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1. Introdution

Thom polynomials of real singularities have been alulated mainly with Z

2

-oeÆients. The

exeptions are the �

i

(see [Ron71℄) and some �

i;j

(see [And82℄) Thom-Boardman singularities.

In this paper we would like to demonstrate how the methods of the theory of Thom polynomials

for group ations (see [FR℄) an be used in this ase. We onentrate on the ase of (ontat

lass) singularities between manifolds of equal dimension whih have been studied the most.

We alulate the Thom polynomials up to odimension 8.

It turned out that the diÆult part is not to alulate these Thom polynomials, but to �nd

out \who" has a Thom polynomial. Vassiliev de�ned a ohain omplex in [Vas88, $8℄ where

the ohains are linear ombinations of ooriented orbits (singularities in our ase) and showed

that exatly the oyles admit Thom polynomials (see also [Kaz97℄ and [FR℄). In ases where

every orbit is ooriented and even odimensional|e.g. the ase of omplex singularities|the

di�erential of the Vassiliev omplex is trivial. Suh Thom polynomials are alulated in e.g.

[Rim01℄, see also referenes therein.

Calulation of Thom polynomials of real singularities with Z

2

-oeÆients is easier due to a

result of Borel and Haeiger (see [BH61℄). It implies that we an get the Thom polynomial of a

real singularity � by replaing Chern lasses to the orresponding Stiefel-Whitney lasses in the

Thom polynomial of the omplexi�ation of �. So it also gives the answer if the integer Thom

polynomial is of order two. Consequently the alulation of the Vassiliev omplex presented

below and the Borel-Haeiger theorem is enough to alulate all but two Thom polynomials (see

Theorem 2.7). The Thom polynomial of I

2;2

+ II

2;2

was previously known. For the remaining

ase we applied the method of restrition equations established by the seond author in [Rim01℄.

This method alulates the Thom polynomial by solving a system of linear equations. We will

see that these equations are not enough in the ase of real singularities. However, knowing

also their Z

2

-redutions and �nding an extra equation similar to the inidene alulations in

[Rim02a℄ we an alulate them. We are grateful for the referee for suggesting a way to orret

a mistake in the �rst version of the manusript.

In Setion 2 we alulate the Vassiliev omplex. These alulations are fairly ompliated.

An extra diÆulty ompared to the Z

2

-ase (whih was done in [Ohm94℄) is to determine the

signs in the di�erential. In Setion 3 we alulate the Thom polynomials. In Setion 4 we

study the onnetion between the real and omplex ase whih leads us to �nding obstrutions

to avoid ertain singularities.
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2. The Vassiliev omplex

The n-ohains in the Vassiliev omplex are linear ombinations of the n-odimensional

ooriented orbits. (We assume here that every orbit is simple in the odimension-range we

are interested in.) Following Vassiliev we an alulate the oeÆients of the di�erential d

1

as

follows: Let � be an n-odimensional ooriented orbit and

d

1

(�) =

X

odim �=n+1

(�; �)�:

Then (�; �) is \the number of �-urves leaving �" ounted with sign. More preisely if we take

a normal slie N

�

to the stratum �, then the intersetion N

�

\ � is one dimensional i.e. disjoint

union of urves L

i

. For every urve L

i

we alulate its sign: Choose a point x

i

2 L

i

and a

normal slie N

i

. In other words

(�) N

�

= T

x

i

L

i

�N

i

:

Notie that N

i

is also a normal slie to � therefore oriented (de�ned by the oorientation of

�). N

�

is also oriented and we an give an orientation to T

x

i

L

i

by hoosing a vetor pointing

out of the origin (the \�-point"). If the three orientations �t we give plus sign to L

i

and a

minus sign otherwise.

So �rst we have to �nd the oorientable singularities, then the urves L

i

, and �nally we have

to alulate the signs.

