊗ v1, v1 ⊗ v2, v2 ⊗ v1, v2 ⊗ v2.
Let R(i,j)(λ, z, y) be the linear map that acts on (C2)⊗n ⊗ Lλ,z,y in such a way that the dy-

namical R-matrix acts in the i and j factors (here (i, j) is an ordered pair). For n = 2 we have
R(1,2)(λ, z, y) = R(λ, z, y). Easy calculation shows the inversion relation

R(1,2)(λ, z, y)R(2,1)(λ,−z, y) = Id .(10)

Set h(v1) = 1 and h(v2) = −1. Define h(j)(vi1 ⊗ . . . ⊗ vin) = h(vij) for an elementary tensor
vi1 ⊗ . . . ⊗ vin and extend this linearly to the tensor product. This notation will be used in the
whole paper.

One can verify by direct calculation the dynamical Yang-Baxter equation

R(1,2)(λ− yh(3), z − w)R(1,3)(λ, z)R(2,3)(λ− yh(1), w) =(11)

= R(2,3)(λ,w)R(1,3)(λ− yh(2), z)R(1,2)(λ, z − w).

Here R(1,2)(λ − yh(3), z − w) means that if a ⊗ b ⊗ c ∈ C2⊗C2⊗C2 and hc = µc, µ ∈ C, then
R(1,2)(λ− yh(3), w− z)a⊗ b⊗ c = R(1,2)(λ− yµ, w− z)(a⊗ b)⊗ c, and the other symbols have a
similar meaning.

6.4. Geometric and dynamical R-matrices coincide. The calculation at the end of Sec-
tion 6.1 can be rephrased to the fact that for n = 2 we have

Rid,s = R(1,2)(λ, z1 − z2, y),

or equivalently

Rs,id = R(2,1)(λ, z2 − z1, y) = R(1,2)(λ, z1 − z2, y)−1.

More generally the following proposition holds.

Proposition 6.2 (Geometric and dynamical R-matrices coincide). We have

Rσsa,a+1,σ = R(σ(a+1),σ(a))(λ− y
n∑

i=a+2

h(σ(i)), zσ(a+1) − zσ(a), y)

for any a = 1, . . . , n− 1.

Proof. The proposition follows from Proposition 3.5, cf. [RTV1, Theorem 3.7], [RTV2, Theorem
7.1]. �
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7. The ξI vectors

7.1. Definition. The vectors ξI defined in this section are dynamical analogs of the vectors ξI
in [GRTV], [RTV1], [RTV2].

Recall that for I ∈ Ik we have vI = vi1 ⊗ . . .⊗ vin ∈ (C2)⊗n where ij = 1 if j ∈ I and ij = 2 if
j ∈ Ī.

Definition 7.1. For σ ∈ Sn, I ∈ Ik let

ξI =
1

QI(z, y)

∑
J∈Ik

W̃−
J (λ, zI , z, y)vJ .(12)

Example 7.2. For n = 2, k = 1 we have

ξ{1} = λv{1}, ξ{2} =
−(λ+ z1 − z2)y

z1 − z2 − y
v{1} +

(λ− y)(z1 − z2)

z1 − z2 − y
v{2}.

For n = 3, k = 1 we have

ξ{1} = (λ+ y)v{1},

ξ{2} =
−(λ+ z1 − z2 + y)y

z1 − z2 − y
v{1} +

λ(z1 − z2)

z1 − z2 − y
v{2},

ξ{3} =
−(λ+ z1 − z3 + y)y

z1 − z3 − y
v{1} +

−(λ+ z2 − z3)(z1 − z3)y

(z1 − z3 − y)(z2 − z3 − y)
v{2} +

+ (λ− y)
(z1 − z3)(z2 − z3)

(z1 − z3 − y)(z2 − z3 − y)
v{3}.

Let Imin = {1, . . . , k} ⊂ [n] and Imax = {n− k + 1, . . . , n} ⊂ [n].

Proposition 7.3. The coefficient of vJ in ξI is 0 unless J ≤id I. The coefficient of vI in ξI is

C
(1)
id,I ·

∏
b<a

∏
a∈I
b∈Ī

zb − za
zb − za − y

.

In particular,

ξImin =
k∏
i=1

(λ+ (n− k − i)y) · vImin .

