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1. Introdu
tion

Thom polynomials of real singularities have been 
al
ulated mainly with Z

2

-
oeÆ
ients. The

ex
eptions are the �

i

(see [Ron71℄) and some �

i;j

(see [And82℄) Thom-Boardman singularities.

In this paper we would like to demonstrate how the methods of the theory of Thom polynomials

for group a
tions (see [FR℄) 
an be used in this 
ase. We 
on
entrate on the 
ase of (
onta
t


lass) singularities between manifolds of equal dimension whi
h have been studied the most.

We 
al
ulate the Thom polynomials up to 
odimension 8.

It turned out that the diÆ
ult part is not to 
al
ulate these Thom polynomials, but to �nd

out \who" has a Thom polynomial. Vassiliev de�ned a 
o
hain 
omplex in [Vas88, $8℄ where

the 
o
hains are linear 
ombinations of 
ooriented orbits (singularities in our 
ase) and showed

that exa
tly the 
o
y
les admit Thom polynomials (see also [Kaz97℄ and [FR℄). In 
ases where

every orbit is 
ooriented and even 
odimensional|e.g. the 
ase of 
omplex singularities|the

di�erential of the Vassiliev 
omplex is trivial. Su
h Thom polynomials are 
al
ulated in e.g.

[Rim01℄, see also referen
es therein.

Cal
ulation of Thom polynomials of real singularities with Z

2

-
oeÆ
ients is easier due to a

result of Borel and Hae
iger (see [BH61℄). It implies that we 
an get the Thom polynomial of a

real singularity � by repla
ing Chern 
lasses to the 
orresponding Stiefel-Whitney 
lasses in the

Thom polynomial of the 
omplexi�
ation of �. So it also gives the answer if the integer Thom

polynomial is of order two. Consequently the 
al
ulation of the Vassiliev 
omplex presented

below and the Borel-Hae
iger theorem is enough to 
al
ulate all but two Thom polynomials (see

Theorem 2.7). The Thom polynomial of I

2;2

+ II

2;2

was previously known. For the remaining


ase we applied the method of restri
tion equations established by the se
ond author in [Rim01℄.

This method 
al
ulates the Thom polynomial by solving a system of linear equations. We will

see that these equations are not enough in the 
ase of real singularities. However, knowing

also their Z

2

-redu
tions and �nding an extra equation similar to the in
iden
e 
al
ulations in

[Rim02a℄ we 
an 
al
ulate them. We are grateful for the referee for suggesting a way to 
orre
t

a mistake in the �rst version of the manus
ript.

In Se
tion 2 we 
al
ulate the Vassiliev 
omplex. These 
al
ulations are fairly 
ompli
ated.

An extra diÆ
ulty 
ompared to the Z

2

-
ase (whi
h was done in [Ohm94℄) is to determine the

signs in the di�erential. In Se
tion 3 we 
al
ulate the Thom polynomials. In Se
tion 4 we

study the 
onne
tion between the real and 
omplex 
ase whi
h leads us to �nding obstru
tions

to avoid 
ertain singularities.
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2. The Vassiliev 
omplex

The n-
o
hains in the Vassiliev 
omplex are linear 
ombinations of the n-
odimensional


ooriented orbits. (We assume here that every orbit is simple in the 
odimension-range we

are interested in.) Following Vassiliev we 
an 
al
ulate the 
oeÆ
ients of the di�erential d

1

as

follows: Let � be an n-
odimensional 
ooriented orbit and

d

1

(�) =

X


odim �=n+1


(�; �)�:

Then 
(�; �) is \the number of �-
urves leaving �" 
ounted with sign. More pre
isely if we take

a normal sli
e N

�

to the stratum �, then the interse
tion N

�

\ � is one dimensional i.e. disjoint

union of 
urves L

i

. For every 
urve L

i

we 
al
ulate its sign: Choose a point x

i

2 L

i

and a

normal sli
e N

i

. In other words

(�) N

�

= T

x

i

L

i

�N

i

:

Noti
e that N

i

is also a normal sli
e to � therefore oriented (de�ned by the 
oorientation of

�). N

�

is also oriented and we 
an give an orientation to T

x

i

L

i

by 
hoosing a ve
tor pointing

out of the origin (the \�-point"). If the three orientations �t we give plus sign to L

i

and a

minus sign otherwise.

So �rst we have to �nd the 
oorientable singularities, then the 
urves L

i

, and �nally we have

to 
al
ulate the signs.