2.1. Coorientable singularities. The top (up to odimension 9) of the lassi�ation of stable

singularities between equal dimensional spaes is as follows (e.g. [PW95℄):

odim 0 1 2 3 4 5 6 7 8 9

A

0

A

1

A

2

A

3

A

4

A

5

A

6

A

7

A

8

A

9

I

2;2

I

2;3

I

2;4

I

2;5

I

2;6

I

2;7

II

2;2

II

2;4

II

2;6

I

3;3

I

3;4

I

3;5

I

3;6

I

4;4

I

4;5

II

4;4

IV

3

IV

4

(x

2

; y

3

) (x

2

+ y

3

; xy

2

) (x

2

+ y

3

; y

4

)

(x

2

+ y

4

; xy

2

)

�

3

Here by `singularity' we mean a stratum (satisfying the Vassiliev onditions [Vas88℄, [FR℄) of

the following group ation: The group Di�(R

1

; 0)� Di�(R

1

; 0) (di�eomorphism germs at 0)

ats on E := f stable (R

1

; 0)! (R

1

; 0) germsg by ( ; ') � f := ' Æ f Æ  

�1

. In fat, all but �

3

is an orbit, the latter is a 1-parameter family of orbits.

Orbits of this group ation are haraterized by their loal algebras [Mat69℄. So the above

symbols enode loal algebras as follows: A

i

stands for the singularity with loal algebra

R[[x℄℄=(x

i+1

). The symbols I{IV stand for algebras orresponding to �

2;0

singularities as in

[Mat71℄. In the other ases we indiated the ideal in R[[x; y℄℄ whih is to be fatored out to get

the algebra. The stratum �

3

orresponds to the 1-parameter family of algebras

R[[x; y℄℄=(x

3

+ �yz; y

3

+ �xz; z

3

+ �xy); �(�

3

� 1)(8�

3

+ 1) 6= 0:
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De�nition 2.1. A stable germ � : (R

n

; 0) ! (R

n

; 0) is alled a prototype of the singularity �

if the in�nite trivial unfolding of � is in � and n is minimal.

Let � be a singularity and � a prototype of �. Then we an onsider the right-left symmetry

group of �:

f(';  ) 2 A = Di�(R

n

; 0)� Di�(R

n

; 0) :  Æ � Æ '

�1

= �g

or its maximal ompat subgroup G

�

(see more details in [Rim02b℄, [FR℄). If � is well hosen

then by the de�nition of maximal ompat subgroup for subgroups of A, the group G

�

ats

linearly on the soure and target spaes. We denote these representations by �

0

; �

1

respetively.

If �

0

(G

�

) � GL

+

(n) then we all � oorientable. If the singularity is simple, ie. not a member

in a ontinuous family, then this ondition is equivalent to the oorientability of the stratum

in E sine the soure spae of a prototype an be identi�ed with a normal slie to the orbit �.

Geometrially it means that if �(f) � N is the set of �-points of a stable map f : N ! P then

the normal bundle of �(f) in N is orientable.

In ase of non-simple singularities (ie. in our ase for �

3

) the representation �

0

(G

�

) deom-

poses to summands tangent and normal to the stratum. In this ase oorientability of the

stratum means the orientability of the representation on the normal slie.

Theorem 2.2. Among the above singularities exatly the following are oorientable:

odim 0 1 2 3 4 5 6 7 8 9

�

0

A

0

�

1

A

3

A

4

A

7

A

8

�

2;0

I

2;2

I

2;3

I

2;5

I

2;6

I

2;7

II

2;2

II

2;6

I

3;6

IV

4

�

2;1

(x

2

+ y

3

; xy

2

) (x

2

+ y

3

; y

4

)

The problem of alulating the maximal ompat symmetry group and its representation �

0

is solved in [Rim96℄, [Rim02b℄, here we show an example. For more detailed disussion see

[Rim00℄.

A prototype � of (x

2

; y

3

) is the miniversal unfolding of (x; y) 7! (x

2

; y

3

):

� : (x; y; v) 7! (x

2

+ v

1

y + v

2

y

2

; y

3

+ v

3

x + v

4

y + v

5

xy; v)

where v = v

1

; : : : ; v

5

. Its maximal ompat symmetry group G

(x

2

;y

3

)

�

=

Z

2

� Z

2

and �

0

=

�� � � � � 1� �� � 1� � where � and � are the nontrivial irreduible representations of the

�rst and seond Z

2

-fator. So (x

2

; y

3

) is not oorientable.