Also, the coefficient of vImax in ξImax is
k∏
i=1

(λ− iy) ·
∏

a∈Imax
b 6∈Imax

zb − za
zb − za − y

=
k∏
i=1

(λ− iy) · RImax(z)

QImax(z)
.

Proof. The statements follow from the definition of ξI and the interpolation properties of weight
functions in Section 5, cf. [GRTV, Propositions 2.14], [RTV2, Theorem 8.2]. �

Corollary 7.4. The vectors {ξI}I∈Ik form a basis of the Lλ,z,y-module (C2)⊗n ⊗ Lλ,z,y.
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7.2. Recursive properties of the ξI vectors. Let P (i,i+1) be the operator switching the ith
and i+ 1st factors in (C2)⊗n. Let K(i,i+1) : f(zi, zi+1) 7→ f(zi+1, zi) be the operator that replaces
the variables zi and zi+1. Here f may also depend on other variables λ, z1, . . . , zi−1, zi+2, . . . , zn, y,
and can be vector-valued as well.

Recall the dynamical R-matrix and the notation h(j) from Section 6.3. Define the operator

s̃i = R(i,i+1)(λ− y
n∑

k=i+2

h(k), zi − zi+1) ◦ P (i,i+1) ◦K(i,i+1)

in End((C2)⊗n)⊗ Lλ,z,y.

Proposition 7.5. The s̃i operators satisfy the relations

s̃2
i = 1, s̃i+1s̃is̃i+1 = s̃is̃i+1s̃i, s̃is̃j = s̃j s̃i if |i− j| > 1,

and hence they define an action of Sn. Moreover,

s̃izi = zi+1s̃i, s̃izi+1 = zis̃i, s̃izj = zj s̃i, if j 6= i, i+ 1,

where z1, . . . , zn are considered as the scalar operators on (C2)⊗n⊗Lλ,z,y of multiplication by the
respective variable.

Proof. The proposition follows from the dynamical Yang-Baxter equation (11) and inversion
relation (10). �

Proposition 7.6. We have ξsi(I) = s̃iξI .

Proof. The weight functions satisfy the recursion in Proposition 3.5. The ξI vectors are defined in
terms of the weight functions, and hence they also satisfy the appropriate recursion, cf. [GRTV,
Propositions 2.14], [RTV2, Theorem 8.2]. �

Proposition 7.6 together with the explicit formula for ξImin in Proposition 7.3 could serve as
an alternative definition of the ξI vectors.

7.3. s̃i invariant vectors: components in the ξI basis.

Proposition 7.7. The vector-valued function ζ =
∑

I∈Ik fI(λ, z, y)ξI is invariant under the
Sn-action generated by the s̃i operators if and only if

fσ(I)(λ, z, y) = fI(λ, zσ, y)

for all σ ∈ Sn and I ∈ Ik.

Proof. The proposition follows from Proposition 7.6. �

This proposition is a dynamical analog of [RTV2, Proposition 9.3].
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7.4. s̃i invariant vectors: components in the vI basis.

Definition 7.8. For a function in µ, z, y define

ŝi,µ(f) =
(µ+ zi+1 − zi)y

(µ− y)(zi+1 − zi)
f +

µ(zi+1 − zi − y)

(µ− y)(zi+1 − zi)
K(i,i+1)f

=
µ+ y

µ− y
f +

µ(zi+1 − zi − y)

µ− y
∂if,

where ∂if = (f −K(i,i+1)f)/(zi − zi+1) is the standard divided difference operator.

Remark 7.9. Calculation shows that the operator ŝ = ŝi,µ satisfies the identity

(ŝ+ 1)

(
ŝ− µ+ y

µ− y

)
= 0.

Lemma 7.10. The vector-valued function ζ =
∑

I∈Ik fI(λ, z, y)vI is invariant under the operator
s̃j if and only if

• fI = KjfI for j, j + 1 ∈ I or j, j + 1 6∈ I;
• fsj(I) = ŝj,λ−yνfI for j 6∈ I, j + 1 ∈ I and

∑n
k=j+2 h

(k)vI = νvI ;

• fsj(I) = ŝ−1
j,λ−yνfI for j ∈ I, j + 1 6∈ I and

∑n
k=j+2 h

(k)vI = νvI .

