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Abstract. The Chern-Schwartz-MacPherson class (CSM) and the Segre-Schwartz-MacPherson
class (SSM) are deformations of the fundamental class of an algebraic variety. They encode finer
enumerative invariants of the variety than its fundamental class. In this paper we offer three
contributions to the theory of equivariant CSM/SSM classes. First, we prove an interpolation
characterization for CSM classes of certain representations. This method—inspired by recent
works of Maulik-Okounkov and Gorbounov-Rimanyi-Tarasov-Varchenko—does not require a res-
olution of singularities and often produces explicit (not sieve) formulas for CSM classes. Second,
using the interpolation characterization we prove explicit formulas—including residue generating
sequences—for the CSM and SSM classes of matrix Schubert varieties. Third, we suggest that
a stable version of the SSM class of matrix Schubert varieties will serve as the building block of
equivariant SSM theory, similarly to how the Schur functions are the building blocks of funda-
mental class theory. We illustrate these phenomena, and related stability and (2-step) positivity
properties for some relevant representations.

1. Introduction

1.1. Degeneracy loci, fundamental class, Schur expansion. Many interesting varieties in
geometry occur as degeneracy locus varieties, a notion we recall now. Let Σ ⊂ V be an invariant
variety of a G-representation V . Let E → M be a vector bundle over a smooth variety M
with fiber V and structure group G. If Σ(E) is the union of the Σ’s in each fiber then the
subvariety X = σ−1(Σ(E)) for a section σ transversal to Σ(E) is called a degeneracy locus. Areas
of geometry where degeneracy loci are abundant include Schubert calculus, moduli spaces, and
singularity theory.

The general strategy of studying numerical invariants of degeneracy loci is to associate a
“universal” G-characteristic class to the local situation Σ ⊂ V , and to expect that the sought
numerical invariant of X is obtained by evaluating the universal characteristic class at the bundle
E → M . The key example of this strategy is the fundamental class [X] ∈ H∗(M). One defines
the G-equivariant fundamental class [Σ] ∈ H∗G(V ) = H∗(BG), and it is a fact that [X] ∈ H∗(M)
can be calculated as [Σ] evaluated at the bundle E →M .

Hence, equivariant fundamental classes [Σ] ∈ H∗G(V ) and their applications have been inten-
sively studied in numerous parts of geometry. Two interesting sets of examples are (a) quiver
representations (where the fundamental class is often called the quiver polynomial), (b) singu-
larity theory (where the fundamental class is called the Thom polynomial). In the intersection
of these two sets of examples is the Giambelli-Thom-Porteous formula [P] for the fundamental
class of the orbit closures of the representation GLk(C)×GLn(C) acting on Hom(Ck,Cn).
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Fundamental classes in both of these sets of examples above show interesting patterns, namely
stabilization and positivity properties. Stabilization properties are displayed by the fact that
the classes can be encoded by (generalized, so-called iterated residue) generating sequences, see
e.g. [BSz, K, R1]. Positivity means that the coefficients in appropriate Schur expansions of the
classes are non-negative, see e.g. [B, PW].

1.2. The Schwartz-MacPherson deformation of the fundamental class. The notion of
fundamental class [X] ∈ Hcodim(X⊂M)(M) has a deformation [M], which comes in two versions
called the Chern-Schwartz-MacPherson (CSM) and Segre-Schwartz-MacPherson (SSM) classes.
The two versions only differ by an explicit factor. (Another name for the CSM class, after
homogenization by a new variable ~, is ‘characteristic cycle’ class.) The CSM/SSM classes,
csm(X), ssm(X) are inhomogeneous elements of H∗(M). The lowest degree part of each is the
fundamental class [X]. The CSM/SSM classes encrypt more intrinsic information about the
variety X than the fundamental class; and their applications in enumerative geometry are hard
to overestimate, see e.g. [F, Ch. 5]. P. Aluffi writes “Segre classes provide a systematic framework
for enumerative geometry computation; but this is of relatively little utility, as Segre classes are
in general hard to compute” [A2]. More recent applications of CSM classes (under the name of
“stable envelope classes”) are in [MO, Ok, RTV2] and references therein.

Ohmoto [O1, O2] showed that the above mentioned equivariant strategy works for the SSM
class. One can associate a universal characteristic class ssm(Σ ⊂ V ) to the situationGy (Σ ⊂ V )
and the SSM class of the degeneracy locus X is this characteristic class evaluated at the defining
bundle, see Theorem 2.2 below. Hence, the CSM/SSM theory of degeneracy loci is reduced to
finding CSM/SSM classes for invariant varieties in representations. In the present paper we offer
three contributions to this problem, described in the next three subsections.

