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ABSTRACT. We give two formulas for the Chern-Schwartz-MacPherson class of symmetric and
skew-symmetric degeneracy loci. We apply them in enumerative geometry, explore their algebraic
combinatorics, and discuss K theory generalizations.

1. INTRODUCTION

Degeneracy loci formulas are universal expressions for the characteristic classes of certain
degeneracy loci. The two most widely used such formulas are

e the Giambelli-Thom-Porteous formula [Po]

[ET’] = S(T+Z)T7

and
o formulas of Jézefiak-Lascoux-Pragacz and Harris-Tu [JLP, HT, FR1, AF]

_ =5 _
0] = 810021, [ ]=2""8 01,21

Some explanations are in order.

1.1. Degeneracy loci interpretation. First we explain the two formulas above in the language
of “degeneracy loci”. Let ¢ : A" — B"*! (I = 0) be a vector bundle map over the base space
M, and let X, be the set of points x in M over which 1, has rank n — r (that is, corank 7).
Then under suitable assumption on M and transversality assumption on v, the above Giambelli-
Thom-Porteous formula holds for the fundamental cohomology class [%,] € H*(M) of X,, where
Sxon, = det(exn+j—i)ij=1,..k and ¢; is defined by

1+ aB)t+ (Bt +...

1 l+et+ct +...= :
(1) Fattottt 1+ e (At + (A2 + ...

Now let A be a rank n vector bundle, and ¢ : A* — A be a skew-symmetric or symmetric
vector bundle map over the base space M, and let X" be the set of points x in M over which
¥, has corank r (in the skew-symmetric case n — r is necessarily even). Then, under suitable
assumption on M and transversality assumption on 1, the Jozefiak-Lascoux-Pragacz-Harris-Tu

formulas hold, where s, is the same as above, with ¢; the ith Chern class of A.
1
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1.2. Equivariant cohomology interpretation. Consider the G = GL,(C) x GL,;(C) action
on Hom(C",C"") by (A, B)-X = BXA™!, and let ¥, be the subset in Hom(C", C"™) of matrices
of corank 7. Then the Giambelli-Thom-Porteous formula holds for the equivariant fundamental
class of [X,] in H*(BG). The classes ¢; are as in (1) where a; and b; are the Chern classes of the
tautological rank n and rank n + [ vector bundles over BG.

Similarly, consider the G = GL,(C) action on the set of skew-symmetric or symmetric n x n

matrices by A+ X = ATXA and let ¥, %% be the set of those of corank r. Then for the

G-equivariant fundamental classes [%, ], [%, ] the Jézefiak-Lascoux-Pragacz-Harris-Tu formulas
hold in H*(BG), where ¢; is the i’th Chern class of the tautological bundle over BG.

1.3. MacPherson deformation of the fundamental class. The notion of fundamental class
has an inhomogeneous deformation, called Chern-Schwartz-MacPherson class (CSM), denoted

¢M(%) = (Y « M) = [X] + higher order terms.
The CSM class encodes more geometric and enumerative properties of the singular variety ¥ than
its lowest degree term, the fundamental class. It is also related with symplectic topology and
representation theory (through Maulik-Okounkov’s notion of “stable envelope classes” [MO]), at
least in Schubert calculus settings, see [RV, FR2, AMSS1].

The CSM version of the Giambelli-Thom-Porteous formula is calculated in [PP], see also
[FR2, Z]. To give a sample of that result we introduce the Segre-Schwartz-MacPherson class
(SSM): s"™(X < M) = ™™ (X < M)/c(TM). This carries the same information as the CSM class,
but certain theorems are phrased more elegantly for SSM classes. We have

Ssm(Eo e Hom((C", Cn+1)) = 89— S + (283 + 821) + (—384 - 3831 - 8211) + ...

(Those looking for positivity properties of such expansions may find this formula disappointing,
but luckily positivity can be saved, see [FR2, Section 1.5].)

The goal of this paper is to calculate the CSM (or equivalently, the SSM) deformations of
the Jézefiak-Lascoux-Pragacz-Harris-Tu formulas. The reader is invited to jump ahead and see
sample results in Section 6.

1.4. Plan of the paper. After introducing our geometric settings (the A2C* and S*C" repre-
sentations) in Section 2, we recall the notion of Chern-Schwartz-MacPherson class in Section 3.
In particular, first we recall the traditional approach to CSM classes via resolutions, and push-
forward, and then we recall the recent development, triggered by Maulik-Okounkov’s notion
of stable envelopes, claiming that CSM classes are the unique solutions to some interpolation
problems.

We follow the traditional approach in Section 4, and we follow the interpolation approach in
Section 5. Both yield to formulas for CSM classes of the orbits of A2C" and S?C". The fact that
the formulas obtained in the two approaches are equal is not obvious algebraically from their
form. The one obtained from interpolation seems better: it is “one summation shorter”, also,
the other one is an exclusion-inclusion formula (sum of terms with alternating signs), hence it is
not obviously suitable for further combinatorial study.
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In Section 6 we make the first steps towards the algebraic combinatorics of the obtained
formulas. We discuss stability, normalization, and most importantly positivity properties. The
positivity properties can be studied for Schur expansions, or for the more conceptual expansions
in terms of S, functions.

In Section 7 we show sample applications in geometry of the calculated CSM classes. Namely,
we focus on the most direct consequences, the Euler characteristics of general linear sections of
symmetric and skew-symmetric degeneracy loci.

Finally, in Section 8 we discuss two natural directions for future study. First we give sample
results about the closely related Chern-Mather classes of symmetric and skew-symmetric degen-
eracy loci. Then we explore the natural K theory analogue of CSM class, the so-called motivic
Chern class. The traditional approach to motivic Chern classes is similar to the traditional ap-
proach to CSM classes (roughly speaking, replace the notion of Euler characteristic with that of
chi-y-genus). Hence the K theory analogs of the results in Section 4 are promising. However,
the interpolation approach to motivic Chern classes is more sophisticated [FRW2], hence finding
analogs of the results in Section 5 remains a challenge.

Acknowledgment. The first author was supported by the he Development and Promotion of
Science and Technology Talents Project (Royal Government of Thailand scholarship) during his
doctoral studies at UNC Chapel Hill. The second author is supported by a Simons Foundation
grant.

Notation. Denote [n] = {1,...,n}. The set of r-element subsets of [n] will be denoted by ([’;’]).

For I e ([:f]) let I = [n] —I. Varieties are considered over the complex numbers, and cohomology
is meant with rational coefficients.