Proof. The statement follows from Proposition 7.6, cf. [RTV2, Lemma 9.2]. �

8. Inverse of the Stabid map

Define the homomorphism of Lλ,z,y-modules

ν : H∗T (Xn)⊗ Lλ,z,y → (C2)⊗n ⊗ Lλ,z,y(13)

by

[f(λ,Γ, z, y)] 7→
∑
I∈Ik

f(λ, zI , z, y)

RI(z)
ξI , for [f(λ,Γ, z, y)] ∈ H∗T (T*Grk(Cn))⊗ Lλ,z,y.

Theorem 8.1. The homomorphisms Stabid and ν are inverse to each other.

Proof. For K ∈ Ik we have Stabid(vK) = κid,K which is equal to [W̃+
K (λ,Γ, z, y)]. Then

ν(Stabid(vK)) =
∑
I∈Ik

W̃+
K (λ, zI , z, y)

RI(z)
ξI =

∑
I∈Ik

W̃+
K (λ, zI , z, y)

∑
J∈Ik W̃

−
J (λ, zI , z, y)vJ

RI(z)QI(z, y)
=

∑
J∈Ik

vJ

(∑
I∈Ik

W̃+
K (λ, zI , z, y)W̃−

J (λ, zI , z, y)

RI(z)QI(z, y)

)
= vK ,

where the last equality holds because of the orthogonality Corollary 3.8. Cf. [RTV1, Lemma 6.7]
and Theorem [RTV2, Lemma 8.5]. �
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Corollary 8.2. We have

Stabid(ξI) =
k∏
i=1

∏
j∈Ī

(γi − zj).

9. Rational dynamical quantum group Ey(gl2)

Definitions and formulas below for the rational dynamical quantum group Ey(gl2) are semi-
classical τ → i∞ limits of the analogous definitions and formulas for the elliptic quantum group
Eτ, y/2(sl2), see [FV1]-[FV3].

9.1. Preliminaries. Recall that the space (C2)⊗n has basis of vectors vI , where I ⊂ [n] and

vI = vi1 ⊗ . . .⊗ vin ,

with ij = 1 if j ∈ I and ij = 2 if j ∈ [n] − I. Denote by (C2)⊗nk the span of {vI | |I| = k}. We
have (C2)⊗n = ⊕nk=0(C2)⊗nk .

Let h be commutative one-dimensional Lie algebra with generator h. Define the h-action on
(C2)⊗n by setting h = 2k − n on (C2)⊗nk .

Now consider h as a variable. Denote by Lλ,yh,y the algebra of rational functions of the form
f/g, where f is a polynomial in λ, yh, y and g is a finite product of factors of the form λ+kyh+ly
where k, l ∈ Z.

Recall the dynamical R-matrix R(λ,w, y) ∈ End(C2⊗C2) in (9). Notice that each entry
Rij,kl(λ,w, y) of the matrix R(λ,w, y) has the expansion

Rij,kl(λ,w, y) =
∞∑
s=0

Rij,kl;s(λ, y)w−s

with Rij,kl;s(λ, , y) ∈ Lλ,y.

9.2. Definition. The rational dynamical quantum group Ey(gl2) is the unital algebra with gen-
erators of two types. The generators of the first type are functions f(λ, yh, y) ∈ Lλ,yh,y. The
generators of the second type are elements Lij,s(λ, y), i, j = 1, 2, s ∈ Z>0.

Introduce the generating series

Lij(λ,w, y) =
∞∑
s=0

Lij,s(λ, y)w−s, i, j = 1, 2,

and consider them as entries of the 2× 2-matrix L(λ,w, y) = (Lij(λ,w, y)) called the L-operator.
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Relations in Ey(gl2) involving f(λ, yh, y) are

f(λ, yh, y)g(λ, yh, y) = (fg)(λ, yh, y),

f(λ, yh, y)L11(λ,w, y) = L11(λ,w, y)f(λ, yh, y),

f(λ, yh, y)L22(λ,w, y) = L22(λ,w, y)f(λ, yh, y),

f(λ, yh, y)L12(λ,w, y) = L12(λ,w, y)f(λ, yh− 2y, y),

f(λ, yh, y)L21(λ,w, y) = L21(λ,w, y)f(λ, yh+ 2y, y).