2.1. Coorientable singularities. The top (up to 
odimension 9) of the 
lassi�
ation of stable

singularities between equal dimensional spa
es is as follows (e.g. [PW95℄):


odim 0 1 2 3 4 5 6 7 8 9

A

0

A

1

A

2

A

3

A

4

A

5

A

6

A

7

A

8

A

9

I

2;2

I

2;3

I

2;4

I

2;5

I

2;6

I

2;7

II

2;2

II

2;4

II

2;6

I

3;3

I

3;4

I

3;5

I

3;6

I

4;4

I

4;5

II

4;4

IV

3

IV

4

(x

2

; y

3

) (x

2

+ y

3

; xy

2

) (x

2

+ y

3

; y

4

)

(x

2

+ y

4

; xy

2

)

�

3

Here by `singularity' we mean a stratum (satisfying the Vassiliev 
onditions [Vas88℄, [FR℄) of

the following group a
tion: The group Di�(R

1

; 0)� Di�(R

1

; 0) (di�eomorphism germs at 0)

a
ts on E := f stable (R

1

; 0)! (R

1

; 0) germsg by ( ; ') � f := ' Æ f Æ  

�1

. In fa
t, all but �

3

is an orbit, the latter is a 1-parameter family of orbits.

Orbits of this group a
tion are 
hara
terized by their lo
al algebras [Mat69℄. So the above

symbols en
ode lo
al algebras as follows: A

i

stands for the singularity with lo
al algebra

R[[x℄℄=(x

i+1

). The symbols I{IV stand for algebras 
orresponding to �

2;0

singularities as in

[Mat71℄. In the other 
ases we indi
ated the ideal in R[[x; y℄℄ whi
h is to be fa
tored out to get

the algebra. The stratum �

3


orresponds to the 1-parameter family of algebras

R[[x; y℄℄=(x

3

+ �yz; y

3

+ �xz; z

3

+ �xy); �(�

3

� 1)(8�

3

+ 1) 6= 0:



THOM POLYNOMIALS WITH INTEGER COEFFICIENTS 3

De�nition 2.1. A stable germ � : (R

n

; 0) ! (R

n

; 0) is 
alled a prototype of the singularity �

if the in�nite trivial unfolding of � is in � and n is minimal.

Let � be a singularity and � a prototype of �. Then we 
an 
onsider the right-left symmetry

group of �:

f(';  ) 2 A = Di�(R

n

; 0)� Di�(R

n

; 0) :  Æ � Æ '

�1

= �g

or its maximal 
ompa
t subgroup G

�

(see more details in [Rim02b℄, [FR℄). If � is well 
hosen

then by the de�nition of maximal 
ompa
t subgroup for subgroups of A, the group G

�

a
ts

linearly on the sour
e and target spa
es. We denote these representations by �

0

; �

1

respe
tively.

If �

0

(G

�

) � GL

+

(n) then we 
all � 
oorientable. If the singularity is simple, ie. not a member

in a 
ontinuous family, then this 
ondition is equivalent to the 
oorientability of the stratum

in E sin
e the sour
e spa
e of a prototype 
an be identi�ed with a normal sli
e to the orbit �.

Geometri
ally it means that if �(f) � N is the set of �-points of a stable map f : N ! P then

the normal bundle of �(f) in N is orientable.

In 
ase of non-simple singularities (ie. in our 
ase for �

3

) the representation �

0

(G

�

) de
om-

poses to summands tangent and normal to the stratum. In this 
ase 
oorientability of the

stratum means the orientability of the representation on the normal sli
e.

Theorem 2.2. Among the above singularities exa
tly the following are 
oorientable:


odim 0 1 2 3 4 5 6 7 8 9

�

0

A

0

�

1

A

3

A

4

A

7

A

8

�

2;0

I

2;2

I

2;3

I

2;5

I

2;6

I

2;7

II

2;2

II

2;6

I

3;6

IV

4

�

2;1

(x

2

+ y

3

; xy

2

) (x

2

+ y

3

; y

4

)

The problem of 
al
ulating the maximal 
ompa
t symmetry group and its representation �

0

is solved in [Rim96℄, [Rim02b℄, here we show an example. For more detailed dis
ussion see

[Rim00℄.

A prototype � of (x

2

; y

3

) is the miniversal unfolding of (x; y) 7! (x

2

; y

3

):

� : (x; y; v) 7! (x

2

+ v

1

y + v

2

y

2

; y

3

+ v

3

x + v

4

y + v

5

xy; v)

where v = v

1

; : : : ; v

5

. Its maximal 
ompa
t symmetry group G

(x

2

;y

3

)

�

=

Z

2

� Z

2

and �

0

=

�� � � � � 1� �� � 1� � where � and � are the nontrivial irredu
ible representations of the

�rst and se
ond Z

2

-fa
tor. So (x

2

; y

3

) is not 
oorientable.

From now on the symbols of 
oorientable singularities we will mean the given singularity with

a 
hosen 
oorientation. We don't spe
ify these 
oorientations. It leaves some sign indetermina
y

in our �nal results. Cal
ulations of the 
oorientations would be a tedious job presenting no

theoreti
al novelties so we de
ided to omit them.

2.2. Computation of the di�erentials. Some of these 
al
ulations (Theorem 2.3) are stan-

dard, based on results of Lander and the notion of multipli
ity. For Theorem 2.5 we use our

knowledge of the symmetry group of these singularities 
al
ulated in [Rim02b℄. In Theorem

2.6 we apply a method using Hilbert fun
tions.