2. THE REPRESENTATIONS N2C", S*C*

Consider the action of GL,(C) on the vector space of skew-symmetric n x n matrices, and
on the vector space of symmetric n x n matrices, by A- X = ATXA. These representations
will be denoted by A2C" and S?C" respectively. The orbits of both of these representations are
determined by rank (see Linear Algebra textbooks, e.g. [R, Sect. 9]).

e For 0 < r < n, n —r even, the orbit of rank n — r (“corank 7”) matrices in A*C"
will be denoted by ¥,,. For example X! = H®.. @HP0D...0 € ¥, where
) ) — T =

(n=7)/2 r
0 1 : N n .
H = (_1 O)' We have codim(3}, < AC") = ().
e For 0 < r < n, the orbit of rank n—r ( “corank ) matrices in S?C" will be denoted by X .
For example X7 =1®...®1®0®...0€ X5 . We have codim(Xy, = S°C") = ("1).
) —_—  — ) )

2
n—r T

In later sections we will approach the geometric study of these orbits by constructing resolutions

of their closures, and by studying their stabilizer groups.
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3. CHERN-SCHWARTZ-MACPHERSON CLASSES

Deligne and Grothendieck conjectured [Su| and MacPherson proved [M] the existence of a
unique natural transformation C, : F(—) — H,(—) from the covariant functor of constructible
functions to the covariant functor of Borel-Moore homology, satisfying certain properties. In-
dependently, Schwartz [Sch] introduced the notion of ‘obstruction class’ (for the extension of
stratified radial vector frames over a complex algebraic variety), and later Brasselet and Schwartz
[BS] proved that C, and the obstruction class essentially coincide, via Alexander duality. We will
study the equivariant cohomology version of the resulting Chern-Schwartz-MacPherson (CSM)
class, due to Ohmoto [O1, 02, O3].

3.1. Equivariant CSM class, after MacPherson, Ohmoto. Let G be an algebraic group
acting on the smooth algebraic variety M, and let f be a G-invariant constructible function f
on M (say, to Z). The associated G-equivariant Chern-Schwartz-MacPherson class ¢™(f) is an
element of HE:(M) = HE (M, Q).

Before further discussing this notion let us consider a version of it, the G-equivariant Segre-
Schwartz-MacPherson (SSM) class s(f) = ¢™(f)/c(TM) € HE*(M).! Also, for an invariant
(not necessarily closed) subvariety ¥ < M denote ¢®(X) = ™™ (X < M) = ¢™(1x) € HE(M),
and s*™(X) = "™ (X < M) = s (1x) € H:(M), where 1y, is the indicator function of X.

We will sketch Ohmoto’s definition below in Remark 3.2. For our purposes the following
(defining) properties will be sufficient.

(i) (additivity) For equivariant constructible functions f and g on M we have
M +g) =)+ (g)  and A f) = A-IN(f) for Ae Z.

(ii) (normalization) For an equivariant proper embedding of a smooth subvariety i : ¥ < M we
have
N e M) =i,c(TY) e HL(M).

(iii) (functoriality) For a G-equivariant proper map between smooth G-varieties  : Y — M,

&) Ba(eTY) = 35+ (M)

where M; = {x e M : x(n~'(x)) = j}.
The named three properties uniquely define the CSM class (the uniqueness is obvious, the exis-
tence is the content of the arguments of MacPherson, Brasselet-Schwartz, Ohmoto). The CSM
class, however, satisfies another key property [O1, Theorem 4.2], [O3, Proposition 3.8]:

(iv) Let ¥ < M be a closed invariant subvariety with an invariant Whitney stratification. For
an equivariant map between smooth manifolds n : Y — M that is transversal to the strata
of X, we have

s H(E)) = 0" (5™(X)).

ISince we divided by the equivariant total Chern class “c(T'M) = 1+higher order terms”, the SSM class may
be non-zero in arbitrarily high degrees: it lives in the completion, as indicated. In the rest of the paper we will
not indicate this completion, and write ¢S (f),s™(f) € HE(M).



CHARACTERISTIC CLASSES OF SYMMETRIC AND SKEW-SYMMETRIC DEGENERACY LOCI 5

Remark 3.1. The most natural characteristic class, the fundamental class
[Z - M] c H?COdim(ECM)(M)

of a closed subvariety > < M behaves nicely with respect to both push-forward and pull-back.
The CSM “deformation” of the notion of fundamental class is forced to behave nicely with respect
to push-forward (see axiom (iii)). Yet, it is rather remarkable that it remains well-behaving with
respect to pull-back as well (see property (iv)).

We called the CSM class a ‘deformation’ of the fundamental class because we also have [O1,
Section 4.1]:

(v) For a subvariety ¥ < M the lowest degree term of ¢™ (X < M) is [X < M]. Terms of degree
higher than dim M are 0. For projective M the integral of (the term of degree dim M of)
™ (X < M) is the topological Euler characteristic of 3.

Remark 3.2. We have set up the CSM classes in cohomology, but their natural habitat is homol-
ogy. Following MacPherson, Ohmoto defines them by first proving the existence and uniqueness
of a natural transformation C¢ : F%(—) — HE(—) from the abelian group of G-equivariant
constructible functions to the G-equivariant homology (some non-totally-trivial definitions are
needed to make this work!), satisfying axioms analogous to (i)—(iii) above. Then the cohomology
version considered in this paper is obtained by composing C¢ with homology push-forward to
the ambient space, and Poincaré-duality in the smooth ambient space.

3.2. Interpolation characterization of CSM classes. Under certain circumstances, equi-
variant CSM classes are also determined by a set of interpolation properties [RV, FR2].

Consider a complex, linear algebraic group G and its linear representation on the complex
vector space V. For an orbit ¥, and x € ¥ let Gy < G be the stabilizer subgroup of x. Let
Ty, = T, X be the tangent space of ¥ at z, and Ny = T,V /Ty, both Gg-representations (these
definitions don’t depend on the choice of z in ¥ up to natural isomorphisms). We will use the
Gy, equivariant Euler and total Chern classes of these representations. Note that the inclusion
Gy < G induces a map ¢y, : H*(BG) — H*(BGyx)—which is also independent of the choice of
x e .

Assumption 3.3. We assume that the representation G C V has finitely many orbits, the orbits
are cones (i.e. invariant under the dilation action of C*), and that the Euler class e(Nx) £ 0 for
all 3.