The relations between the generators of the second type are given by the formula

R(12)(λ− yh, w12, y)L(1)(λ,w1, y)L(2)(λ− yh(1), w2, y) =(14)

= L(2)(λ,w2, y)L(1)(λ− yh(2), w1, y)R(12)(λ,w12, y).

Here h is considered as the generator of the one-dimensional commutative Lie algebra h, see
details in [FV1]. The matrix relation (14) gives 16 scalar relations. Here are two of them:

L11(λ,w1, y)L11(λ− y, w2, y) = L11(λ,w2, y)L11(λ− y, w1, y),

L22(λ,w1, y)L22(λ+ y, w2, y) = L22(λ,w2, y)L22(λ+ y, w1, y),

the other fourteen relations are written down explicitly in [FV1, Section 2].

9.3. Ey(gl2)-modules. We define on (C2)⊗n ⊗ Lλ,(z,y) the following Ey(gl2)-module structures
labeled by elements σ ∈ Sn.

The h-module structure on (C2)⊗n⊗Lλ,(z,y) does not depend on σ and is defined in Section 9.1.

This h-module structure induces the action on (C2)⊗n⊗Lλ,(z,y) of generators f(λ, yh, y) ∈ Lλ,hy,y.
The Ey(gl2)-module structure corresponding to σ has the L-operator

L(λ,w, y) = R(0,1)(λ− y
n∑
j=2

h(j), w − zσ(1), y)R(0,2)(λ− y
n∑
j=3

h(j), w − zσ(2), y) . . .

. . . R(0,n−1)(λ− yh(n), w − zσ(n−1), y)R(0,n)(λ,w − zσ(n), y).

We think of L(λ,w, y)) as an 2×2-matrix with End((C2)⊗n)-valued entires Lij(λ,w, y) depending
on λ,w,z, y. Expand Lij(λ,w, y) into Laurent series in w at w =∞,

Lij(λ,w, y) =
∞∑
s=0

Lij,s(λ, y)w−s.(15)

Then Lij,s(λ, y) ∈ End((C2)⊗n)⊗ C[z, y]⊗ Lλ,y.
The operators {f(λ, yh, y), Lij,s(λ, y)} define on (C2)⊗n⊗Lλ,(z,y) an Ey(gl2)-module structure,

see [F1, F2, FV1].
The space (C2)⊗n ⊗ Lλ,(z,y) with the Ey(gl2)-module structure corresponding to σ will be

denoted by V (zσ(1))⊗ . . .⊗V (zσ(n)) or by Vσ and called the tensor product of evaluation modules.
Denote

(V (zσ(1))⊗ . . .⊗ V (zσ(n)))k = (C2)⊗nk ⊗ Lλ,(z,y).
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Example 9.1. The Ey(gl2)-action on V (z1) is given by the formulas

f(λ, yh, y)v1 = f(λ, y, y)v1, f(λ, yh, y)v2 = f(λ,−y, y)v2,

L11(λ,w, y)v1 = v1, L11(λ,w, y)v2 =
(λ+ y)(w − z1)

λ(w − z1 − y)
v2,

L12(λ,w, y)v1 = −(λ+ w − z1)y

λ(w − z1 − y)
v2, L12(λ,w, y)v2 = 0,

L21(λ,w, y)v1 = 0, L21(λ,w, y)v2 = −(λ− w + z1)y

λ(w − z1 − y)
v1,

L22(λ,w, y)v1 =
(λ− y)(w − z1)

λ(w − z1 − y)
v1, L22(λ,w, y)v2 = v2.

Example 9.2. For example, on V (z1)⊗ V (z2) we have

L22(λ,w, y)v1 ⊗ v1 =
(w − z1)(w − z2)

λ(λ− y)(w − z1 − y)(w − z2 − y)
v1 ⊗ v1,

L22(λ,w, y)v1 ⊗ v2 =
λ(w − z1)

(λ+ y)(w − z1 − y)
v1 ⊗ v2,

L22(λ,w, y)v2 ⊗ v1 =
(λ+ y − w + z1)y

(λ+ y)(w − z1 − y)

(λ+ w − z2)y

λ(w − z2 − y)
v1 ⊗ v2 +

+
(λ− y)(w − z2)

λ(w − z2 − y)
v2 ⊗ v1.