From now on the symbols of oorientable singularities we will mean the given singularity with

a hosen oorientation. We don't speify these oorientations. It leaves some sign indeterminay

in our �nal results. Calulations of the oorientations would be a tedious job presenting no

theoretial novelties so we deided to omit them.

2.2. Computation of the di�erentials. Some of these alulations (Theorem 2.3) are stan-

dard, based on results of Lander and the notion of multipliity. For Theorem 2.5 we use our

knowledge of the symmetry group of these singularities alulated in [Rim02b℄. In Theorem

2.6 we apply a method using Hilbert funtions.
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The easiest ase in the omputation of the Vassiliev oeÆients (�; �) is when near an �-

point there are no �-points at all, i.e. the germ of the set �(�) is empty for the prototype � of

�.

Theorem 2.3. The following Vassiliev oeÆients are all 0.

(1) (A

8

; I

2;5

), (I

2;7

; (x

2

+y

3

; xy

2

)), (I

3;6

; (x

2

+y

3

; xy

2

)),

(2) (II

2;2

; A

3

), (II

2;6

; A

7

), (IV

4

; I

2;5

), (I

2;7

; IV

4

), (I

3;6

; IV

4

),

(3) ((x

2

+y

3

; xy

2

); A

7

), ((x

2

+y

3

; y

4

); A

8

).

Proof. Case 1 holds beause of Thom-Boardman symbols, i.e. if J; I are Thom-Boardman

symbols and J < I in the lexiographi order then near a J-point there are no I points. Case

2 follows from the work of Lander [Lan76℄ saying that the appropriate set germs are empty.

Case 3 follows from the notion of multipliity (e.g. [AVGL91, p.161.℄). The multipliity of

(x

2

+y

3

; xy

2

) is 7 sine it is the dimension of its loal algebra. Geometrially this means that

the preimage (at the omplexi�ed map) of a general point near 0 in the target onsists of 7

points. The multipliity of A

7

is 8 so it an not be near 0 of a (x

2

+y

3

; xy

2

)-germ. Similarly the

multipliities for (x

2

+y

3

; y

4

) and A

8

are 8 and 9, respetively.

Now let us onsider (A

4

; A

3

). A prototype of A

4

is

� : (x; y

3

; y

2

; y

1

) 7! (x

5

+ y

3

x

3

+ y

2

x

2

+ y

1

x; y

3

; y

2

; y

1

)

with maximal ompat symmetry group hgi

�

=

Z

2

ating as ��1���1 on the soure. Calulat-

ing the partial derivatives shows that the A

3

-points of � are parameterized as (t;�10t

2

; 20t

3

;�15t

4

),

whih is a non-singular urve having thus two intersetion with a sphere entered at the origin.

To determine the signs assoiated to these intersetion points we would need lear de�nition of

the oorientation of A

4

and A

3

. Although we have not spei�ed the hosen oorientations we

an still see that the signs assoiated to the two intersetion points must oinide by the follow-

ing lemma, beause an orientation preserving di�eomorphism germ, namely �(g) interhanges

them:

Lemma 2.4. If the symmetry group G

�

of the orbit � interhanges the urves L

i

and L

j

then

they have the same sign.

Proof. Suppose that gL

i

= L

j

for a g 2 G. Then by hoosing x

j

:= gx

i

we have gN

i

= N

j

.

Sine � and � are ooriented and g� = � the symmetry g preserves the orientations in the

deomposition (�).

So we an state that (A

4

; A

3

) = �2. Similar omputation shows that (A

8

; A

7

) = �2, too.

The key in these omputations was our ability to write down the equations of the `nearby

singularity types' and the luk that the obtained points on the sphere are permuted by the

symmetry group of the singularity at 0. The equations of the singularities near �

2;0

-points are

desribed in [Lan76℄. The symmetry groups of them are omputed in [Rim02b℄. Lukily enough

in the following ases Lemma 2.4 applies, so|as above|we an determine the absolute values

of the Vassiliev oeÆients:



THOM POLYNOMIALS WITH INTEGER COEFFICIENTS 5

Theorem 2.5.