Theorem 3.4 ([FR2]). Under Assumption 3.3 the CSM class of the orbit ¥ is uniquely deter-
mined by the conditions
(1) ¢ (c™ (X)) = c(Tx)e(Nyx) in H*(BGy);
(2) for any orbit Q, ¢(Tq) divides po(c™ (X)) in H*(BGq);
(3) for any orbit  # 3, deg(pa(c™(X))) < deg(c(Tn)e(Nq)).
In condition (3) by “deg” of a possibly inhomogeneous cohomology class we mean the degree

of it highest degree non-zero degree component (and deg0 =_—oo).
It also follows from these conditions that for an orbit Q ¢ ¥ we have ¢q(X) = 0.
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4. SIEVE FORMULA FOR THE CSM CLASSES

Our goal is to calculate the GL, (C)-equivariant CSM (or SSM) class of the orbits of A2C" and
S2C". They are classes in

Héy, o (NCY) = HEp, ()(S°C") = H*(BGL,(C)) = Qlan, ..., ],

where «;’s are the Chern roots of the tautological n-bundle over BGL,(C). The tautological
n-bundle over BGL,(C) = Gr,(C%) is the N — oo limit of the tautological subbundle {(W, w) €
Cr,(CY) x CY : we W} — Gr,(CY). In the whole paper ¢, will denote the k’th Chern class of
that bundle, ie. the £’'th elementary symmetric polynomial of the «;’s.

In this section we make calculations using “traditional methods”, and achieve an exclusion-
inclusion type formula (Theorems 4.5, 4.7), then in the next section we solve the relevant inter-
polation problem and find improved formulas.

4.1. Fibered resolution. Consider a G-representation V', and an invariant closed subvariety
>, < V. The G-equivariant map n : X — V is called a fibered resolution of X if there exists a
G-equivariant commutative diagram

/\

ST L KkxYV Ay

S L

K

where 7 is a resolution of singularities of 3, 7y, is the projection to V', mx is the projection to K,
K is a smooth projective G-variety, the map > — K is a G-vector bundle, ¢ is a G-equivariant
embedding of vector bundles, and = m, 0i. Let v = (K x V — K)/(X — K) be the G-
equivariant quotient bundle over K. A pullback of the bundle v to 3 is the normal bundle of the
embedding ¢ : > — K x V. Define
(3) Py, = % = N (%) = nu(c(—v)c(TK)) = L{ e(v)e(—v)e(TK).
The equality of the displayed expressions is detailed in [FR2, Section 10.1].

The significance of the class ®y is that, on the one hand, one can write formulas for it (due to
its last displayed expression), and, on the other hand, the CSM class of ¥ is a linear combination
of ®-classes of some varieties contained in .

4.2. Sieve formula for SSM classes of orbits of A°’C". Elements X ¢ A’C" will be identified
with skew-symmetric bilinear forms on C™*, and in turn, with skew-symmetric linear maps C™* —
C", without further notation. For 0 < r < n, n — r even, define

52, = {(W, X) € Gr,(C™) x NC*, X|w = 0},

and consider the diagram
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n

T

5, — Gr,(C™) x XC* —2 NC"

lﬂl
Gr, (C"),

where i is the inclusion, 7y, T are projection maps on the first and second coordinates, respec-
tively. This diagram is a fibered resolution of EQ’T. Consider the corresponding ®-class (see (3))

a5, = f e(v)e(—1)e(T Cr, (C™)),
Gr(C7*)

where v is the quotient bundle (Gr,(C™) x AC" — Grr(C”*))/(iQm — Gr,.(C™)).

Proposition 4.1. For 0 <r <n, n —r even, we have
it (a; + a;)(1 — o + o)
) =2 | 115 LIT]
Icln] \i<jel L+ai+aq iel (1+a;i+aq ( aj + ;)
|I|=r

Proof. The fiber of the bundle £, — Gr,(C™) over W € Gr(C™) is {X € 2C": X|y = 0} =
AQ(Ann(W)) where Ann(W) = {v e C" : ¢p(v) =0 for all p € W} € Gr,,_.(C"). Hence the bundle
ZnAT — Gr,.(C™) is A%2(Q*), where 0 —> S — C™ — @Q — 0 is the tautological exact sequence of

bundles over Gr,(C"*).
Hence we have

v = BC -5, = (51 @ A2(Q1) @ (5 ©Q") — AHQ") = A(5) @ (S ® Q°).

Let 01,...,9, be the Chern roots of the bundle S, and let wy,...,w,_, be the Chern roots of Q.
Then

ew)=[] (6= [[](~wi—0).
I<i<g<r i=1 j=1
cv)y= ] @=6-4¢) (1—w; —dy),
I<i<g<sr i=1j=1
o(T Gr,.(C™)) nn 1+ w; —6;),
=1 j=1

and from the definition of ®,;, we obtain

—& T 1+ w;—46;)
q)/\ — ] J .
e T T e

- (C™*) 1gi<j<r
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The equivairant localization formula for this integral in exactly (4). U

Proposition 4.2. For 0 <r <n, n —r even, we have

A ’, r+2 sm A
an,r = Z < r ) 8 (En,r-‘r%)

=+ 2 r+2i—2 o
_ _ sm(§A Y

Proof. The closure i:}r =X, Ul ,u---uX) s the image of 1. For each r < k < n and

n,n

n — k even, a preimage of each point in 3, is isomorphic to the space Gr,(C**). Note that
the Euler characteristic of the Grassmannian of all r-dimensional subspaces of a k-dimensional
vector space over C is (fj) Using property (iii) of CSM classes in Section 3.1, we have

n—r

EC B D W (i) L]

=0 r

Dividing both sides by ¢(A*C") proves the first equality of the proposition.
By the additivity property of SSM classes (see Section 3.1 (i)), we have

A S N
( ) S (ZH,T+2i) =

r

n—r

3
3

7
g

r+2 sm /A sm /A
< , > (S (Zn,r+2z’) -5 (En,r+2i+2))
i=0

3
3

’ T+ 2i r+2 —2 .
= —_— sm E )
i=0 <( r > ( r >> s n,?“+22)a

which completes the proof. O

Proposition 4.2 expresses the ®-classes as linear combinations of the SSM-classes. Inverting
the matrix of these linear combinations will therefore express the SSM classes in terms of the
d-classes.

Definition 4.3. Define the Euler numbers E, by

1 - E,
cosh(z) Z e

n=0

For odd n the number F, is zero. For even n Euler numbers form an alternating sequence:
Ey=1F,=—-1,FE, =5 FEs = —61, Fg = 1385, £y = —50512,.... For explicit formulas for the
Euler numbers see e.g. [WQ] and references therein.