L22(λ,w, y)v2 ⊗ v2 = v2 ⊗ v2.

9.4. Operator algebra. For an Ey(gl2)-module Vσ, σ ∈ Sn, we define the operator algebra Aσ
as the unital C-algebra of the following (difference in λ) operators, acting on Vσ, with generators
f(λ, yh, y) ∈ C(λ; yh, y) and L̃11(w, y), L̃12(w, y), L̃21(w, y), L̃22(w, y). For
ζ ∈ (C2)⊗n ⊗ Lλ,(z,y), we set

(f(λ, yh, y)ζ)(λ, z, y) = f(λ, yh, y)ζ(λ, z, y),

(L̃11(w, y)ζ)(λ, z, y) = L11(λ,w, y)ζ(λ− y, z, y),

(L̃21(w, y)ζ)(λ, z, y) = L21(λ,w, y)ζ(λ− y, z, y),

(L̃12(w, y)ζ)(λ, z, y) = L12(λ,w)ζ(λ+ y, z, y),

(L̃22(w, y)ζ)(λ, z, y) = L22(λ,w)ζ(λ+ y, z, y).
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Relations involving f(λ, yh, y) are

f(λ, yh, y)g(λ, yh, y) = (fg)(λ, yh, y),

f(λ− y, yh, y)L̃11(w, y) = L̃11(w, y)f(λ, yh, y),

f(λ+ y, yh, y)L̃22(w, y) = L̃22(w, y)f(λ, yh, y),

f(λ+ y, yh+ 2y, y)L̃12(w, y) = L̃12(w, y)f(λ, yh, y),

f(λ− y, yh− 2y, y)L̃21(w, y) = L̃21(w, y)f(λ, yh, y).

The 16 relations between L̃11(w, y), L̃12(w, y), L̃21(w, y), L̃22(w, y) are induced by (14). Here are
two of them:

L̃11(w1, y)L̃11(w2, y) = L̃11(w2, y)L̃11(w1, y),

L̃22(w1, y)L̃22(w2, y) = L̃22(w2, y)L̃22(w1, y),

the remaining relations are written down explicitly in [FV1, Section 3].

Let δ : ζ(λ, z, y) 7→ ζ(λ+ y, z, y) denote the shift operator. Then

L̃11(w, y) = L11(λ,w, y)δ−1, L̃21(w, y) = L21(λ,w, y)δ−1,

L̃12(w, y) = L12(λ,w, y)δ, L̃22(w, y) = L22(λ,w, y)δ.

Each of these difference operators has the expansion of the form

L̃ij(w, y) =
∞∑
s=0

L̃ij,s(y)w−s,(16)

where

L̃ij,s(y) = Lij,s(λ, y)δ±1,

and the sign is plus if j = 1 and the sign is minus if j = 2.

9.5. Isomorphisms of modules Vσ.

Lemma 9.3. For any σ ∈ Sn and i, 1 ≤ i < n, the map

R̂i,i+1 : V (zσ(1))⊗ . . .⊗ V (zσ(i+1))⊗ V (zσ(i))⊗ . . .⊗ V (zσ(n))

→ V (zσ(1))⊗ . . .⊗ V (zσ(i))⊗ V (zσ(i+1))⊗ . . .⊗ V (z(n)),

where

R̂i,i+1 = R(i,i+1)(λ− y
n∑

k=i+2

h(k), zσ(i) − zσ(i+1))P
(i,i+1),

commutes with the action of the operator algebra.

Proof. The statement follows from the dynamical Yang-Baxter equation. �
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9.6. Determinant. The element

D̃et(w) =
λ

λ− yh
(L̃22(w + y, y)L̃11(w, y)− L̃12(w + y, y)L̃21(w, y)) =(17)

=
λ

λ− yh
(L̃11(w + y, y)L̃22(w, y)− L̃21(w + y, y)L̃12(w, y))

of the operator algebra is called the determinant element.

Theorem 9.4 ([FV1]). The determinant element D̃et(w, y) is a central element of the operator
algebra. It acts on Vσ as multiplication by

n∏
i=1

w − zi + y

w − zi
.

9.7. Vectors ξI as eigenvectors. We are interested in the action of the generating series
L̃22(w, y) on V (z1)⊗ · · · ⊗ V (zn).