(I

2;2

; A

3

) =� 4; (I

2;3

; A

4

) =� 2; (I

2;3

; I

2;2

) =� 1;

(I

2;3

; II

2;2

) =� 1; (I

2;6

; A

7

) =� 4; (I

2;6

; I

2;5

) =� 2;

(II

2;6

; I

2;5

) =� 2; (IV

4

; A

7

) =� 8; (I

2;7

; A

8

) =� 2;

(I

2;7

; I

2;6

) =� 1; (I

2;7

; II

2;6

) =� 1; (I

3;6

; A

8

) =� 2;

(I

3;6

; I

2;6

) =� 1; (I

3;6

; II

2;6

) =� 1:

There only remain the following �ve Vassiliev oeÆients to be alulated: ((x

2

+y

3

; xy

2

); I

2;5

)

and ((x

2

+y

3

; y

4

); �) with � = I

2;6

; II

2;6

; IV

4

; (x

2

+y

3

; xy

2

). Here again the great work is to

determine the equations for the �-points in the soure of a prototype of �. This an be done

using the Hilbert funtions of the loal algebras: h : i 7! dimM

i

=M

i+1

, where M is the unique

maximal ideal. We will sketh the proedure in one partiular ase: ((x

2

+y

3

; y

4

); IV

4

). A

prototype of (x

2

+ y

3

; y

4

) is

� : (x; y; u; v) 7! (x

2

+ y

3

+ u

1

y + u

2

y

2

; y

4

+ v

1

x + v

2

y + v

3

xy + v

4

y

2

+ v

5

xy

2

; u; v);

where u = (u

1

; u

2

) and v = (v

1

; : : : ; v

5

). By di�erentiating we get the following equations for

the �

2

-points in the soure:

x = 0; u

1

= �3y

2

� 2u

2

y; v

1

= �v

3

y � v

5

y

2

; v

2

= �4y

3

� 2v

4

y;

so it is a graph of a map R

5

(y; u

2

; v

3

; v

4

; v

5

) �! R

4

(x; u

1

; v

1

; v

2

), so it is smooth. Let us hoose

a point p on this graph. So p is of the form:

p := (0; �y; (�3�y

2

� 2�u

2

�y); �u

2

; (��v

3

�y � �v

5

�y

2

); (�4�y

3

� 2�v

4

�y); �v

3

; �v

4

; �v

5

):

The germ of � at p, i.e. the germ of �((x; y; u; v) + p)� �(x; y; u; v) at 0 is the unfolding of

�

p

: (x; y)! (x

2

+ y

3

+ ( �u

2

+ 3�y)y

2

; y

4

+ �v

5

xy

2

+ (2�v

5

�y + �v

3

)xy + (4�y)y

3

+ (6�y

2

+ �v

4

)y

2

):

The loal algebra Q

p

of � at p is R[[x; y℄℄=I, where I is the ideal generated by the two oordinate

funtions of �

p

. Our task is to obtain the values of p for whih the loal algebra Q

p

is isomorphi

to that of IV

4

. The algebra of IV

4

has Hilbert funtion (h(0); h(1); : : :) = (1; 2; 2; 2; 1; 0; : : :).

For Q

p

we have h(0) = 1; h(1) = 2 for any values of

A := �u

2

+ 3�y; B := �v

5

; C := 2�v

5

�y + �v

3

; D := 4�y; E := 6�y

2

+ �v

4

;

but

h(2) = 3� rank

�

1 0 A

0 C E

�

;

so the ondition for h(2) to be equal to 2 is C = E = 0. Similarly,

h(3) = 7� rank

0

B

B

B

B

B

�

1 : A : : : 1

: C E : : B D

: : : 1 : A :

: : : : 1 : A

: : : : C E :