Proposition 4.4. The inverse of the triangular matriz ((gg))ogi,jgm 18 (@g)Egj,gi)ogmgm, and

the inverse of the triangular matrix (@zill))ogmgm 18 ((;ZE)Egj,gi)ogmgm.
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Proof. The product of ((zg))ogi,jém and ((zg)Egj_Qi)0<i7j<m is upper triangular. For ¢ < j its
(i,7)'th entry is

119K\ (2§ 27\ & (2] — 2i 1 i=j
Foi on — Eoiop =
ZJ(%) <2k> 2j—2k (2@');(23'—21@) R0 i<

)

where the last equality follows from the defining equation

. 2t . Ext®  Egt! 1
TR TR Tt ) =L

The proof of the other statement is similar. O

For example

LT 0000
ors | _[0Q & H)
00115 00(4)(3)
000 1 0O 0 0 (6)
@E (E (E: (Q)Es 1 -1 5 -6l
0 (G)E ()E2 (5)Es 0 1 —6 75
N (Gl
0 0 (y)Eo (é)E2 00 1 -15
0 0 0 (g)Eo 00 0 1
Theorem 4.5. For 0 <r <n, n—r even, we have
S A N r+ 2 N
) S PED ) (M LA o
Proof. This is a consequence of Proposition 4.2 and Proposition 4.4. O

This theorem, together with the expression (4) for the ®-classes is our first formula for the
SSM classes ¥,,,. We call it the sieve formula, because the coefficients in the summation (5)
have alternating signs.

Example 4.6. For n = 2 we have

o1 + Qg
14+ a1+ ay

4

A A _ 2 3
@270—17 @2’2— —Cl_CI+Cl_Cl+...,

and therefore

sm A _ A A 2 3 4
s (X30) = Pog—Pyy=1—cr+ef —ci+cp— ...

sm A _ A 2 3 4
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For n = 3 we have

O3 =1+ (2c162 — 2c3) + (—4cicy + 4eies) + (4ccy + 2c1¢5 — 4ci ez — 2cp03)+
(—=10cics + 12¢1ce3 — 2¢3) + (—8c5cy + 24cics + 2¢1¢5 + 8cjcs — 32¢icocs + 8cicz) + .. -
D35 = (c100 —c3) + (—2¢ica + 2¢163) + (2¢]ca + €165 — 2cies — cacs)+

(=5cic3 + 6cicacs — 3) + (—4ciey + 12¢cy + c1c3 + Acies — 16C3 cycs — cacs + deyca) + ...

and
Ssm(2§,1) = (I)§1 3(1)3 3s Ssm(zz«?,:s) = (I):«?,:s'

4.3. Sieve formula for SSM classes of orbits of S2C". Arguments analogous to those in
Section 4.2 give the following theorem, we leave the details to the reader.

Theorem 4.7. For 0 < r < n, we have

where

o+« (o + ;)1 — o + o)
S — i J i J J i 0
e ICZ[;L] igll—i-oal—i-a]gn 1+al+a])(—aj+ozi)

\|=r

The fact that the sieve coefficients for symmetric loci are simple binomial coefficients, not
Euler numbers are due to the fact that E;f’r orbits exist for all r independent of parity, so at a
certain point in the argument we need to invert the matrix of all binomial coefficients, not only
the even ones.

Example 4.8. For n = 2, we have

(I)g,o =1,
o5 — 2(aq + ag)(1 4+ a1 + as + dayaz)
2L (14 200) (1 + 200) (1 + @y + as)
= 2¢; — 4¢; + 8¢5 + (—16¢] + 8cicy) + (32¢] — 40¢i ) +
5, — daqag(ag + ag)
: (14 2a1)(1 4 202) (1 + 1 + g)

= dejcy — 12¢iey + (28¢jcy — 16¢165) + . . .
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and
S ES ) = P5g — P35 + D5y =1—2¢; +4c] + (=8¢} + dciea) + (16¢] — 20cica) + . . .,
$(85,) = P5, — 205, = 2¢; — 4cf + (8¢ — 8cica) + (—16¢] + 32cTca) + . ..,
ssm(E§2) = <I>§2 = dcycy — 123y + (28¢3cy — 16c163) + . . ..

5. INTERPOLATION FORMULA FOR CSM CLASSES

In Section 5.1 we define some functions, that we call W-functions because of their vague
similarity to weight functions in [RTV]. Then in Section 5.2 we show that they represent CSM
classes.

5.1. The W-functions. For I < [n] let ay = {a; : i € I}. A permutation 7 € Si acts on a
rational function f(ov,...,ax) by (7 f)(a1,aq,...,ar) = f(arqy, ar@), -, 0rg)-

Definition 5.1. For 0 < r <n, n —r even, define the skew-symmetric W-function

W (o)) = Z W’ (ag) H (o + o) nl—[ az+oz2(1_4;al+a])

[I|=r i<jel i€l jel
Ic[n]
where
k
W (apq) = 1 Z - n (1+ s+ o) + o) 1 Qi1 — Qy;
) = —————
ST (5) & I<icj<k Qi — Oy o1 (21 +ag) (1 + g1 + )

Despite its appearance, W," is a polynomial (denominators cancel), it is in fact an integer
coefficient symmetric polynomlal in ay,), of highest degree term of degree —( 2—2n+r). The
function W) can be rewritten as

R 1 (cvir + o) (1 + ayr + o)
Wk(a[k])—@u 2 [T 11 j,_% :

2 1<7,<]<k Z E]
k] J

Example 5.2. We have Wy, = 1, Wy = a1 + ay = ¢4, and
W3y =1+ 20 + 205 + 203 + af + 03 + 04 + 3oas + 3oz + 3asas = 1+ 2¢1 + ¢ + ¢,
W3A73 = a%aQ + 06%053 + agag + alag + alag + 04204% + 2010003 = €19 — C3,
Wiy=1+2¢+ 3+ 2cy + 2c1¢9 + €3+ crc3 — 4y,
WPy =1+ 26 + ¢ + 2c103 + 2¢ics + 165 + cies — 4eqc,

A 2 2
Wiy = cicacs — cieq — 3.
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Definition 5.3. For 0 < r < n, define the symmetric W-function

Wrir(a[n]) = Z Wr‘ir(al—) H (0%' + Oéj) 1_[ 1_[ (061' + Oéj)(l + o; + aj)

= o — QO
|I|=r i<jel iel jel v J

where

12]

INIES

—ai (1 + 20a;-1) (1 — g1 + ag;)
(gi—1 + ) (1 + iy + Q)

1 (14 a; + aj) (o + )
S 7 )
Wk(a[kl)Z@ZT 11 e

21" resy 1<i<j<k v J i=1

The function err is also a symmetric polynomial in oy, of highest degree component of

n(nQ—‘rl) . [n—;’—&-lJ )

degree

Example 5.4. We have Wfo =1+ a +as+4dajas =14 ¢g + 4o, Wfl = 20y + 20 + 202 +
4o + 2043 = 2c] + 20%, WQ‘S:Q = 404%042 + 4041043 = 4cyco.