1.3. Interpolation characterization of CSM classes in representations. The classical
approach to calculating either the fundamental class or the CSM/SSM class of Σ ⊂ V (acted
upon by the group G) is via resolution of singularities. Resolutions are not known for important
examples of quivers or contact singularities. Even if a resolution is known, this method produces
exclusion-inclusion type formulas that hide both the stabilization and positivity structures of
CSM/SSM classes. In the past decades new and effective methods of calculating fundamental
classes have been found. One of these new methods is interpolation [R2, BR]: one lists a few
interpolation condition that [Σ] and only [Σ] satisfies.

In this paper we prove that interpolation characterization exists for CSM classes of orbits of
certain representations, see Theorem 2.7 below. We expect that this new interpolation method
will open the way to finding CSM/SSM classes for quivers, matroids, singularities; similarly to
what has happened for the fundamental class in the past two decades.

Although formally we will not use it, let us comment on the origin of this interpolation theorem.
In works of Maulik-Okounkov [MO] and Gorbounov-Rimanyi-Tarasov-Varchenko [GRTV, RTV1]
two seemingly unrelated modules are identified: (i) the regular representation of the equivariant
cohomology algebra of certain symmetric spaces, and (ii) the Bethe algebra of certain quantum
integrable systems. On both sides of this identification there is a “given” basis and a “sought”
basis. On the physics side the coordinate basis (a.k.a. spin basis) is given, and one seeks formulas
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for the Bethe basis. On the geometry side the basis of torus fixed points is given, and one seeks
formulas for classes coming from Schubert varieties. Our identification matches the given basis
on one side with the sought basis on the other side. In particular, the coordinate basis of the
Bethe algebra is matched with the CSM classes of Schubert cells [RV].

Example 1.1. A small example for the Bethe algebra of a quantum integrable system is a
certain commutative algebra action (not described here, see e.g. [GRTV] for more details) on
(C2)⊗2

(1,1) ⊗ C(z1, z2, ~) = span(v1 ⊗ v2, v2 ⊗ v1) = span(ξ1,2, ξ2,1). Here v1, v2 are the coordinate

vectors of C2. The ξ1,2 = v1 ⊗ v2, ξ2,1 = −~/(z1 − z2 − ~)v1 ⊗ v2 + (z1 − z2)/(z1 − z2 − ~)v2 ⊗ v1

elements are singled out because they are the common eigenvectors of the action. On the other
hand one considers the (C∗)2 ×C∗-equivariant cohomology ring of T ∗ P1, with the following two
bases: γ−z2, γ−z1 (the fixed point basis, here γ is the Chern class of the tautological line bundle,
and z1, z2, ~ are the equivariant Chern roots), and κ1 = γ − z2, κ2 = ~ + γ − z1. It is instructive
to check that the map [f(γ, z1, z2)] 7→ f(z1, z1, z2)/(z1− z2) · ξ1,2 +f(z2, z1, z2)/(z2− z1) · ξ2,1 is an
isomorphism (after suitable localization) from cohomology to the Bethe module, and the fixed
point basis matches the ξ-basis, while the spin basis (v1⊗ v2, v2⊗ v1) matches κ1, κ2. The κ1, κ2

classes (after putting ~ = 1) are the CSM classes of the Schubert cells in P1!

Our Theorem 2.7 stems from this interplay between quantum algebra and characteristic classes
of singular varieties, and it is a version of the main theorem of [RV] (see also [AMSS]), modified
from Schubert calculus settings to representations with finitely many orbits satisfying the Euler
condition.

1.4. CSM/SSM classes of matrix Schubert cells: weight functions, generating func-
tions. The building blocks of the algebraic combinatorics of fundamental classes for both quivers
and for singularities are the Schur functions. Schur functions are the fundamental classes of so-
called matrix Schubert varieties [FR1, KM]. In Sections 5-8 we calculate the CSM and SSM
classes of matrix Schubert cells. Our formulas are not of inclusion-exclusion type; rather, some
of our formulas are of “localization type” (inherently displaying interpolation properties), and
others are iterated residue generating sequences (inherently displaying stabilization properties of
their Schur expansions).

It is important to emphasize that the connections between the CSM classes of ordinary Schubert
cells and CSM classes of matrix Schubert cells are more complex than for the corresponding
fundamental classes (which form the lowest degree part of the CSM class). In Appendix B,
Section 11 we summarize the differences and relations between the CSM theory of Schubert cells
and matrix Schubert cells.

In Section 8 we make a conjecture about the signs of the Schur expansions of the SSM classes
of matrix Schubert cells. We are not aware of a direct relation between this conjecture and
the positivity theorem on CSM classes of ordinary Schubert cells conjectured by Aluffi-Mihalcea
[AM1] (see also [AM2]) and proved by Huh [H]—for more comments see Appendix B, Section 11.