4 L

�

ASZL

�

O M. FEH

�

ER AND RICH

�

ARD RIM

�

ANYI

The easiest 
ase in the 
omputation of the Vassiliev 
oeÆ
ients 
(�; �) is when near an �-

point there are no �-points at all, i.e. the germ of the set �(�) is empty for the prototype � of

�.

Theorem 2.3. The following Vassiliev 
oeÆ
ients are all 0.

(1) 
(A

8

; I

2;5

), 
(I

2;7

; (x

2

+y

3

; xy

2

)), 
(I

3;6

; (x

2

+y

3

; xy

2

)),

(2) 
(II

2;2

; A

3

), 
(II

2;6

; A

7

), 
(IV

4

; I

2;5

), 
(I

2;7

; IV

4

), 
(I

3;6

; IV

4

),

(3) 
((x

2

+y

3

; xy

2

); A

7

), 
((x

2

+y

3

; y

4

); A

8

).

Proof. Case 1 holds be
ause of Thom-Boardman symbols, i.e. if J; I are Thom-Boardman

symbols and J < I in the lexi
ographi
 order then near a J-point there are no I points. Case

2 follows from the work of Lander [Lan76℄ saying that the appropriate set germs are empty.

Case 3 follows from the notion of multipli
ity (e.g. [AVGL91, p.161.℄). The multipli
ity of

(x

2

+y

3

; xy

2

) is 7 sin
e it is the dimension of its lo
al algebra. Geometri
ally this means that

the preimage (at the 
omplexi�ed map) of a general point near 0 in the target 
onsists of 7

points. The multipli
ity of A

7

is 8 so it 
an not be near 0 of a (x

2

+y

3

; xy

2

)-germ. Similarly the

multipli
ities for (x

2

+y

3

; y

4

) and A

8

are 8 and 9, respe
tively.

Now let us 
onsider 
(A

4

; A

3

). A prototype of A

4

is

� : (x; y

3

; y

2

; y

1

) 7! (x

5

+ y

3

x

3

+ y

2

x

2

+ y

1

x; y

3

; y

2

; y

1

)

with maximal 
ompa
t symmetry group hgi

�

=

Z

2

a
ting as ��1���1 on the sour
e. Cal
ulat-

ing the partial derivatives shows that the A

3

-points of � are parameterized as (t;�10t

2

; 20t

3

;�15t

4

),

whi
h is a non-singular 
urve having thus two interse
tion with a sphere 
entered at the origin.

To determine the signs asso
iated to these interse
tion points we would need 
lear de�nition of

the 
oorientation of A

4

and A

3

. Although we have not spe
i�ed the 
hosen 
oorientations we


an still see that the signs asso
iated to the two interse
tion points must 
oin
ide by the follow-

ing lemma, be
ause an orientation preserving di�eomorphism germ, namely �(g) inter
hanges

them:

Lemma 2.4. If the symmetry group G

�

of the orbit � inter
hanges the 
urves L

i

and L

j

then

they have the same sign.

Proof. Suppose that gL

i

= L

j

for a g 2 G. Then by 
hoosing x

j

:= gx

i

we have gN

i

= N

j

.

Sin
e � and � are 
ooriented and g� = � the symmetry g preserves the orientations in the

de
omposition (�).

So we 
an state that 
(A

4

; A

3

) = �2. Similar 
omputation shows that 
(A

8

; A

7

) = �2, too.

The key in these 
omputations was our ability to write down the equations of the `nearby

singularity types' and the lu
k that the obtained points on the sphere are permuted by the

symmetry group of the singularity at 0. The equations of the singularities near �

2;0

-points are

des
ribed in [Lan76℄. The symmetry groups of them are 
omputed in [Rim02b℄. Lu
kily enough

in the following 
ases Lemma 2.4 applies, so|as above|we 
an determine the absolute values

of the Vassiliev 
oeÆ
ients:
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Theorem 2.5.


(I

2;2

; A

3

) =� 4; 
(I

2;3

; A

4

) =� 2; 
(I

2;3

; I

2;2

) =� 1;


(I

2;3

; II

2;2

) =� 1; 
(I

2;6

; A

7

) =� 4; 
(I

2;6

; I

2;5

) =� 2;


(II

2;6

; I

2;5

) =� 2; 
(IV

4

; A

7

) =� 8; 
(I

2;7

; A

8

) =� 2;


(I

2;7

; I

2;6

) =� 1; 
(I

2;7

; II

2;6

) =� 1; 
(I

3;6

; A

8

) =� 2;


(I

3;6

; I

2;6

) =� 1; 
(I

3;6

; II

2;6

) =� 1:

There only remain the following �ve Vassiliev 
oeÆ
ients to be 
al
ulated: 
((x

2

+y

3

; xy

2

); I

2;5

)

and 
((x

2

+y

3

; y

4

); �) with � = I

2;6

; II

2;6

; IV

4

; (x

2

+y

3

; xy

2

). Here again the great work is to

determine the equations for the �-points in the sour
e of a prototype of �. This 
an be done

using the Hilbert fun
tions of the lo
al algebras: h : i 7! dimM

i

=M

i+1

, where M is the unique

maximal ideal. We will sket
h the pro
edure in one parti
ular 
ase: 
((x

2

+y

3

; y

4

); IV

4

). A

prototype of (x

2

+ y

3

; y

4

) is

� : (x; y; u; v) 7! (x

2

+ y

3

+ u

1

y + u

2

y

2

; y

4

+ v

1

x + v

2

y + v

3

xy + v

4

y

2

+ v

5

xy

2

; u; v);

where u = (u

1

; u

2

) and v = (v

1

; : : : ; v

5

). By di�erentiating we get the following equations for

the �

2

-points in the sour
e:

x = 0; u

1

= �3y

2

� 2u

2

y; v

1

= �v

3

y � v

5

y

2

; v

2

= �4y

3

� 2v

4

y;

so it is a graph of a map R

5

(y; u

2

; v

3

; v

4

; v

5

) �! R

4

(x; u

1

; v

1

; v

2

), so it is smooth. Let us 
hoose

a point p on this graph. So p is of the form:

p := (0; �y; (�3�y

2

� 2�u

2

�y); �u

2

; (��v

3

�y � �v

5

�y

2

); (�4�y

3

� 2�v

4

�y); �v

3

; �v

4

; �v

5

):

The germ of � at p, i.e. the germ of �((x; y; u; v) + p)� �(x; y; u; v) at 0 is the unfolding of

�

p

: (x; y)! (x

2

+ y

3

+ ( �u

2

+ 3�y)y

2

; y

4

+ �v

5

xy

2

+ (2�v

5

�y + �v

3

)xy + (4�y)y

3

+ (6�y

2

+ �v

4

)y

2

):

The lo
al algebra Q

p

of � at p is R[[x; y℄℄=I, where I is the ideal generated by the two 
oordinate

fun
tions of �

p

. Our task is to obtain the values of p for whi
h the lo
al algebra Q

p

is isomorphi


to that of IV

4

. The algebra of IV

4

has Hilbert fun
tion (h(0); h(1); : : :) = (1; 2; 2; 2; 1; 0; : : :).

For Q

p

we have h(0) = 1; h(1) = 2 for any values of

A := �u

2

+ 3�y; B := �v

5

; C := 2�v

5

�y + �v

3

; D := 4�y; E := 6�y

2

+ �v

4

;

but

h(2) = 3� rank

�

1 0 A

0 C E

�

;

so the 
ondition for h(2) to be equal to 2 is C = E = 0. Similarly,

h(3) = 7� rank

0

B

B

B

B

B

�

1 : A : : : 1

: C E : : B D

: : : 1 : A :

: : : : 1 : A

: : : : C E :

: : : : : C E

1

C

C

C

C

C

A

so the 
ondition for h(3) to be equal to 2 (using C = E = 0) is B = D = 0. So there is

a 1-dimensional 
urve (as A varies) in the sour
e of � where the Hilbert fun
tion starts as
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(1; 2; 2; 2). Studying the Hilbert fun
tions of the singularities of 
odimension 8 we see that

the singularities on this 
urve are either IV

4

or I

4;4

. (Let us remark that the 
omplexi�
ation

of these two are the same so one needs real arguments to distinguish them.) In our 
ase the

algebra (x

2

+ y

3

+Ay

2

; y

4

) is isomorphi
 to the algebra of IV

4

if A > 0, and isomorphi
 to that

of I

4;4

if A < 0 (in the latter 
ase use the substitution x = u+ v; y = u� v). So we have that

the IV

4

-points of � are on a ray 
oming out of 0 in the sour
e of �, so 
((x

2

+y

3

; y

4

); IV

4

) = �1.

Using similar arguments we 
an 
ompute the remaining Vassiliev 
oeÆ
ients (up to sign):

Theorem 2.6.


((x

2

+y

3

; xy

2

); I

2;5

) =� 2; 
((x

2

+y

3

; y

4

); I

2;6

) =� 2; 
((x

2

+y

3

; y

4

); (x

2

+y

3

; xy

2

)) = �2;


((x

2

+y

3

; y

4

); IV

4

) =� 1; 
((x

2

+y

3

; y

4

); II

2;6

) = 0:

The following graph en
odes our results. In this the arrows always 
onne
t two singularities

in 
onse
utive 
odimension, and the label of the arrow is the absolute value of their Vassiliev


oeÆ
ient. A missing arrow means the Vassiliev 
oeÆ
ient is 0.