5.2. CSM classes in A’C" and S?’C" as W-functions.
Theorem 5.5. We have ¢™(2,),) = W2, and ™ (37 ) = Wy .

Proof. We will show that W," satisfies the three properties in Theorem 3.4 for NC"; along the

way we will see that the representation A’C" satisfies Assumption 3.3, hence the verification of
the three properties proves ¢ (X, ) = W .

Choosing the matrix X* (see Section 2) as the representative of the orbit ¥

the following data:

e The stabilizer group GL,(C)sg,  deformation retracts to Sp(n —r,C) x GL.(C). The

maximal torus of Sp(n — r,C) x GL,(C) embeds into the maximal torus of GL,(C) by

(51,52, -3 S(ner)/2> An—ri1, - - An) > (51, =51,52, =52, . ., S(n—r)/2; —S(n—r)/2> An—r+1, - - - , ()

and hence the map ¢y, —on Chern roots is

N
n,r

we can read

(&la ey Oy Oy 15+ - ,O{n) = (017 01y .. ,O'(n,r)/Q, —O'(n,r)/g, Op—rily .- ,Oén).

Equivalently, we have

n—r

n n

¢g£7T:H(1+ai)'—>ﬁ(1—af) [T +a).

i=1 i=n—r+1
o Ty, =span(e;®ej —e; Qe :1<i<j<ni<n—r), Ng, =span(e;®e; —e;®e; :
n—r+1<1i<j<n)and hence

C(Tzﬁ,r) = H (1 i g; i O'j) ﬁ 1_[ (1 i g; + Oéj),

1<i<y< ”gT 1=1 j=n—r+1

e(Ney, )= ] (ai+ay),

n—r+l<i<j<n
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where we used the short-hand notations (r + 0) := (v + 0)(x — o) and (1 + 0; + ;) :=
(1 +o0; + O'j)(l +o0; — Uj)(l —0; + Jj)(l — 0; — O'j).
We see that e(Nsx ) & 0 which proves that the representation A*C" satisfies Assumption 3.3.
Now we need to prove that the function W, satisfies properties (1)-(3) of Theorem 3.4.

Towards this goal, first we verify this claim for the special case of r = 0 (and necessarily n even).
Recall that

1
nA,o(a[n]) = m Z o n foi—1,2i-1 21,25 f2i,2i—1f2i 25

" oeSy, 1<i<j<?

where f; ; = (Hai(?jgé)ﬁaj ) Applying s, (as described above) to this expression term-by-term
7 J s

we obtian many 0 terms. The only non-zero terms correspond to ¢ € S,, such that o = 7 ... 7

for some 1 < ¢ < 2 where 7; = (2¢ — 1,27') for some 1 <’ < 2. There are 23 (2)! such terms, all

of the same value, hence

1 n (T (1+0;+0;)(to; £0;)
B3, (Wio) = vy -2 (5)!
mot 0T 0% (1) 2 Kggg (toi +ay)
= (1+O’i+O'J)
1<i<j<y

which verifies property (1).
To show that Wy, satisfies properties (2) and (3), consider the restriction map ¢s, = where

0 < m < n, n—m even. The non-zero terms in the image ¢x, (W,,) are those with o =

Ti...7 € Sy for some 1 < ¢ < 5™ such that 7; = (2¢' — 1,2¢') for some 1 < ' < 5™, The

Qﬁgﬁym—image of (1 + Qvgi—1 + 052];1)(1 + Qg1 + Oégj)(l + Qg + CYQj,l)(l + g + Oégj) is

(1+o0;+0)) if 1<i<j<bkm
(liO'i—i-OéQj_l)(liO'i-i-Oézj) if 1<Z<k77m<j<§,
and we see that H1<i<j<n_2m (Ltoito) [[.4 [[jmpm (1 £0i+a5) =c(Tyy,,) is a common

factor in every term of ¢x, (W), hence W, satisfies property (2).

Assume that 0 < m < k. Each term in the image ¢x, (W) has degree at most 4 - (”42).
Therefore

degoss, (720) <4+ ("7) = () = "5 = dewelTig Je(Ns; )

and therefore W, satisfies property (3).

Next we show that the general W," satisfies the properties (1)—(3) of Theorem 3.4. First
consider ¢x, (W,",). Due to the factor [[,c; [ [;ef(@i + a;) in the numerator of W,", it follows
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that only one term has non-zero ¢x, -image, and we obtain

(bETAL’T (Wr:r) = ¢Eﬁ,r( Ti\fr,O(af)) 1_[ (ai + aj) H ﬁ

n—r+l<i<j<n i=n—r+1 j=1 (Oéz‘ t O'j)
n—r
n 2
1<i<j<ngr n—r+l<i<j<sn i=n—r+1 j=1

= C(Tz'r/;,r)e(NE’r/{,r)'

This proves property (1).

Now let 0 < m < n, n—m even, and m # r, and we study ¢s, (W) If m < r,
then ¢, (W) = 0 either because of the factor [, (i + ;) or because of the factor
[Lier [Tjer(ci +a;) in W2, If m > r then all the non-zero terms in the image come from the
terms in W,", with I such that In{l,....,n—m} = . Let [ c {n—m+1,...,n}, and |I| =r.
Then

n—gm
Oy, (W, olar)) = (1+o,40) [] J[(+a;+on).
I<i<js 5™ jel—[n—m] k=1

and

brs H(O‘H‘O‘J 1—[1—[ (a; + ) (1 + o + o) _

o — @
i<jel i€l jel J

1—[ o+ s 1—[ 1—[ 1—[ (a; + aj) (i £ o) (1 + a; + ;) (1 + oy + o)
i J .

i<jel iel jel— k=1 (aj - az)(iO'k - Ozz)

The factor ]_[1<l<j<n m(ltoito) [T, i ]_[k 1 (1 +a; top) = c(Tx,,,) is a common factor
in all non-zero terms of ¢sz . (W), which proves property (2).
Now we consider the degree of ¢x, (W) for m # r. We have deg(¢z, (W', o)) < "3) -

2
5", and hence
dogton, (V) < (") <5 (5) + =)

()
= deg(c(Tx; , )e(Ns, ),

proving property (3). This completes the proof of the first statement, ¢ (X)) = W,",
theorem.

n

of the
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The proof of the second statement, the case of S2C", is analogous, we leave it to the reader
(or see [P]). O

6. TOWARDS THE ALGEBRAIC COMBINATORICS OF CSM cCLASSES or AN°C", S?C"

Characteristic classes of geometrically relevant varieties usually display stabilization and pos-
itivity properties. We can expect stabilization properties from the SSM versions, not from the
CSM versions, because the SSM version is the one consistent with pull-back (and hence transver-
sal intersection). Also, traditionally the combinatorics of characteristic classes show their true
nature when they are expanded in Schur basis.