1.5. Conjectured two-step positivity of SSM classes. As mentioned, the building blocks
of cohomological fundamental class theory are the Schur functions: When a fundamental class of
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a geometrically relevant variety is expanded in appropriate Schur functions, the coefficients are
often non-negative, see e.g. [B, PW].

Schur positivity (or alternating signs) of CSM/SSM classes break down in the simplest exam-
ples. For example, according to [PP], a certain SSM class of the A2 quiver representation is (for
notations see Section 6)

ssm(Σ0
n,n+1) = s0 +(− s2) + (2 s3 + s21) + (−3 s4−3 s31− s211) + (4 s5 +6 s41 +4 s311 + s2111)(1)

+ (−5 s6−10 s51−10 s411 + s33−5 s3111− s21111) + . . . .

The signs of the term s0, and also of s33 violate the pattern (and many more in higher degrees).
Yet, we conjecture that there is a sign pattern. In fact we expect that the following two-step

positivity property holds in general, for quivers, singularities, and maybe other geometrically
relevant varieties:

• The SSM classes of geometrically interesting varieties, expanded in the new building blocks,
the s̃λ functions of Section 8, have non-negative coefficients.
• The coefficients of the Schur expansions of the s̃λ functions have alternating signs.

The second line is our Conjecture 8.4. We prove the first line in two cases, one is Theorem 8.6,
and the other is the A2 quiver representation in Section 9. For example, according to Theorem 9.1
we have the positive s̃λ expansion

(2) ssm(Σ0
n,n+1) = s̃0 + s̃1 + s̃11 + s̃111 + . . . ,

and the s̃λ functions have alternating Schur expansions

s̃0 = s0 +(− s1) + (s2 + s11) + (− s3−2 s21− s111) + (s4 +3 s31 + s22 +3 s211 + s1111) + . . .(3)

s̃1 = s1 +(−2 s2−2 s11) + (3 s3 +5 s21 +3 s111) + (−4 s4−9 s31−3 s22−9 s211−4 s1111) + . . .

s̃11 = s11 +(−2 s21−3 s111) + (3 s31 +2 s22 +7 s211 +6 s1111) + . . . .

As claimed in (2), adding together the expressions in (3) reproduces (1)—but the signs in (2)
and (3) show patterns, which disappear in the sum. Further examples illustrating this two-step
positivity phenomenon will appear in [Ko, Pr].

1.6. Conventions. We will consider varieties over C, and cohomology with coefficient group C.
We distinguish between a “weakly decreasing sequence of non-negative integers” and a “parti-
tion”. The first one has a fixed length, while a partition does not change by adding a 0 at the
end.

1.7. Acknowledgements. The first author was partially supported by NKFI 112703 and 112735
as well as ERC Advanced Grant LTDBud; the second author was partially supported by NSF
DMS-1200685 and by the Simons Foundation grant 523882. We are grateful to P. Aluffi, L. Mi-
halcea, T. Ohmoto, A. Szenes, A. Varchenko, and A. Weber for useful discussions on the topics
of the paper.
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2. Classical and equivariant CSM/SSM classes

2.1. Classical CSM theory. First we recall the main notions of the classical (non-equivariant)
CSM theory; for more detailed expositions see e.g. [A1, A2, AM1, AM2] and references therein.

For a complex algebraic variety X let F(X) be the Abelian group of constructible functions
on X, i.e. whose elements are finite sums

∑
i ni 1Wi

where Wi are locally closed subvarieties
of X, 1W is the characteristic function of W (1 on W , 0 outside of W ), and ni ∈ Z. For a
proper morphism f : Y → X define f∗ : F(Y ) → F(X) by f∗(1W )(p) = χ(f−1(p) ∩ W ) for
p ∈ X. Consider also the Borel-Moore homology functor H∗(−) on complex algebraic varieties
and proper morphisms.

It was conjectured by Deligne and Grothendieck and proved by MacPherson [M] that there
exists a unique natural transformation C∗ : F(−) → H∗(−), which, for a smooth X satisfies
C∗(1X) = c(TX)∩ µX , where µX ∈ Htop(X) is the homological fundamental class of X. Being a
natural transformation C∗ also satisfies C∗(α + β) = C∗(α) + C∗(β) and f∗C∗(α) = C∗f∗(α) for
a proper morphism f .

The (homological) Chern-Schwartz-MacPherson class csm(X) = C∗(1X) ∈ H∗(X) is hence an
inhomogeneous Borel-Moore homology class, satisfying push-forward properties, and generalizing
the notion of total Chern class of the tangent bundle for situations where the tangent bundle
does not exist. For a closed embedding i : X ⊂M one can push forward csm(X) to the homology
of M , and if M is also smooth with Poincaré duality P then one can consider the “relative” CSM
classes csm(X ⊂ M) = i∗(csm(X)) ∈ H∗(M) and csm(X ⊂ M) = P(csm(X ⊂ M)) ∈ H∗(M). In
this paper we will mainly be concerned with the last, cohomology version.