A

4

2

""EE
EE

EE
EE

A

3

2

==zzzzzzzz
4 //

I

2;2

1 //
I

2;3

II

2;2

1

<<zzzzzzzz

A

8

2 //
2

((QQQQQQQQQQQQQQQQQ I

2;7

A

7

2

88rrrrrrrrrrrrr

4

&&MMMMMMMMMMMM

8

��;
;;

;;
;;

;;
;;

;;
;;

;;
;;

II

2;6

1

66mmmmmmmmmmmmmmmm
1 //

I

3;6

I

2;6

1

=={{{{{{{{{{{{{{{{{{{{{

1

66mmmmmmmmmmmmmmmm

2

!!C
CCC

CC
CC

CCC
CC

CC
CCC

CC

I

2;5

2

88rrrrrrrrrrrr

2

AA������������������

2

&&LLLLLLLLLLL IV

4

1

((QQQQQQQQQQQQQQ

(x

2

+ y

3

; xy

2

)

2 //
(x

3

+ y

3

; y

4

)

Sin
e we determined only the absolute values of the 
oeÆ
ients, apparently we la
k some

information to write down the Vassiliev 
omplex exa
tly. However, we know that the signs

are to be distributed so that d

1

Æ d

1

= 0 is satis�ed, and in fa
t (again) we are lu
ky, be
ause

essentially there is only one way to distribute the signs satisfying this 
ondition. Consequently

we get the 
ohomology groups of the Vassiliev 
omplex:

Theorem 2.7.

H

1

= H

2

= H

3

= H

5

= H

6

= H

7

= 0; H

0

= ZhA

0

i;

H

4

= ZhI

2;2

+ II

2;2

i � Z

2

hA

4

+ 2I

2;2

i

H

8

= Zh(x

2

+y

3

; xy

2

)� 2IV

4

i � Z

2

hI

2;6

+ II

2;6

+ (x

2

+y

3

; xy

2

)i � Z

2

hA

8

+ 2I

2;6

+ 4IV

4

i;

where in the bra
kets we indi
ated possible generators (whi
h mean singularities with some

(determinable but undetermined) 
oorientations.
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3. Cal
ulation of the Thom polynomials

Let us brie
y re
all the de�nition of the Thom polynomial: The Vassiliev 
omplex VC is

the 0

th

row of the E

2

-table of the Kazarian spe
tral sequen
e (see [Kaz97℄), so we have an edge

homomorphism:

Tp : VC ! H

�

(BG):

In the 
ase of real singularities G = Di�(R

1

; 0)�Di�(R

1

; 0) so the Thom polynomials live in

H

�

(BO�BO;Z). In 
lassi
al terms, given a smooth map f : N ! P the Poin
ar�e dual of the

singular points of type � 
an be expressed as a polynomial of 
hara
teristi
 
lasses of TN and

f

�

TP .

Proposition 3.1. Tp(�) depends only on the 
hara
teristi
 
lasses of f

�

TP 	 TN .

The proof 
an be found in [FR℄ for the 
omplex 
ase but it applies word by word for the real


ase as well. We adopt the notation tp(�) for the 
orresponding element in H

�

(BO;Z).

We need a 
onvenient notation for the elements of H

�

(BO;Z):

Theorem 3.2. [MS74, Pr.15C℄

H

�

(BO;Z)

�

=

Z[p

1

; : : : ; p

i

; : : : ℄� ImSq

1

:

We will use the notation

P

v

I

for the unique 2

nd

order element in H

�

(BO;Z) su
h that

r(

P

v

I

) =

P

w

I

where r denotes the mod 2 redu
tion and w

I

is a monomial of Stiefel-Whitney


lasses 
orresponding to the multiindex I. So we write elements of H

�

(BO;Z) in the form

P

a

I

p

I

+

P

b

I

v

I

where I runs through multiindi
es and p

I

, v

I

are the 
orresponding monomials.

We 
an assume that

P

b

I

w

I

2 ImSq

1

.

Our major tool to the 
al
ulations is the following theorem of Borel and Hae
iger:

Theorem 3.3 ([BH61℄). Let �

C

be the 
omplexi�
ation of a real singularity �. Suppose that

tp(�

C

) =

P

a

I




I

. Then tp(�;Z

2

) =

P

a

I

w

I

.

Remark 3.4. We say that �

C

is the 
omplexi�
ation of the real singularity � if they are de�ned

by the same equation and 
odim

C

�

C

= 
odim

R

�. The 
odimension 
ondition is not always

satis�ed see [VS91℄.

For a 
ooriented singularity � we have r

�

tp(�;Z)

�

= tp(�;Z

2

) and Ker(r) = 2�Z[p

1

; : : : ; p

i

; : : : ℄

so we need some extra information to �nd out the 
oeÆ
ients of the Pontryagin 
lasses.