Proposition 9.5. Consider the vector ξI defined in (12) as an element of V (z1)⊗ . . .⊗ V (zn).
Then

L̃22(w, y)ξI =
∏
i∈I

w − zi
w − zi − y

· ξI .

Proof. The statement follows by direct calculation for Imin. For the other ξI it follows from
Proposition 7.6 and Lemma 9.3. �

By Proposition 9.5,

L̃22,0(w, y) ξI = ξI .

By Corollary 7.4 the vectors ξI form a basis of the Lλ,(z,y)-module V (z1)⊗ . . .⊗ V (zn). For any

ζ =
∑

I fI(λ, z, y)ξI ∈ V (z1) ⊗ . . . ⊗ V (zn) ⊗ Lz,y we have L̃22,0(w, y)ζ =
∑

I fI(λ + y,z, y)ξI .

Hence L̃22,0(w, y) is invertible and

L̃22,0(w, y)−1ζ =
∑
I

fI(λ− y, z, y)ξI .

The invertibility of L̃22,0(w, y)−1 allows us to invert the generating series L̃22(w, y) and define the

generating series L̃22(w, y)−1 such that L̃22(w, y)−1L̃22(w, y) = Id.

9.8. Gelfand-Zetlin algebra. We define the Gelfand-Zetlin algebra B of the Ey(gl2)-module

Vid = V (z1)⊗ . . .⊗ V (zn) as the unital commutative algebra generated by L̃22(w, y), D̃et(w, y),
L̃22,0(w, y)−1, and C[y±1]. Here C[y±1] is the algebra of Laurent polynomials in y. More precisely,
we expand

L̃22(w, y) =
∞∑
s=0

L̃22,s(y)w−s, D̃et(w, u) =
∞∑
s=0

D̃ets(y)w−s,
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and define the Gelfand-Zetlin algebra B of Vid as the unital commutative algebra generated by

the operators L̃22,s(y), D̃ets(y), s ∈ Z≥0, L̃22,0(w, y)−1, and C[y±1].
The Gelfand-Zetlin algebra preserves the subspaces (V (z1) ⊗ . . . ⊗ V (zn))k. Its restriction to

(V (z1)⊗ . . .⊗ V (zn))k will be denoted by Bk.

9.9. Action of off-diagonal entries of the operator algebra. The off-diagonal elements L̃1,2

and L̃2,1 map different weight subspaces of V (z1)⊗ . . .⊗ V (zn) into each other.

Proposition 9.6. Let F̃ (w, y) = L̃12 ◦ L̃−1
22 and Ẽ(w, y) = L̃−1

22 ◦ L̃21. We have

F̃ (w, y)ξI = cF
∑
i∈I

ξI−{i}
w − zi

(λ+ w − zi + y(n− 2k + 1))
∏

s∈I−{i}

zi − zs − y
zi − zs

,

Ẽ(w, y)ξI = cE
∑
i∈Ī

ξI∪{i}
w − zi

(λ+ w − zi − y)
∏

s∈Ī−{i}

zs − zi − y
zs − zi

,

where cF = −y and cE = −y (λ+(n−2k−4)y)(λ+(n−k−3)y)
(λ+(n−2k−3)y)(λ+(n−k−4)y)

.

Proof. The proof is by straightforward calculation, cf. [GRTV, Theorem 4.16] and [RTV2, The-
orem 11.8]. �

Notice that the action of L̃11(w, y) on the elements ξI can be recovered from the actions of

D̃et(w, y), L̃1,2(w, y), L̃2,1(w, y), L̃2,2(w, y), see (17).

10. Action of dynamical quantum group on cohomology

10.1. Action of Gelfand-Zetlin algebra on cohomology. Recall the spaces

V (z1)⊗ . . .⊗ V (zn) = (C2)⊗n ⊗ Lλ,(z,y), H∗T (X T
n )⊗ Lλ,(z,y).