Remark 2.1. MacPherson’s proof of the existence of C∗ is through the important notions of
Mather class and local Euler obstruction.

2.2. Ohmoto’s G-equivariant MacPherson transformation. The equivariant CSM theory
was studied for torus actions in [W]. For reductive linear groups G Ohmoto [O1, O2] defined
the G-equivariant version of the C∗ transformation of the preceding section. Namely, the group
of “G-invariant constructible functions” FG(X) is defined for a G-space X. The characteristic
functions 1W of G-invariant subvarieties W induce elements in FG(X), and the equivariant push-
forward fG∗ for these elements coincides with the ordinary push-forward of the preceding section.
The G-equivariant version HG

∗ of the H∗ functor is defined in [EG].
Ohmoto proves the existence of the equivariant MacPherson transformation CG

∗ : FG(−) →
HG
∗ (−) functorial with respect to proper equivariant push-forward, and which satisfies CG

∗ (1X) =
cG(TX) ∩ µGX if X is a projective smooth G-variety.

Again, the version we study (just like Ohmoto) is the following: assume i : X ⊂ M is a G-
equivariant closed embedding into the smooth variety M with equivariant Poincaré duality PG.
The (cohomological) G-equivariant CSM class is defined to be csmG (X ⊂ M) = PG(iG∗ (CG

∗ (1X)))
∈ H∗G(M). Recall that G-equivariant cohomology of a G-space M is defined to be the ordinary
cohomology of the Borel construction EG×GM = {(e,m)}/〈(e,m) ∼ (eg−1, gm)〉 where EG is
a contractible space with a free right G-action.
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In the rest of the paper we will only use equivariant cohomological CSM classes. Hence, from
now on we drop the G sub- and superscripts, and also use the short-hand notation csm(X) =
csm(X ⊂M) ∈ H∗G(M) when the ambient space M is clear from the context.

The class ssm(X) = csm(X)/c(TM) is called the (equivariant) Segre-Schwartz-MacPherson
(SSM) class. In fact the SSM class may have non-zero components in infinitely many degrees,
thus it lives in the completion of H∗G(M). In notation we will not indicate this completion.

2.3. Properties of equivariant CSM/SSM classes. For future reference here we summarize
some important properties of CSM/SSM classes.

(i) For invariant constructible functions f, g and scalars k, l ∈ C we have csm(kf + lg) =
kcsm(f) + lcsm(g), ssm(kf + lg) = kssm(f) + lssm(g). In particular CSM and SSM classes
are motivic, csm(X ∪ Y ) = csm(X) + csm(Y ) − csm(X ∩ Y ), and the same holds for ssm

classes.
(ii) If η : Y →M is an equivariant morphism between smooth varieties then

η∗(c(TY )) =
∑
a

acsm(Ma),

where Ma = {m ∈M : χ(η−1(m)) = a}.
(iii) For a closed G-invariant embedding i : X ⊂ M , both smooth, we have csm(X ⊂ M) =

i∗(c(TX)) and ssm(X ⊂ M) = i∗(c(TX))/c(TM) = i∗(c(−ν)) where ν is the normal
bundle of X ⊂M .

(iv) For Y and M smooth let X ⊂ M be an invariant subvariety with an invariant Whitney
stratification. Assume η : Y →M is (equivariant and) transversal to the strata of X. Then
ssm(η−1(X)) = η∗(ssm(X)).

Properties (i), (ii), (iii) are essentially the defining properties of Ohmoto’s CG
∗ transformation—

see [O1, Section 3.2 (a)(i),(ii),(iii)]. Property (iv) follows from the equivariant Verdier-Riemann-
Roch, see [O1, Thm. 4.2], [O2, Prop. 3.8].

The orbit stratification of an algebraic group action with finitely many orbits is a Whitney
stratification, see e.g. the main result of [Kal] and mathoverflow.net/questions/129218. Below
we will apply (iv) to such situations without mentioning the existence of Whitney stratifications.

2.4. Equivariant CSM/SSM classes in representations. Let us assume that the underlying
space M is a vector space, and rename it to V . Then the CSM and SSM classes of X ⊂ V are in
H∗G(V ) = H∗(BG), hence they are G-characteristic classes. The main importance of this special
case is the following “degeneracy locus” interpretation of SSM classes, which is a consequence of
property (iv) above.