Our formulas for the SSM classes obtained in Sections 4 and 5 can be expanded in Schur basis
(to fix our conventions, note that s;; = ij a0, So = ZKJ. a;a;), and we obtain

Ssm(zzA,o) =50 — 51+ (82 + 511) — (53 + 2591) + (54 + 2502 + 3531) — . ..
s (X10) =0 — 81+ (S2 + s11) — (83 + 2521 + 5111) + (54 + 2892 + 3531 + 35211 + S1111)
— (S5 + DSz + 4541 + DSo91 + 68311 + 4S9111) + - -
s (X30) =81 — (82 + 811) + (53 + 2591) — (54 + 2802 + 3831) + ...
s (Y1) =51 — (82 + s11) + (53 + 2591 + 8111) — (84 + 2822 + 3831 + 38211 + S1111)
+ (85 + Dsga + 4541 + DSoo1 + 68311 + 4S9111) — - -
Ssm(zzf,zl) =5321 — (35322 + 35331 + 35421 + 3530211)

+ (108332 + 105499 + 108431 + 65591 + 1053997 + 1083311 + 1034211) — ...

ssm(ZiO) =50 — 281 + 489 — 883 + 1654 — . ..

$(85 ) =s0 — 281 + (45 + 4s11) — (853 + 12501) + (1654 + 12595 + 2855) — . ..

(55 0) =so — 281 + (452 + 4s11) — (83 + 12501 + 8s111) + (1654 + 1250 + 28531 + 285211) — .. .
ssm(Eil) =251 — 489 + 853 — 1654 + . ..

S (55) =281 — (482 + 4s11) + (855 + 821) — (1654 + 16531) + ...

$(551) =251 — (452 + 4511) + (855 + 8521 + 8s111) — (1654 + 16531 + 165017) + . ..

S (85 ,) =421 — (12500 + 12551) + (40832 + 28s41) — . ..

ssm(Z:fQ) =4591 — (12899 + 12531 + 125911) + (40532 + 28541 + 405291 + 408311) — . ..

Here are some observations on these expressions:

e (stabilization) For n < m the formula for s*(%,,,) also works for s (X%, ,) (either
NC™ or S2C"). Of course, some sy functions may be non-0 for m variables, but 0 for n
variables, so some terms of s°(%,, ) are not necessary to name s (%,, ). The reason for
this stabilization, on the one hand, is that A2 C* can be viewed as a linear section of A2C™
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(consistent with the group actions) such that orbits of A2 C" are transversal to this linear
space, and on the other hand, SSM classes are consistent with transversal intersection,
see (iv) in Section 3.1. Due to this stabilization one may consider the limit objects (formal
power series) s (2 ,). In [P] generating functions (in the “iterated residue” sense) are
presented for these limit power series.

o (positivity) We expect that the coefficients of SSM classes in Schur basis have predictable
signs. All the above examples support

Conjecture 6.1. The Schur expansions of s (3, ) and s (X5 ) have alternating signs.

The sign behavior of SSM classes is determined under very general circumstances in
[AMSS2]. Tt would be interesting to check whether results in that paper imply our con-
jecture.

o (lowest degree terms) The lowest degree terms of both CSM and SSM class is the
fundamental class of the closure of the orbit. Hence the expressions above are all of the
form s"™(3),) = $r_1,-2,..1 + h.ot., (55 ,) =277 s, 1 1 + heodt..

¢ (normalization) The additivity property of CSM classes imply that the sum of the SSM
classes of all orbits of a representation (with finitely many orbits) is 1—we encourage the
reader to verify this property in the above examples. Normalization and positivity prop-
erties together indicate a formal similarity between SSM theory and probability theory,
cf. [FR2, Remark 8.8].

Our choice above for expanding in terms of Schur functions, is essentially due to tradition.
Schur functions are the fundamental classes of so-called matrix Schubert varieties. Those vari-
eties are indeed very basic ones, but the choice of choosing their fundamental class as our basic
polynomials might be improved sometimes. It might be more natural that for SSM classes of
geometrically relevant varieties the “right” choice of expansion is in terms of the SSM classes
of matrix Schubert varieties. These functions, named §,, are defined and calculated in [FR2,
Definition 8.2]. Moreover, the S\ = sy + h.o.t. functions are themselves Schur alternating (con-
jectured in [FR2|, proved in [AMSS2]). Remarkably, SSM classes of some quiver loci are proved
to be §)-positive—indicating a two-step positivity structure of SSM classes (see the Introduction
of [FR2]). The following are §)-expansions:

Ssm(cho,o) = S0 + S22 + (844 + 82202) + (866 + Saa22 + B220902) + .. -,

s™(X5.1) =80 +81 +(52 +811) + (83 4+58111) + (54 +81111) + (85 + S11111)
+ (86 + 833 + So22 + S111111) + - - -

s™(X5 ) =81+ (82 +811) + (83 +821 +8111) + (84 + 831 +So11 +51111)

+ (S5 + Sa1 + 832 + 8311 + 8221 + So111 + S11111) + - -+,
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ssm(Efo,o) = 80 — 81+ (82 +811) — (83 + 821 + S111) + (84 + 831 + 822 + 8211 + 81111)
— (85 4841 + 832 + 8311 + 8221 + 82111 +S11111) + - - -,
ssm(ZfOJ) = 2851 +(283 =289 +28111) + (285 —2841 +2832 +28311 +2 8291 —289111 +2811111)
— 48391+ ... ,
Ssm(Zfo,z) = 4891 + (4841 +482111) — 48321 +(4861 +4 843 +4 84111 +4 59291 +48011111)
— (48591 +4832111) + ...,
Ssm(Zfo,g) = 88391 +(88521 +8832111) + (88721 +88541 —8 84321 +8 832021 +883211111)
+ (88921 +85741 —8 86321 +8 8543 +8 833321 —8 8430111 +8 83200111 +88301111111) + - - -,

Ssm(ZfoA) = 1684391 +(16 Se321 +16 5432111) + ...