I

22

+ II

22

: This Thom polynomial 
oin
ides with the Thom polynomial of the �

2

Thom-

Boardman singularity whi
h was 
al
ulated by Ronga ([Ron71℄):

tp(I

22

+ II

22

) = p

1

+ v

1

v

3

:

A

4

+ 2I

22

: This 
o
y
le has order 2 in the Vassiliev 
omplex, so the Thom polynomial


annot 
ontain Pontryagin 
lasses. So by the Borel-Hae
iger theorem:

tp(A

4

+ 2I

22

) = v

4

1

+ v

1

v

3

:

I

26

+ II

26

+ (x

2

+y

3

; xy

2

): This 
o
y
le also has order 2 in the Vassiliev 
omplex, so:

tp(I

26

+ II

26

+ (x

2

+y

3

; xy

2

)) = v

2

1

v

2

v

4

+ v

1

v

2

v

5

+ v

1

v

3

v

4

+ v

1

v

2

2

v

3

+ v

2

1

v

2

3

+ v

3

1

v

5

A

8

+ 2I

26

+ 4IV

4

: This 
o
y
le also has order 2 in the Vassiliev 
omplex, so:

tp(A

8

+ 2I

26

+ 4IV

4

) = v

8

1

+ v

3

1

v

5

+ v

2

1

v

2

v

4

+ v

1

v

2

v

5

+ v

1

v

3

v

4

+ v

1

v

2

2

v

3
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� = (x

2

+y

3

; xy

2

)� 2IV

4

: Also by the Borel-Hae
iger theorem it is enough to 
al
ulate

rationally, i.e. to �nd the 
oeÆ
ients A and B for tp(�;Q) = Ap

2

1

+Bp

2

. First we apply

the restri
tion equation method from [Rim01℄, see also [FR℄, to the `test germ' II

2;2

. As

it is explained in [FR℄ we need the representations �

0

and �

1

of O(2) on the sour
e and

target spa
e of II

22

. They were 
al
ulated in [Rim02b℄: �

0

= �

1

� �

3

and �

1

= �

2

� �

3

,

where �

n

is the unique 2-dimensional representation of O(2) whi
h restri
ts to �

n

on

U(1)

�

=

SO(2) where � is the standard representation of U(1). So, using the notation

of [FR℄:

p(�

1

	 �

0

) =

1 + 4p

1

1 + p

1

= 1 + 3p

1

� 3p

2

1

+ � � �

and

j

�

II

22

tp(�;Q) = A(3p

1

)

2

+B(�3p

2

1

) = 0;

whi
h implies that B = 3A. We need one more equation. For this we need another `test

germ' whi
h has at least a U(1) symmetry and also we need to be able to understand

the IV

4

and (x

2

+ y

3

; xy

2

)-points near the origin. Su
h singularities turn up in high


odimension, and the 
omputation of the IV

4

and (x

2

+ y

3

; xy

2

) points near the origin

is usually a huge 
omputation. However the referee provided us with an example where

the 
al
ulations are simple.

The idea is the following: Any smooth map ' : R

n

! R

n

indu
es a G

'

-equivariant

map ~' : R

n

! E where E is the spa
e of germs as before. If ~' is transversal to the


losure of a stratum � then ~'

�

tp(�) 2 H

�

(BG

'

) is equal to the G

'

-equivariant Poin
ar�e

dual of ~'

�1

(��). It is easy to see that this equation holds even if ~' is not transversal

along a subset of R

n

having higher 
odimension than the 
odimension of �.

Let the `test germ' be

(z; a

1

; : : : ; a

4

)! (jzj

2

; Re

�

4

X

i=1

a

i

z

i

�

; a

1

; : : : ; a

4

)

(the number 4 
an be 
hanged to greater integers, too), where z and the a

i

's are from

C

�

=

R

2

. This germ 
learly has a U(1) symmetry, whi
h a
ts by � � � � �

2

� �

3

� �

4

on the sour
e and by 1

R

2

� � � �

2

� �

3

� �

4

on the target, so its relative Pontryagin


lass is

p(�

1

	 �

0

) =

1

1 + t

2

= 1� t

2

+ t

4

� : : : ;

where t is the �rst Chern 
lass of �. Easy 
omputation shows that the lo
us of IV

4

-

singularity points in the sour
e is z = a

1

= a

2

= a

3

= 0, a

4

6= 0, whose 
losure is smooth.

Hen
e the 
lass dual to this 
losure is easily 
omputed: (�t)(�2t)(�3t) = �6t

4

(=the

Euler 
lass of the representation normal to the a

1

= a

2

= a

3

= 0 spa
e).

The Thom-Boardman symbol of the singularity (x

2

+ y

3

; xy

2

) is �

2;1

. Di�erentiation

shows that no su
h singularities are in the sour
e spa
e of this map. Sin
e ~' is auto-

mati
ally transversal at stable singularities of ', it is transversal to the 
losure of the

union of the the orbit of (x

2

+ y

3

; xy

2

) and IV

4

, ex
ept at 0. Applying the restri
tion

equation we get

A(�t

2

)

2

+B(t

4

) = �2 � (�6t

4

):
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Comparing this with B = 3A we already knew, we obtain the unique solution A =

3; B = 9.

So for the proper 
oorientations we have:

tp((x

2

+y

3

; xy

2

)� 2IV

4

) = 3(p

2

1

+ 3p

2

) + v

2

1

v

2

v

4

+ v

1

v

2

v

5

+ v

1

v

3

v

4

+ v

3

v

5

:

4. Complex versus real

In this se
tion we dis
uss a 
omplexi�
ation te
hnique (and its relation to Thom polynomials)

di�erent from the Borel-Hae
iger one [BH61℄ as suggested to us by A. Sz}u
s and R. Sz}oke. Given

a smooth map f : N

n

! P

p

between real manifolds 
onsider its 
omplexi�
ation f

C

: N

C

! P

C

in the Bruhat-Whitney sense [BW59℄ as follows.