: : : : : C E

1

C

C

C

C

C

A

so the ondition for h(3) to be equal to 2 (using C = E = 0) is B = D = 0. So there is

a 1-dimensional urve (as A varies) in the soure of � where the Hilbert funtion starts as
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(1; 2; 2; 2). Studying the Hilbert funtions of the singularities of odimension 8 we see that

the singularities on this urve are either IV

4

or I

4;4

. (Let us remark that the omplexi�ation

of these two are the same so one needs real arguments to distinguish them.) In our ase the

algebra (x

2

+ y

3

+Ay

2

; y

4

) is isomorphi to the algebra of IV

4

if A > 0, and isomorphi to that

of I

4;4

if A < 0 (in the latter ase use the substitution x = u+ v; y = u� v). So we have that

the IV

4

-points of � are on a ray oming out of 0 in the soure of �, so ((x

2

+y

3

; y

4

); IV

4

) = �1.

Using similar arguments we an ompute the remaining Vassiliev oeÆients (up to sign):

Theorem 2.6.

((x

2

+y

3

; xy

2

); I

2;5

) =� 2; ((x

2

+y

3

; y

4

); I

2;6

) =� 2; ((x

2

+y

3

; y

4

); (x

2

+y

3

; xy

2

)) = �2;

((x

2

+y

3

; y

4

); IV

4

) =� 1; ((x

2

+y

3

; y

4

); II

2;6

) = 0:

The following graph enodes our results. In this the arrows always onnet two singularities

in onseutive odimension, and the label of the arrow is the absolute value of their Vassiliev

oeÆient. A missing arrow means the Vassiliev oeÆient is 0.

A

4

2

""EE
EE

EE
EE

A

3

2

==zzzzzzzz
4 //

I

2;2

1 //
I

2;3

II

2;2

1

<<zzzzzzzz

A

8

2 //
2

((QQQQQQQQQQQQQQQQQ I

2;7

A

7

2

88rrrrrrrrrrrrr

4

&&MMMMMMMMMMMM

8

��;
;;

;;
;;

;;
;;

;;
;;

;;
;;

II

2;6

1

66mmmmmmmmmmmmmmmm
1 //

I

3;6

I

2;6

1

=={{{{{{{{{{{{{{{{{{{{{

1

66mmmmmmmmmmmmmmmm

2

!!C
CCC

CC
CC

CCC
CC

CC
CCC

CC

I

2;5

2

88rrrrrrrrrrrr

2

AA������������������

2

&&LLLLLLLLLLL IV

4

1

((QQQQQQQQQQQQQQ

(x

2

+ y

3

; xy

2

)

2 //
(x

3

+ y

3

; y

4

)

Sine we determined only the absolute values of the oeÆients, apparently we lak some

information to write down the Vassiliev omplex exatly. However, we know that the signs

are to be distributed so that d

1

Æ d

1

= 0 is satis�ed, and in fat (again) we are luky, beause

essentially there is only one way to distribute the signs satisfying this ondition. Consequently

we get the ohomology groups of the Vassiliev omplex:

Theorem 2.7.

H

1

= H

2

= H

3

= H

5

= H

6

= H

7

= 0; H

0

= ZhA

0

i;

H

4

= ZhI

2;2

+ II

2;2

i � Z

2

hA

4

+ 2I

2;2

i

H

8

= Zh(x

2

+y

3

; xy

2

)� 2IV

4

i � Z

2

hI

2;6

+ II

2;6

+ (x

2

+y

3

; xy

2

)i � Z

2

hA

8

+ 2I

2;6

+ 4IV

4

i;

where in the brakets we indiated possible generators (whih mean singularities with some

(determinable but undetermined) oorientations.
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3. Calulation of the Thom polynomials

Let us briey reall the de�nition of the Thom polynomial: The Vassiliev omplex VC is

the 0

th

row of the E

2

-table of the Kazarian spetral sequene (see [Kaz97℄), so we have an edge

homomorphism:

Tp : VC ! H

�

(BG):

In the ase of real singularities G = Di�(R

1

; 0)�Di�(R

1

; 0) so the Thom polynomials live in

H

�

(BO�BO;Z). In lassial terms, given a smooth map f : N ! P the Poinar�e dual of the

singular points of type � an be expressed as a polynomial of harateristi lasses of TN and

f

�

TP .