It is worth verifying in these examples the normalization properties
S -
Zssm(Eoo,i) = Z s (B 2:) = Z ST (B0 2i41) = ZS/\ = 1.
i i i A

The calculated Sy-expansions (the ones above and many more) display several patterns; let us
phrase two of them as conjectures.

Conjecture 6.2. e The Sx-expansions of s™ (X3, ;) and s (X5 ;) are invariant under X —
M (=the transpose partition, eg. (6321)T7 = 432111). That is, in both expansions the
coefficient of S\ and the coefficient of Syxr are the same.

e Thesx-expansion of s (X4, ;) has non-negative coefficients. The $x-expansion of s (55, 5;)
has alternating coefficients.

7. APPLICATIONS

We will apply the calculated CSM classes to find the Euler characteristics of general linear
sections of the projectivizations of ¥/ Zg,r. First we study the relation between characteristic

n,ry

classes in vector spaces and in projective spaces.

7.1. Characteristic classes before vs after projectivization. Consider the algebraic repre-
sentation G &V = CV, with T = (C*)™ < G the maximal torus, and weights o;. Suppose the
representation contains the scalars, that is, there is a map ¢ : C* — T, ¢(s) = (s, s%2,...,s"™)
such that ¢(s) acts on V' with multiplication by s* (w =% 0). Then the G-invariant subsets ¥ < V
are necessarily cones.

We want to compare the G-equivariant characteristic classes of ¥ < V' with those of PX < PV.
The first one lives in the ring HE (V) = H*(BG), while the second one lives in

(6) HG(PV) = Hg(PV) = H*(BG)[E] / T1,(§ — o),

where ¢ is the first Chern class of the G-equivariant tautological line bundle over PV. Here
H*(BG) is a subring of H*(BT) = Q[cy, ..., o], and the weights o; are linear combinations of
the o;’s.
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Theorem 7.1. The substitutions

[E“ai»—»ai-‘r%ﬁ? Ssm(2)|ai>—>a,‘+%§
represent [PYX < PV] and s*™(PX < PV), respectively, in (6).

The first statement is [FNR, Theorem 6.1], and the proof there holds for SSM classes as well,
because the proof given there only uses the pull-back property which [ ] shares with SSM classes.
The non-equivariant (“ordinary”) characteristic classes are always obtained from the equivari-

ant ones by substituting 0 in the equivariant variables. Therefore, the non-equivariant SSM class
ssm(PY < PV) of PX living in H*(PV) = Q[£]/£Y is obtained as

(BT < PV) = s(Z = V)
Remarkably, the same holds for CSM classes too: c§™(P¥X < PV) = ¢ (X < V)|, , ¢, which

w

o
az’_’wg

follows from the calculation
" (PE) = sg"(PE)c(PV) = s™(2)] 4,5 wi¢ - (1 + €)Y

c(X) N
- S gt =enm)
Hj(l +0;) s Vg
where the last equality used the defining property of w;, w, namely: 1+ 0|, v, =14 ¢ (for
all 5). !

s Wi
al>—>w§7

7.2. Non-equivariant CSM classes of symmetric and skew-symmetric determinantal
varieties. Let us study the projectivizations of ¥ and Efw. Some of these projective varieties

are well known: P, , is the Plicker embedding of GroC", and PX; , is the Veronese

embedding of P C". Applying the result of the preceding section to A2 C* and S*C" we find that

the ordinary CSM classes of the orbits are obtained by
¢"(PX,, c PACY) = M™(E), < XCY)
M(PY;, c PS’CY) = ™(S5, < S*CY)

ai>—>§/27

a—E/2-

For example from the explicit formula for csm(Z;iT c S%C®) given in Definition 5.3, after
substituting a; = ;/2 for all i we obtain

M (P5y) =1+36+ 687+ 66° +3¢%,
(7) M(PY5,) = 3&+96 4108 + 66 + 3¢,

M (PX5,) = 48° + 66" + 3¢°.
As we know, the degrees of the lowest degree terms above, namely 0, 1, 3, are the codimensions
of the given orbits. The coefficients of the lowest degree terms, namely 1, 3,4, are the degrees
of the closures of those orbits. The integral, ie. the coefficients of £°, namely 0,3,3 are the

Euler characteristics of the orbits. Observe also, that the sum of the three classes above are
14 66 + 1562 + 2083 + 15¢* + 6£° = (T P°) = (1 + €)® € Q[€]/(¢5).
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The codimensions, the degrees, and the Euler characteristics of the orbits of P A2C* and P S?C"
are

1
codim(PX), « PAC") = (g) codim(PES, < PSIC™) — (r ; )

1 = 2 ( n+i ) r—1 (TLJrl)
deg(PS), c PACY) = oo g,lﬂ’ , deg(PX, cPS’CY) = (2’;;’1),
=0 % =0 7

o) 5 n for r=n-1
or r=mn-—

Px),) =1 \? PYy ) =% (3) f =n—2

X( n,r) {0 fOl" r<n— 2, X( TL,T‘) (2) or 7 n

0 for r<n-—2.

These formulas are well known, and can be found either by classical methods or using our formula,
see some details in [P]. The question is: what geometric information is carried by the ‘middle’
terms of the ¢f™ classes like (7). This will be answered in the next section.

7.3. Euler characteristics of general linear sections. Let X < PV be a locally closed set,
and let X, = X n Hy n ... H, be the intersection with r general hyperplanes. Following [A1]
define the Euler characteristic polynomial of X to be

From the non-equivariant CSM class of X, (X < PY) = 37 a;¢" define yx(t) = Y, a;tN .
Aluffi showed that the two polynomials yx and yx are related as follows. For a polynomial p(t)
define

tp(—t —1) + p(0)
t+1 '

J(p)(t) =
The operation J is a degree-preserving linear involution on polynomials in t.

Theorem 7.2. [Al, Theorem 1.1] For every locally closed subset X of CPY, we have

Jxx(®) =x(t)  and  T(x(t) = xx(®).