First 
hoose real analyti
 atlases for N and P and perturb f to be real analyti
 [Hir76, Thm.

5.1℄. Then 
hange the real 
oordinate 
harts to 
omplex ones and glue them with the original

gluing maps now 
onsidered as 
omplex analyti
 maps. In fa
t these gluing maps 
an be de�ned

only in a neighborhood of R

n

in C

n

, so 
onsider only these tubes. Also f , now 
onsidered as

a 
omplex analyti
 map on ea
h 
oordinate 
hart is de�ned only in a (possibly smaller) tube.

Choosing these appropriately small tubes we get a map f

C

: N

C

! P

C

. Sin
e N

C

�

=

TN we

identify the 
ohomology rings of N and N

C

.

Now let � be a real singularity of 
odimension 
 whi
h is the 
omplete real form of its


omplexi�
ation �

C

(e.g. � = A

i

, �

C

= A

C

i

or � = I

2;2

[ II

2;2

, �

C

= I

C

2;2

). Also suppose

that � de�nes a 
o
y
le in the Vassiliev 
omplex, i.e. the set of �-points �(f) � N de�nes a


ohomology 
lass [�(f)℄ in N .

In the next lemma � is a 
oorientable singularity.

Lemma 4.1. If �(f) is 
losed then [�(f)℄

2

= [�

C

(f

C

)℄ 2 H

2


(N).

Proof. A tubular neighborhood of S := �(f) in N

C

is di�eomorphi
 to its normal bundle.

However

�(S � N

C

) = �(S � N)� TN j

S

= �(S � N)�

�

TS � �(S � N)

�

;

and the di�eomorphism 
an be 
hosen so that �

C

(f

C

) is the total spa
e of the middle term.

The 
ohomology 
lass �(f) is represented by the total spa
e of the 2

nd

and 3

rd

term. Sin
e

the interse
tion of �(f) and its perturbation (0; t; n) 7! (n; t; 0) is exa
tly �

C

(f

C

) the lemma is

proved.

Remark 4.2. We used an analyti
 method to prove this lemma. It is possible to give a more

homotopy theoreti
 proof, valid in the more general 
ase of Thom polynomials for group a
tions,

however it is beyond the s
ope of this paper.

Using this lemma we 
an 
onstru
t an obstru
tion for avoiding singularities more 
ompli
ated

than �:

De�nition 4.3. Let � be a real singularity of 
odimension d admitting a 
omplexi�
ation �

C

.

s(�) := i

�

tp(�

C

)� tp

2

(�) 2 H

2d

(BO;Z)

where i : BO ! BU is the map indu
ed by the embedding O! U .

Lemma 4.1 implies the following:
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Corollary 4.4. If s(�)(f) 6= 0 then there exists a singularity � more 
ompli
ated than � su
h

that �(f) is not empty.

We 
an see that Theorem 3.3 is equivalent to the following:

Theorem 4.5. s(�) is even i.e. its mod 2 redu
tion is 0.

It would be interesting to �nd a dire
t proof of this theorem.

Example 4.6. To see that s(�) is not always 0 
onsider maps of 
odimension 1, i.e. maps

N

�

! P

�+1

and let � = A

2

(= �

1;1

). The Thom polynomial of its 
omplexi�ed is ([Ron72℄,

[Rim01℄):

tp(A

C

2

) = 


2

2

+ 


1




3

+ 2


4

:

By Lemma 4.1:

tp(A

2

;Z) = Ap

1

+ v

1

v

3

;

where A is an odd integer. (In fa
t A = 1 as Toru Ohmoto and Andr�as Sz}u
s explained to us.)

So

s(A

2

) = p

2

1

+ v

2

1

v

2

3

+ 2p

2

� (Ap

1

+ v

1

v

3

)

2

= (1� A

2

)p

2

1

+ 2p

2

;

whi
h is nonzero.

Remark 4.7. In some sense s(�) is not a new obstru
tion. In the notation of [FR℄ it is an

element of the avoiding ideal A

��

. Kazarian 
alls su
h 
lasses higher Thom polynomials in

[Kaz97℄. On the other hand these avoiding ideals are not known ex
ept in spe
ial 
ases|e.g.

�

i

singularities, see [FP98, Ch. IV℄.

Example 4.8. The 
ase of Thom-Boardman singularities �

i

(k)|where k refers to maps R

n

!

R

n+k

|has some interesting properties. They are 
oorientable if i and k are even. Their Thom

polynomials were 
al
ulated in [Ron71℄ and [And82℄. One 
an also 
al
ulate them by the

method of restri
tion (whi
h is somewhat surprising in the light of the previous 
al
ulations in

this paper), the 
al
ulation is 
ompletely analogous to the 
omplex 
ase in [FR℄. The other|

probably related|phenomenon is that s(�

i

(k)) = 0. It is not a 
onsequen
e of Remark 4.7

sin
e A

��

\H

2d

(BO;Z) 6= 0 for d = 
odim�

i

(k) = i(i + k).