Proposition 3.1. Tp(�) depends only on the harateristi lasses of f

�

TP 	 TN .

The proof an be found in [FR℄ for the omplex ase but it applies word by word for the real

ase as well. We adopt the notation tp(�) for the orresponding element in H

�

(BO;Z).

We need a onvenient notation for the elements of H

�

(BO;Z):

Theorem 3.2. [MS74, Pr.15C℄

H

�

(BO;Z)

�

=

Z[p

1

; : : : ; p

i

; : : : ℄� ImSq

1

:

We will use the notation

P

v

I

for the unique 2

nd

order element in H

�

(BO;Z) suh that

r(

P

v

I

) =

P

w

I

where r denotes the mod 2 redution and w

I

is a monomial of Stiefel-Whitney

lasses orresponding to the multiindex I. So we write elements of H

�

(BO;Z) in the form

P

a

I

p

I

+

P

b

I

v

I

where I runs through multiindies and p

I

, v

I

are the orresponding monomials.

We an assume that

P

b

I

w

I

2 ImSq

1

.

Our major tool to the alulations is the following theorem of Borel and Haeiger:

Theorem 3.3 ([BH61℄). Let �

C

be the omplexi�ation of a real singularity �. Suppose that

tp(�

C

) =

P

a

I



I

. Then tp(�;Z

2

) =

P

a

I

w

I

.

Remark 3.4. We say that �

C

is the omplexi�ation of the real singularity � if they are de�ned

by the same equation and odim

C

�

C

= odim

R

�. The odimension ondition is not always

satis�ed see [VS91℄.

For a ooriented singularity � we have r

�

tp(�;Z)

�

= tp(�;Z

2

) and Ker(r) = 2�Z[p

1

; : : : ; p

i

; : : : ℄

so we need some extra information to �nd out the oeÆients of the Pontryagin lasses.

I

22

+ II

22

: This Thom polynomial oinides with the Thom polynomial of the �

2

Thom-

Boardman singularity whih was alulated by Ronga ([Ron71℄):

tp(I

22

+ II

22

) = p

1

+ v

1

v

3

:

A

4

+ 2I

22

: This oyle has order 2 in the Vassiliev omplex, so the Thom polynomial

annot ontain Pontryagin lasses. So by the Borel-Haeiger theorem:

tp(A

4

+ 2I

22

) = v

4

1

+ v

1

v

3

:

I

26

+ II

26

+ (x

2

+y

3

; xy

2

): This oyle also has order 2 in the Vassiliev omplex, so:

tp(I

26

+ II

26

+ (x

2

+y

3

; xy

2

)) = v

2

1

v

2

v

4

+ v

1

v

2

v

5

+ v

1

v

3

v

4

+ v

1

v

2

2

v

3

+ v

2

1

v

2

3

+ v

3

1

v

5

A

8

+ 2I

26

+ 4IV

4

: This oyle also has order 2 in the Vassiliev omplex, so:

tp(A

8

+ 2I

26

+ 4IV

4

) = v

8

1

+ v

3

1

v

5

+ v

2

1

v

2

v

4

+ v

1

v

2

v

5

+ v

1

v

3

v

4

+ v

1

v

2

2

v

3
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� = (x

2

+y

3

; xy

2

)� 2IV

4

: Also by the Borel-Haeiger theorem it is enough to alulate

rationally, i.e. to �nd the oeÆients A and B for tp(�;Q) = Ap

2

1

+Bp

2

. First we apply

the restrition equation method from [Rim01℄, see also [FR℄, to the `test germ' II

2;2

. As

it is explained in [FR℄ we need the representations �

0

and �

1

of O(2) on the soure and

target spae of II

22

. They were alulated in [Rim02b℄: �

0

= �

1

� �

3

and �

1

= �

2

� �

3

,

where �

n

is the unique 2-dimensional representation of O(2) whih restrits to �

n

on

U(1)