Since V (z1)⊗ . . .⊗ V (zn) is an Ey(gl2)-module, the isomorphism

Stabid : V (z1)⊗ . . .⊗ V (zn)→ H∗T (X T
n )⊗ Lλ,(z,y), 1I 7→ κid,I ,

of free Lλ,(z,y)-modules induces on H∗T (X T
n ) ⊗ Lλ,(z,y) a structure on an Ey(gl2)-module. In this

section we describe the Ey(gl2)-action on H∗T (X T
n ) ⊗ Lλ,(z,y). We start with the action of the

Gelfand-Zetlin algebra B, which preserve the subspaces (V (z1) ⊗ . . . ⊗ V (zn))k ⊂ V (z1) ⊗ . . . ⊗
V (zn).

Recall that the operator δ acts on H∗T (T*Grk(Cn))⊗ Lλ,(z,y) by the formula

δ · [f(λ, γ, z, y)] = [f(λ+ y, γ, z y)] for [f(λ, γ, z, y)] ∈ H∗T (T*Grk(Cn))⊗ Lλ,(z,y).

Proposition 10.1. For any k and ζ ∈ (V (z1)⊗ . . .⊗ V (zn))k we have

Stabid

(
L̃2,2(w, y)ζ

)
=

[
k∏
i=1

w − γ1,i

w − γ1,i − y

]
· δ · Stabid(ζ),

Stabid

(
D̃et(w, y)ζ

)
=

[
n∏
i=1

w − zi + y

w − zi

]
· Stabid(ζ).
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Proof. The statement follows from Section 9.7. �

Consider the expansions

k∏
i=1

w − γ1,i

w − γ1,i − y
=
∞∑
s=0

as(γ1,1, . . . , γ1,k, y)w−s,
n∏
i=1

w − zi + y

w − zi
=
∞∑
s=0

bs(z, y)w−s.

Lemma 10.2. The elements as(γ1,1, . . . , γ1,k, y), s ∈ Z≥0, generate the C[y±1]-module
C[γ1,1, . . . , γ1,k]

Sk⊗C[y±1] and the elements bs(z, y), s ∈ Z≥0, generate the C[y±1]-module C[z]Sn⊗
C[y±1]. �

The subalgebra

H∗GLn×C×(T*Grk(Cn))⊗ C[y±1] ⊂ H∗T (T*Grk(Cn))⊗ Lλ,(z,y)

acts on H∗T (T*Grk(Cn))⊗ Lλ,(z,y) by multiplication.

Theorem 10.3. The map

α : L̃22,s(y) 7→ [as(Γ, y)] · δ, D̃ets(y) 7→ [bs(z, y)], s ∈ Z≥0,(18)

defines an isomorphism of the Gelfand-Zetlin algebra Bk acting on (V (z1) ⊗ . . . ⊗ V (zn))k and
the algebra H∗GLn(T*Grk(Cn))⊗ C[y±1]⊗ C[δ±1] acting on H∗T (T*Grk(Cn))⊗ Lλ,(z,y).

Consider H∗T (T*Grk(Cn))⊗Lλ,(z,y) as an H∗
GLn×C×(T*Grk(Cn))⊗C[y±1]⊗C[δ±1]-module. Then

the isomorphisms

α : Bk → H∗GLn(T*Grk(Cn))⊗ C[y±1]⊗ C[δ±1],

Stabid : (V (z1)⊗ . . .⊗ V (zn))k → H∗T (T*Grk(Cn))⊗ Lλ,(z,y)

define an isomorphism of the Bk-module (V (z1)⊗ . . .⊗ V (zn))k and the H∗
GLn×C×(T*Grk(Cn))⊗

C[y±1]⊗ C[δ±1]-module H∗T (T*Grk(Cn))⊗ Lλ,(z,y).

Proof. The theorem follows from Proposition 10.1 and Lemma 10.2. �

10.2. Action of Ey(gl2) on cohomology. The actions of the off-diagonal entries of the operator
algebra can be interpreted as actions on the cohomology of the Grassmannians. Namely, for

Γ = (γ1,1, . . . , γ1,k; γ2,1, . . . , γ2,n−k)

denote

Γ
′i = (γ1,1, . . . , γ1,k−1, γ2,i; γ2,1, . . . , γ̌2,i, . . . , γ2,n−k+1)

and

Γi
′
= (γ1,1, . . . , γ̌1,i, . . . , γ1,k+1; γ1,i, γ2,1, . . . , γ2,n−k−1).