Referen
es

[And82℄ Y. Ando. Elimination of 
ertain Thom-Boardman singularities of order two. J. Math. So
. Japan,

34(2):241{267, 1982.

[AVGL91℄ V. I. Arnold, V. A. Vassiliev, V. V. Goryunov, and O. V. Lyashko. Singularities. Lo
al and global

theory. En
. Math. S
i. Dynami
al Systems VI. Springer, 1991.

[BH61℄ A. Borel and A. Hae
iger. La 
lasse d'homologie fondamentale d'un espa
e analytique. Bull. So
.

math. Fran
e, (89):461{513, 1961.

[BW59℄ F. Bruhat and H. Whitney. Quelques propri�et�es fondamentales des ensembles analytiques r�eels.

Comm. Math. Helv., (33):132{160, 1959.

[FP98℄ W. Fulton and P. Praga
z. S
hubert varieties and degenera
y lo
i. Springer-Verlag, 1998.

[FR℄ L. Feh�er and R. Rim�anyi. Computation of Thom polynomials and other 
ohomologi
al obstru
tions

for group a
tions. www.math.ohio-state.edu/~rimanyi/
ikkek.

[Hir76℄ M. W. Hirs
h. Di�erentiable Topology. Number 33 in Grad. Texts in Math. Springer, 1976.

[Kaz97℄ M.

�

E. Kazarian. Chara
teristi
 
lasses of singularity theory. In V. I. Arnold et al., editors, The

Arnold-Gelfand mathemati
al seminars: geometry and singularity theory, pages 325{340, 1997.



THOM POLYNOMIALS WITH INTEGER COEFFICIENTS 11

[Lan76℄ L. Lander. The stru
ture of the Thom-Boardman singularities of stable germs with type �

2;0

. Pro
.

London Math. So
. Third Ser., XXXIII.:113{137, 1976.

[Mat69℄ J. Mather. Stability of C

1

mappings IV. Classi�
ation of stable germs by R-algebras. Publ. Math.

IHES, (37):223{248, 1969.

[Mat71℄ J. Mather. Stability of C

1

mappings. VI. the ni
e dimensions. In Liverpool Singularities |

Symposium I, number 192 in SLNM, pages 207{253, 1971.

[MS74℄ J. Milnor and J. Stashe�. Chara
teristi
 Classes. Number 76 in Ann. Math. Studies. Prin
eton

University Press, 1974.

[Ohm94℄ T. Ohmoto. Vassiliev 
omplex for 
onta
t 
lasses of real smooth map-germs. Rep. Fa
. S
i.

Kagoshima Univ., pages 1{12, 1994.

[PW95℄ A. du Plessis and C. T. C. Wall. The geometry of topologi
al stability. Oxford University Press,

1995.

[Rim96℄ R. Rim�anyi. Generalized Pontrjagin-Thom 
onstru
tion for singular maps. PhD thesis, E�otv�os

University, 1996.

[Rim00℄ R. Rim�anyi. On the orientability of singularity submanifolds. J. Math. So
. Japan, 52(1):91{98,

2000.

[Rim01℄ R. Rim�anyi. Thom polynomials, symmetries and in
iden
es of singularities. Inv. Math.,

143:499{521, 2001.

[Rim02a℄ R. Rim�anyi. Multiple point formulas|a new point of view. Pa
i�
 J. Math., 202(2):475{489, 2002.

[Rim02b℄ R. Rim�anyi. On right-left symmetries of stable singularities. Math. Z., 242:347{366, 2002.

[Ron71℄ F. Ronga. Le 
al
ul de la 
lasse de 
ohomology enti�ere duale a �

k

. In Liverpool Singularities |

Symposium I, number 192 in SLNM, pages 313{315, 1971.

[Ron72℄ F. Ronga. Le 
al
ul des 
lasses duales aux singularit�es de Boardman d'ordre 2. Comm. Math. Helv.,

47:15{35, 1972.

[Vas88℄ V. A. Vassiliev. Lagrange and Legendre Chara
teristi
 Classes. Gordon and Brea
h, 1988.

[VS91℄ V. A. Vassiliev and V. V. Serganova. On the number of real and 
omplex moduli of singularities of

smooth fun
tions and of realizations of matroids. Mat. Zametki, 49(1):19{27, 1991. (Russian)

Translation in Math. Notes 49:1-2 (1991) p. 15-20.

R

�

enyi Institute, Re

�

altanoda u. 13-15, Budapest 1053, Hungary

E-mail address : lfeher�math-inst.hu

Department of Analysis, ELTE TTK, R

�

ak

�

o
zi

�

ut 5, Budapest 1088, Hungary

E-mail address : rimanyi�
s.elte.hu