�

=

SO(2) where � is the standard representation of U(1). So, using the notation

of [FR℄:

p(�

1

	 �

0

) =

1 + 4p

1

1 + p

1

= 1 + 3p

1

� 3p

2

1

+ � � �

and

j

�

II

22

tp(�;Q) = A(3p

1

)

2

+B(�3p

2

1

) = 0;

whih implies that B = 3A. We need one more equation. For this we need another `test

germ' whih has at least a U(1) symmetry and also we need to be able to understand

the IV

4

and (x

2

+ y

3

; xy

2

)-points near the origin. Suh singularities turn up in high

odimension, and the omputation of the IV

4

and (x

2

+ y

3

; xy

2

) points near the origin

is usually a huge omputation. However the referee provided us with an example where

the alulations are simple.

The idea is the following: Any smooth map ' : R

n

! R

n

indues a G

'

-equivariant

map ~' : R

n

! E where E is the spae of germs as before. If ~' is transversal to the

losure of a stratum � then ~'

�

tp(�) 2 H

�

(BG

'

) is equal to the G

'

-equivariant Poinar�e

dual of ~'

�1

(��). It is easy to see that this equation holds even if ~' is not transversal

along a subset of R

n

having higher odimension than the odimension of �.

Let the `test germ' be

(z; a

1

; : : : ; a

4

)! (jzj

2

; Re

�

4

X

i=1

a

i

z

i

�

; a

1

; : : : ; a

4

)

(the number 4 an be hanged to greater integers, too), where z and the a

i

's are from

C

�

=

R

2

. This germ learly has a U(1) symmetry, whih ats by � � � � �

2

� �

3

� �

4

on the soure and by 1

R

2

� � � �

2

� �

3

� �

4

on the target, so its relative Pontryagin

lass is

p(�

1

	 �

0

) =

1

1 + t

2

= 1� t

2

+ t

4

� : : : ;

where t is the �rst Chern lass of �. Easy omputation shows that the lous of IV

4

-

singularity points in the soure is z = a

1

= a

2

= a

3

= 0, a

4

6= 0, whose losure is smooth.

Hene the lass dual to this losure is easily omputed: (�t)(�2t)(�3t) = �6t

4

(=the

Euler lass of the representation normal to the a

1

= a

2

= a

3

= 0 spae).

The Thom-Boardman symbol of the singularity (x

2

+ y

3

; xy

2

) is �

2;1

. Di�erentiation

shows that no suh singularities are in the soure spae of this map. Sine ~' is auto-

matially transversal at stable singularities of ', it is transversal to the losure of the

union of the the orbit of (x

2

+ y

3

; xy

2

) and IV

4

, exept at 0. Applying the restrition

equation we get

A(�t

2

)

2

+B(t

4

) = �2 � (�6t

4

):
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Comparing this with B = 3A we already knew, we obtain the unique solution A =

3; B = 9.

So for the proper oorientations we have:

tp((x

2

+y

3

; xy

2

)� 2IV

4

) = 3(p

2

1

+ 3p

2

) + v

2

1

v

2

v

4

+ v

1

v

2

v

5

+ v

1

v

3

v

4

+ v

3

v

5

:

4. Complex versus real

In this setion we disuss a omplexi�ation tehnique (and its relation to Thom polynomials)

di�erent from the Borel-Haeiger one [BH61℄ as suggested to us by A. Sz}us and R. Sz}oke. Given

a smooth map f : N

n

! P

p

between real manifolds onsider its omplexi�ation f

C

: N

C

! P

C

in the Bruhat-Whitney sense [BW59℄ as follows.

First hoose real analyti atlases for N and P and perturb f to be real analyti [Hir76, Thm.

5.1℄. Then hange the real oordinate harts to omplex ones and glue them with the original

gluing maps now onsidered as omplex analyti maps. In fat these gluing maps an be de�ned

only in a neighborhood of R

n

in C

n

, so onsider only these tubes. Also f , now onsidered as

a omplex analyti map on eah oordinate hart is de�ned only in a (possibly smaller) tube.