Here the ˇ sign means omission.
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Proposition 10.4. Conjugated by the Stabid isomorphism, the series F̃ (w) and Ẽ(w) act as

F̃ (w) : H∗T (T ∗Grk Cn)⊗ Lλ,(z,y) → H∗T (T ∗Grk−1 Cn)⊗ Lλ,(z,y)

[f(λ,Γ, z, y)] 7→[
(−1)k−1cF

n−k+1∑
i=1

f(λ,Γ
′i, z, y)

w − γ2,i

(λ+ w − γ2,i + y(n− 2k + 1))

∏k−1
j=1(γ2,i − γ1,j − y)∏n−k+1
j=1,j 6=i(γ2,i − γ2,j)

]
,

and

Ẽ(w) : H∗T (T ∗Grk Cn)⊗ Lλ,(z,y) → H∗T (T ∗Grk+1 Cn)⊗ Lλ,(z,y)

[f(λ,Γ, z, y)] 7→[
(−1)n−k−1cE

n−k+1∑
i=1

f(λ− 2y,Γi
′
, z, y)

w − γ1,i

(λ+ w − γ1,i − y)

∏n−k−1
j=1 (γ2,j − γ1,i − y)∏k+1
j=1,j 6=i(γ1,j − γ1,i)

]
,

respectively.

Proof. The formulas follow from the explicit descriptions of the actions of F̃ (w) and Ẽ(w) actions
in Section 9.9, as well as the descriptions of Stabid and its inverse in Sections 6.1 and 8. �

The actions of L̃11(w, y), L̃1,2(w, y), L̃2,1(w, y) on H∗T (T*Grk(Cn)) ⊗ Lλ,(z,y) can be recovered

from the actions of the Gelfand-Zetlin algebra and the series F̃ (w), Ẽ(w).

Remark 10.5. Similarly to [RSTV, Appendix], the formulas of Proposition 10.4 can be inter-
preted as geometric correspondences (pull-back-push-forward maps).

10.3. Submodules. Consider the subspace

H∗GLn×C×(T*Grk(Cn))⊗ Lλ,y ⊗ C[y±1] ⊂ H∗T (T*Grk(Cn))⊗ Lλ,(z,y).

Lemma 10.6. The space

H∗GLn×C×(Xn)⊗ Lλ,y ⊗ C[y±1] = ⊕nk=0H
∗
GLn×C×(T*Grk(Cn))⊗ Lλ,y ⊗ C[y±1]

is an Ey(gl2)-submodule of the Ey(gl2)-module H∗T (Xn)⊗ Lλ,(z,y).

Proof. The lemma follows from Proposition 10.1 and Proposition 10.4. �

Consider the subspace Vk ⊂ (V (z1)⊗ . . .⊗ V (zn))k of all elements of the form∑
I∈Ik

f(λ, zI , z, y)

RI(z)
ξI , where f(λ,Γ, z, y) ∈ C[Γ]Sk×Sn−k ⊗ C[z]Sn ⊗ Lλ,y ⊗ C[y±1].

Set

V = ⊕nk=0Vk ⊂ V (z1)⊗ . . .⊗ V (zn).

Lemma 10.7. The space V is an Ey(gl2)-submodule of the Ey(gl2)-module V (z1)⊗ . . .⊗ V (zn).



26 R. RIMÁNYI, A. VARCHENKO

Proof. The lemma follows from Lemma 10.6 and the fact that the isomorphism ν in (13) identifies
H∗
GLn×C×(T*Grk(Cn))⊗ Lλ,y ⊗ C[y±1] and Vk. �

Remark 10.8. Notice that V is invariant with respect to the Sn-action of Proposition 7.10. The
space V is the analog of the spaces 1

D
V− in [GRTV] and [RTV2].

Corollary 10.9. The isomorphisms α and Stabid of Theorem 10.3 induce an isomorphism
of the Ey(gl2)-modules V and the Ey(gl2)-module H∗

GLn×C×(Xn) ⊗ Lλ,y ⊗ C[y±1], as well as

an isomorphism of the Bk-module Vk and the H∗
GLn×C×(T*Grk(Cn)) ⊗ C[y±1] ⊗ C[δ±1]-module

H∗
GLn×C×(T*Grk(Cn))⊗ Lλ,y ⊗ C[y±1].

Proof. The corollary follows from Theorem 10.3, Proposition 10.4, Lemma 10.6, Lemma 10.7. �
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