Putting our results together with Theorem 7.2 we have an algorithm to find the Euler charac-

teristics of general linear sections of the orbits of PX} | P zg,r. Namely: Formulas for GL, (C)-
equivariant CSM classes of ¥ E;jr are given in Sections 4 and 5. Those formulas turn to
formulas for non-equivariant CSM classes for PX) ., PX% in Section 7.2. According to Theo-
rem 7.2, the coefficients of the J-operation of those non- equivariant CSM classes are the Euler

characteristics of the general linear sections.
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Example 7.3. From the calculations in (7) we get
Yews, (t) = 3t +6t% + 6t° + 3t" + 1,
Yoxs, (t) = 3+ 6t + 10t% + 93 + 34,
Yexs, (t) = 3+ 6t + 412,
After applying the involution J we get the Euler characteristic polynomials
Xexs, (8) = (=) = (=1)* + 3(=t)° = (=) + (=1)°,
Yexs, () = 3+ 2(—1) + (=1)2 +3(=)"
Yewg, (1) = 3 2(-1) + (1%,

and the Euler characteristics of Table 1. Similar calculation yields e.g. the Euler characteristics
presented in Table 2.

It is worth verifying that the sum of columns (in both tables) is the Euler characteristic of the
appropriate projective linear space.

X [ x(X) | x(X0) [ x(X2) | x(X3) | x{(Xa) | x(X5)
PY5, | O 1 1 3 1 1
PYs, [ 3 2 1 0 3 0
PYs, [ 3 2 1 0 0 0

TABLE 1. Euler characteristics of general linear sections of the orbits in PP S2C?

X[ x(X) [ x(Xy) [ x(X2) | x(X3) | x(X4) | x(X5) | x(Xe) | x(X7)
PS,| 0 | -1 I 3 5 | 11 | 21 | 29
Py, | 0 3 0 9 6 | 27 | 36 | 51
]P’EQA 15 12 12 6 12 -6 24 -14
X | x(Xg) | x(Xo) | x(X10) | x(X11) | x(Xi2) | x(X13) | x(X14)
Py, | 29 | 21 | 11 5 3 1 I
]P’ZQ’Q -36 27 -6 9 0 3 0
Py.,| 14 | 0 0 0 0 0 0

TABLE 2. Euler characteristics of general linear sections of the orbits in P A2C°

8. FUTURE DIRECTIONS

8.1. Chern-Mather classes. Another reason for studying CSM classes of singular varieties is
the relation with their Chern-Mather classes. For the role of Chern-Mather classes in geometry
see the recent paper [A2] and references therein. One approach to Chern-Mather classes is the
construction called Nash blow-up, another one is the natural transformation C, : F¢(—) —
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H&(—) mentioned in Remark 3.2. As we know, the (homology) CSM class of a closed subvariety
W is Cy(1w). The Chern-Mather class ¢™(W) of W is the C,-image of another remarkable
constructible function, the so-called local Euler obstruction function, Euy,. Hence if Euy, can
be calculated, ie. expressed as a linear combination of 1y,’s (for locally closed set V;), then the
same linear relation holds among ¢™(1¥) and the CSM classes of V;’s. Arguments along these
lines are carried out in [P] resulting the following theorem.

Theorem 8.1. [P, Thms 9.11, 9.18] For 0 < r < n we have

n—r

Z ( ’ C ) £,r+2k’ and hence CM(En,r) = (lQJ[r—IJ_ ) (Zr/L\ r+2kz)
k=0 2 0

h r

2

The authors do not know the local Euler obstructions for the orbit closures in S2C".

8.2. K theory generalization: motivic Chern classes. There is a natural generalization of
the cohomological notion of CSM class to K theory, called motivic Chern class. It was defined
in [BSY] and the equivariant version is set up in [FRW2, AMSS3].

The equivariant motivic Chern class mC(X) of an invariant subvariety ¥ < M of the smooth
ambient variety M lives in Kg(M)[y]. Tt is convenient to consider its Segre version, the motivic
Segre class mS(X) = mC(X)/c(T'M) where ¢(T'M) is the K theoretic total Chern class. Hence,
mC and mS of the orbits of AC" and S*C" are elements of (a completion of)

KGLn(C) (pt) = Z[O‘I_d? S 70‘7%1]571 [y]>

where «; are the K theory Chern roots GL,(C), ie. their sum is the tautological n-bundle over
BGL,(C).

The traditional approach to study motivic Chern classes is through resolutions and a property
similar to (2) (with the notion of Euler characteristic replaced with the notion of chi-y-genus).
Our construction in Section 4.1 fits that approach, and hence arguments analogous to those in
Section 4.2 can be carried out to obtain a sieve formula for the motivic Segre class mS of the
orbits of AC", S?C". Here we present the result for AC".

Theorem 8.2. [P, Cor. 10.15] Let 0 < r <n, n —r even, and ¢ = —y. We have

n—r

2 (1 + 2k
(8) ( ) EQ}C( )(I)nr-‘er:?
k=0

where

R (1 — 1 ) (1 + &)
D, = — i i 7

(n) _ ]! [n]g! = [1]4[2], - - [n]a o], = 1
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and the q-Euler numbers E,(q) are defined by

L = i E"—@ ", cosh,(t) = i

cosh, (1) o [n],! P [2n],!

Theorem 8.2 is just a (rather complicated) sieve formula. The desired formula would be
analogous to the interpolation formula Theorem 5.5 for CSM classes. Although interpolation
characterization of motivic Chern classes exist [FRW2, Section 5.2], the solution of those inter-
polation constraints (involving Newton polytopes of specializations) is highly non-trivial, and
hence is subject to future study. Initial results and conjectures are in [P].

Remark 8.3. As mentioned above, the proof of Theorem 8.2 is the K theory version of our
cohomology arguments in Section 4.2—in particular, it uses push-forward morphisms. The notion
of motivic Chern class is consistent with push-forward morphisms (in a sense generalizing (2),
see [BSY, Section 2], [FRW2, Section 2.3]). This is why the proof of Section 4.2 has a K
theory counterpart, leading to Theorem 8.2. There is, however, a traditional notion of K theory
fundamental class (namely, the class of the structure sheaf) which only behaves nicely under
push-forward morphism if the varieties involved have rational singularities, c.f. [Fe|, [RSz, §5]. In
fact, the orbit closures in S?C" and A2C" do have rational singularities, see Sections 6.3 and 6.4
(especially the discussions following the proofs of Propositions 6.3.2 and 6.4.2) of [W]. Therefore
the y = 0 specialization of (8) recovers the K theory fundamental class of the orbit closures. For
a detailed study of the various notions of K theory fundamental classes see [Fe], for more work
on K theory fundamental classes of symmetric and skew-symmetric degeneracy loci see [A].
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