Choosing these appropriately small tubes we get a map f

C

: N

C

! P

C

. Sine N

C

�

=

TN we

identify the ohomology rings of N and N

C

.

Now let � be a real singularity of odimension  whih is the omplete real form of its

omplexi�ation �

C

(e.g. � = A

i

, �

C

= A

C

i

or � = I

2;2

[ II

2;2

, �

C

= I

C

2;2

). Also suppose

that � de�nes a oyle in the Vassiliev omplex, i.e. the set of �-points �(f) � N de�nes a

ohomology lass [�(f)℄ in N .

In the next lemma � is a oorientable singularity.

Lemma 4.1. If �(f) is losed then [�(f)℄

2

= [�

C

(f

C

)℄ 2 H

2

(N).

Proof. A tubular neighborhood of S := �(f) in N

C

is di�eomorphi to its normal bundle.

However

�(S � N

C

) = �(S � N)� TN j

S

= �(S � N)�

�

TS � �(S � N)

�

;

and the di�eomorphism an be hosen so that �

C

(f

C

) is the total spae of the middle term.

The ohomology lass �(f) is represented by the total spae of the 2

nd

and 3

rd

term. Sine

the intersetion of �(f) and its perturbation (0; t; n) 7! (n; t; 0) is exatly �

C

(f

C

) the lemma is

proved.

Remark 4.2. We used an analyti method to prove this lemma. It is possible to give a more

homotopy theoreti proof, valid in the more general ase of Thom polynomials for group ations,

however it is beyond the sope of this paper.

Using this lemma we an onstrut an obstrution for avoiding singularities more ompliated

than �:

De�nition 4.3. Let � be a real singularity of odimension d admitting a omplexi�ation �

C

.

s(�) := i

�

tp(�

C

)� tp

2

(�) 2 H

2d

(BO;Z)

where i : BO ! BU is the map indued by the embedding O! U .

Lemma 4.1 implies the following:
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Corollary 4.4. If s(�)(f) 6= 0 then there exists a singularity � more ompliated than � suh

that �(f) is not empty.

We an see that Theorem 3.3 is equivalent to the following:

Theorem 4.5. s(�) is even i.e. its mod 2 redution is 0.

It would be interesting to �nd a diret proof of this theorem.

Example 4.6. To see that s(�) is not always 0 onsider maps of odimension 1, i.e. maps

N

�

! P

�+1

and let � = A

2

(= �

1;1

). The Thom polynomial of its omplexi�ed is ([Ron72℄,

[Rim01℄):

tp(A

C

2

) = 

2

2

+ 

1



3

+ 2

4

:

By Lemma 4.1:

tp(A

2

;Z) = Ap

1

+ v

1

v

3

;

where A is an odd integer. (In fat A = 1 as Toru Ohmoto and Andr�as Sz}us explained to us.)

So

s(A

2

) = p

2

1

+ v

2

1

v

2

3

+ 2p

2

� (Ap

1

+ v

1

v

3

)

2

= (1� A

2

)p

2

1

+ 2p

2

;

whih is nonzero.

Remark 4.7. In some sense s(�) is not a new obstrution. In the notation of [FR℄ it is an

element of the avoiding ideal A

��

. Kazarian alls suh lasses higher Thom polynomials in

[Kaz97℄. On the other hand these avoiding ideals are not known exept in speial ases|e.g.

�

i

singularities, see [FP98, Ch. IV℄.

Example 4.8. The ase of Thom-Boardman singularities �

i

(k)|where k refers to maps R

n

!

R

n+k

|has some interesting properties. They are oorientable if i and k are even. Their Thom

polynomials were alulated in [Ron71℄ and [And82℄. One an also alulate them by the

method of restrition (whih is somewhat surprising in the light of the previous alulations in

this paper), the alulation is ompletely analogous to the omplex ase in [FR℄. The other|

probably related|phenomenon is that s(�

i

(k)) = 0. It is not a onsequene of Remark 4.7

sine A

��

\H

2d

(BO;Z) 6= 0 for d = odim�

i

(k) = i(i + k).
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