Let G act on V and let X be an invariant subvariety. The Borel construction applied to
X ⊂ V , EX := EG×G X ⊂ EV := EG×G V produces fibrations over BG (with fibers X and
V resp.), and EV → BG is the universal bundle with fiber V and structure group G. Hence, for
a bundle E → B with fiber V and structure group G we have the classifying maps ρ : B → BG,
ρ̂ : E → EV . We define X(E) = ρ̂−1(EX), the “X-points in each fiber of E → B”. If B is
smooth, a G-invariant Whitney stratification of X induces a Whitney stratification of X(E).
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Theorem 2.2. [O2, Theorem 3.12 (4)] Let X ⊂ V be an invariant variety of the G-representation
V . Let E → B be a bundle with fiber V and structure group G, and assume B is smooth and
compact. Let σ be a section which is transversal to a Whitney stratification of X(E). Then the
ordinary (that is, non-equivariant) SSM-class of σ−1(X(E)) ⊂ B can be obtained as ssm(X) (as
a G-characteristic class) evaluated at the bundle E → B.

Here are some other properties we will need below.

(v) Let X0 ⊂ X ⊂ V be invariant subvarieties and let X0 be smooth. Assume that there is
an invariant complementary subspace W ≤ V to T0X0 transversal to X. Then csm(X) is
divisible by c(T0X0).

(vi) Let X ⊂ V = Cn be an invariant cone-subvariety (i.e. stable w.r.t. multiplication by
λ ∈ C). We have

csm(X) = [X] + . . .+ e(V ), ssm(X) = [X] + . . . ,

that is, the smallest degree part of both is the (equivariant) fundamental class. The class
csm has finitely many non zero components, the highest degree one is the Euler class e(V ) =∏n

i=1 wi for the weights wi of the representation. (We choose a maximal torus of G, and on
weights we will always mean the weights of the corresponding torus action.)

(vii) Let the representation on V = Cn have k zero weights. That is, the zero weight subspace
V0 ⊂ V has dimension k. Assume that W is an invariant complementary subspace to V0

and is transversal to the invariant cone-subvariety X. Then

csm(X) = [X] + . . .+
n−k∏
i=1

wi,

where wi are the non-zero weights of V . That is, the highest degree part of csm(X) has
degree n− k and it is the product of the non-zero weights.

Property (v) is proved as follows (see also [RV, Section 6]): from (iv) we have csm(X ⊂
V )/c(V ) = csm(X ∩ W ⊂ W )/c(W ), hence csm(X ⊂ V ) = c(V/W )csm(X ∩ W ⊂ W ), but
c(V/W ) = c(T0X0). The proof of (vi) is [O1, Section 4.1]. Here we prove (vii): from (iv) we
know that csm(X)/c(V ) = csm(X ∩W )/c(W ). Since c(V ) = c(W ), applying (vi) to X ∩W ⊂ W
proves (vii).

Remark 2.3. In particular, Property (vi) claims that the nth component of csm(X) is indepen-
dent of X, it only depends on the representation. The essence of (vii) compared to (vi) is that
not only the n’th, but the n − 1’st, . . ., n − k’th components of csm(X) are also independent
of X.

In concrete examples—e.g. the ones we will deal with in the paper—the existence of W (in
Properties (v) and (vii)) can easily be checked. In fact passing to the maximal compact subgroup
(which does not affect equivariant cohomology) it can be proved in very general situations.

Example 2.4. Let the 2-torus act on C3 by (a, b) · (x, y, z) = (ax, b2y, z). Let α, β be the first
Chern classes of the 2-torus corresponding to a, b. Thus the weights of this representation are
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α, 2β, and 0. Let X = {x = 0}, Y = {y = 0}, Z = {z = 0}. It is instructive to verify
Property (vii) in the examples

csm(X) = (1 + 2β)α, csm(Y ) = (1 + α)2β, csm(X ∩ Y ) = 2αβ,

csm(X ∪ Y ) = (1 + 2β)α + (1 + α)2β − 2αβ = α + 2β + 2αβ.

The claims in the first line follow from (iii) and the claim in the second line follows from (i).

2.5. Interpolation characterization. Consider the linear representation V of the algebraic
group G. Assume it has finitely many orbits, and assume that the representation contains the
scalars, that is, orbits are invariant under multiplication by λ ∈ C∗. For an orbit Ω let GΩ be
the stabilizer subgroup of a point xΩ ∈ Ω, and let

φΩ : H∗G(V )→ H∗G(Ω)

be the restriction map. After the identification H∗G(V ) = H∗(BG), H∗G(Ω) = H∗GΩ
(xΩ) =

H∗(BGΩ) the map φΩ : H∗(BG)→ H∗(BGΩ) is the one induced by the inclusion GΩ ⊂ G.
Let TΩ be the tangent space of Ω at xΩ, and let NΩ = V/TΩ be the “normal” space. The group

GΩ acts on TΩ and NΩ, hence these representations have an equivariant total Chern class (c) and
an Euler class (e) in H∗(BGΩ).

We say that the representation with finitely many orbits satisfies the Euler condition if e(NΩ)
is not a 0-divisor in H∗(BGΩ) for all Ω. Let us recall two topological lemmas.

Lemma 2.5. [FR2, Theorem 3.7] Let Θ1,Θ2, . . . be the list of orbits satisfying i < j ⇒ Θi 6⊂ Θj

in a representation satisfying the Euler condition. Suppose ω ∈ H∗G(V ) is 0 when restricted to
Θ1 ∪ . . . ∪Θs and it is 0 restricted to Θs+1. Then ω is 0 restricted to Θ1 ∪ . . . ∪Θs+1. �

Lemma 2.6. Let W be an invariant subspace of the G-representation V , and let e ∈ H∗G(W ) =
H∗(BG) be the equivariant Euler class of the normal bundle of W ⊂ V . If a class ω ∈ Hn

G(V ) =
H∗(BG) is supported on W (that is, it is 0 restricted to V −W ), then it is divisible by e.

Proof. The statement follows from the exactness of the Gysin sequence

H
n−codim(W⊂V )
G (W )→ Hn

G(W )→ Hn
G(V −W )

where the first map is multiplication by e, and the second map is the composition Hn
G(W ) =

Hn
G(pt) = Hn

G(V )
r−→ Hn

G(V −W ) with r being the restriction map. �

For a cohomology class x = x0 +x1 +x2 + . . . ∈ H∗(X), xi ∈ H2i(X), let deg(x) be the largest
i for which xi 6= 0. We set deg(0) = −∞.

Theorem 2.7. Let the G representation V contain the scalars, let it have finitely many orbits,
and let it satisfy the Euler condition. Let Ω be an orbit. The properties

(I) φΩ(csm(Ω)) = c(TΩ)e(NΩ) ∈ H∗(BGΩ)
(II) φΘ(csm(Ω)) is divisible by c(TΘ) in H∗(BGΘ) for any orbit Θ

(III) deg(φΘ(csm(Ω))) < deg(c(TΘ)e(NΘ)) for any orbit Θ different from Ω

uniquely determine csm(Ω).
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Proof. First we prove that csm(Ω) satisfies the properties.
The orbit Ω is smooth at xΩ, hence the image of csm(Ω) at the restriction homomorphism

φΩ : H∗G(V )→ H∗G(Ω) = H∗GΩ
(xΩ) is c(TΩ)e(NΩ), see (iii); hence Property (I) is proved.

Let

(4) 1Ω =
∑
Φ≤Ω

dΩ,Φ 1Φ,

where Φ ≤ Ω means that Φ ⊂ Ω. Then csm(Ω) =
∑

Φ≤Ω dΩ,Φc
sm(Φ) and

φΘ(csm(Ω)) =
∑

Θ≤Φ≤Ω

dΩ,ΦφΘ(csm(Φ)).

Each of the φΘ(csm(Φ)) restrictions are divisible by c(TΘ), because of (v). This proves Prop-
erty (II).

Observe that the number of 0 weights of GΘ acting on the tangent space of V at MΘ is
n − deg(c(TΘ)e(NΘ)). Hence, for any i ≥ deg(c(TΘ)e(NΘ)) the i’th component of φΘ(csm(Φ))
does not depend on Φ, let the common value be called xi. Then for i ≥ deg(c(TΘ)e(NΘ)) we
have that the i’th component of φΘ(csm(Ω)) is

(5) xi ·
∑

Θ≤Φ≤Ω

dΩ,Φ.

However, substituting MΘ in the identity (4) we get 0 =
∑

Θ≤Φ≤Ω dΩ,Φ. Hence expression (5) is
0 for all i ≥ deg(c(TΘ)e(NΘ)), which proves Property (III).

The proof of the uniqueness of classes satisfying (I)–(III) is an adaptation of the argument in
[MO, Section 3.3]. Suppose two classes satisfy the conditions above for csm(Ω), and let ω be their
difference. Then for every Θ we have that φΘ(ω) is divisible by c(TΘ) and has degree strictly
less than deg(c(TΘ)e(NΘ)). Let Θ1,Θ2, . . . be a (finite) list of orbits satisfying i < j ⇒ Θi 6⊂ Θj.
We will prove by induction on s that ω is 0 when restricted to Θ1 ∪ . . . ∪ Θs. For s = 0 the
claim holds. Suppose we know this statement for s − 1 and want to prove it for s. Because
of the induction hypotheses, ω is supported on Θs ∪ Θs+1 ∪ . . .. Hence its Θs restriction must
be divisible by e(NΘs) (Lemma 2.6). We also know that it is divisible by c(TΘs). These classes
are coprime in H∗(BGΘs), therefore we have that φΘs(ω) is divisible by c(TΘs)e(NΘs). Since its
degree is strictly less than that of c(TΘs)e(NΘs), we have that φΘs(ω) = 0. Lemma 2.5 implies
that ω restricted to Θ1 ∪Θ2 ∪ . . . ∪Θs is also zero. �

Remark 2.8. The CSM class of a variety is supported on its closure. Hence the property

(IV) φΘ(csm(Ω)) = 0 for Θ 6⊂ Ω

holds too. It is not listed among the axioms above, because it is forced by them.

3. Matrix Schubert cells

One of our goals in this paper is to give formulas for the CSM/SSM classes of the orbits of a
certain representation. These orbits will be called the matrix Schubert cells.
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Let us fix nonnegative integers k ≤ n. Consider the group GLk(C)×B−n acting on Hom(Ck,Cn)
by (A,B) ·M = BMA−1. Here B−n is the Borel subgroup of n × n lower triangular matrixes.
The finitely many orbits of this action are parameterized by d-element subsets J = {j1 < . . . <
jd} ⊂ {1, . . . , n} with 0 ≤ d ≤ k. The corresponding orbit is

(6) ΩJ = {M is an n× k matrix : rk(top r rows of M) = |J ∩ {1, . . . , r}|}

A representative of the orbit ΩJ is the n× k matrix MJ whose entries are 0’s, except the (ju, u)
entries are 1 (u = 1, . . . , d). The orbits will be called matrix Schubert cells, and their closures
are usually called matrix Schubert varieties, see e.g. [FR1, KM].

For J = {j1 < . . . < jd} ⊂ {1, . . . , n} we define a few subsets of the entries of k × n matrices
that will be useful later. Let

A0 = {(v, u) ∈ {1, . . . , n} × {1, . . . , k} : u ≤ d, v = ju},
A1 = {(v, u) ∈ {1, . . . , n} × {1, . . . , k} : u ≤ d, v < ju},
A2 = {(v, u) ∈ {1, . . . , n} × {1, . . . , k} : u ≤ d, v > ju},
A3 = {(v, u) ∈ {1, . . . , n} × {1, . . . , k} : u > d},
A4 = {(v, u) ∈ {1, . . . , n} × {1, . . . , k} : ∃w ≤ d v = jw, u > w}.

The set TJ = A0 ∪A2 ∪A4 represents the directions in Hom(Ck,Cn) that are in the tangent space
of ΩJ at MJ , and NJ = {1, . . . , n} × {1, . . . , k} − A0 ∪A2 ∪A4 represents the directions normal
to ΩJ at MJ . Hence dim ΩJ = |TJ |, codim(ΩJ ⊂ Hom(Ck,Cn)) = |NJ |.

Example 3.1. For k = 2, n = 3 there are 7 orbits, corresponding with the subsets {1, 2}, {1, 3},
{2, 3}, {1}, {2}, {3}, {} with representatives (• or . stand for 0)1 •

• 1
• •

1 •
• .
• 1

 . .
1 •
• 1

1 •
• .
• .

 . .
1 •
• .

 . .
. .
1 •

. .
. .
. .

 .

In each matrix a • or a 1 indicate boxes corresponding to directions tangent to ΩJ and the rest
(indicated by .) correspond to normal directions.

Let α1, . . . , αk and β1, . . . , βn be the Chern roots of the group GLk(C)× B−n , or equivalently,
the homotopically equivalent reductive group GLk(C)×GL1(C)n. We have

(7) H∗(B(GLk(C)×B−n )) = H∗(B(GLk(C)×GL1(C)n)) = C[α1, . . . , αk, β1, . . . , βn]Sk ,

and the weights of the representation Hom(Ck,Cn) defined above are βv − αu for v = 1, . . . , n,
u = 1, . . . , k. The weight space of βv − αu is the line corresponding to the (v, u) entry of
Hom(Ck,Cn).

The GLk(C)×B−n ' GLk(C)×GL1(C)n-equivariant CSM and SSM classes of matrix Schubert
cells ΩJ are hence elements of the ring (7) and its completion, respectively. To claim the result
about these classes in Section 5 we first need to define some important functions in Section 4.
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4. Weight functions

In this section we define some important polynomials that will be identified with CSM classes
of matrix Schubert cells in Section 5.

4.1. Localization form of weight functions. Let k ≤ n and I ⊂ {1, . . . , k} where |I| = d ≤ k
and I = {i1 < . . . < id}.

Definition 4.1. Let α = (α1, . . . , αk) and β = (β1, . . . , βn) and

UI(α,β) =
d∏

u=1

n∏
v=iu+1

(1 + βv − αu)
k∏

u=d+1

n∏
v=1

(βv − αu)
d∏

u=1

iu−1∏
v=1

(βv − αu)
d∏

u=1

k∏
v=u+1

1 + αu − αv
αu − αv

.

A permutation σ ∈ Sk acts on a k-tuple by permuting the components. Define the “weight
function”

WI = WI(α;β) =
1

(k − d)!

∑
σ∈Sk

UI(σ(α);β).

Although we omitted from the notation, the function WI depends on k and n as well; their
stabilization properties will be discussed below. Despite their appearance the weight functions
are polynomials with integer coefficients, in fact of degree kn− d.

Remark 4.2. Weight functions were used in [TV] to describe q-hypergeometric solutions of the
quantum Knizhnik-Zamolodchikov equations. They also appeared in joint works [GRTV, RTV1,
RV] with the second author, as key components in identifying cohomology rings with Bethe
algebras. In these past works weight functions were only defined for d = k, the present d < k
extension is new. The reason for calling the form above the “localization form” of the weight
function, together with a geometric interpretation is explained in Appendix C, Section 12.

Remark 4.3. In [RV] the d = k weight functions are divided by a particular factor. It is shown
there that these rational functions are (in a suitable sense) representatives of CSM classes in
some quotient rings that are naturally identified with cohomology rings of compact spaces. See
more on this in Appendix B, Chapter 11.

Example 4.4. For k = 1, n = 2 we have

W{1} = 1 + β2 − α1, W{2} = β1 − α1, W{} = (β1 − α1)(β2 − α1).

For k = 2, n = 2 we have

W{1,2} =
(1 + β2 − α1)(β1 − α2)(1 + α1 − α2)

α1 − α2

+
(1 + β2 − α2)(β1 − α1)(1 + α2 − α1)

α2 − α1

=

1 + β1 + β2 + 2β1β2 − (α1 + α2)(β1 + β2)− α1 − α2 + 2α1α2.
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4.2. Residue form of weight functions. The βi = 0 (i = 1, . . . , n) substitutionWI(α; 0, . . . , 0)
of the weight function WI will be denoted by WI,β=0.

We will use residue formulas for various functions. Recall that Resz=ω f(z)dz of a meromorphic
form at the complex number ω is the coefficient of (z − ω)−1 in the Laurent expansion of f
at ω, equivalently, 1/(2πi)

∫
γ
f(z)dz for a small circe γ oriented counterclockwise around ω.

If f is holomorphic around ω we have Resz=ω f(z)dz/(z − ω) = f(ω). As usual, we define
Resz=∞ f(z)dz = −Resz=0(f(1/z)dz/z2). We will use the Residue Theorem claiming that the
sum of residues of a meromorphic form on the Riemann sphere is 0. For z = z1, . . . , zk let
RESk(f(z)dz) be a short hand notation for Reszk=∞ . . .Resz2=∞Resz1=∞(f(z)dz).

Lemma 4.5. For a polynomial p in k variables we have

(8) RESk
p(−z1, . . . ,−zk)

∏
1≤i<j≤k(zj − zi)dz1 . . . dzk∏k

i=1

∏k
j=1(zi + ωj)

= (−1)k
∑
σ∈Sk

p(ωσ(1), . . . , ωσ(k))∏
1≤i<j≤k(ωσ(j) − ωσ(i))

Proof. Let

f(z) =
p(−z1, . . . ,−zk)

∏
1≤i<j≤k(zj − zi)∏k

i=1

∏k
j=1(zi + ωj)

.

By iterating the Resz=a f(z)dz/(z − a) = f(a) formula we obtain that for a permutation σ ∈ Sk

(9) Res
zk=−ωσ(k)

. . . Res
z1=−ωσ(1)

(f(z)dz1 . . . dzk) =
p(ωσ(1), . . . , ωσ(k))∏

1≤i<j≤k(ωσ(j) − ωσ(i))
.

The form f(z)dz has no other finite residues than the ones in (9). Hence if we add (9) for all
σ ∈ Sk then we obtain the sum of all finite residues of f(z)dz. Applying the Residue Theorem for
z1, z2, . . . , zk (at each application we pick up a (−1)) we obtain the statement of the theorem. �

Theorem 4.6. For d ≤ k ≤ n, |I| = d let r = k − d and

fI =
r∏

a=1

zn+r−a
a

k∏
a=r+1

zik+1−a−1
a

k∏
a=r+1

(1 + za)
n−ik+1−a

k∏
a=r+1

a−1∏
b=1

(1 + zb − za)
∏

1≤b<a≤k

(za − zb).

We have

WI,β=0 = (−1)k RESk

(
fI∏k

u=1

∏k
v=1(zu + αv)

dz1 . . . dzk

)
Proof. We have

UI,β=0 =
d∏

u=1

(1− αu)n−iu
k∏

u=d+1

(−αu)n
d∏

u=1

(−αu)iu−1

d∏
u=1

k∏
v=u+1

1 + αu − αv
αu − αv

.

Temporarily denote αu = ωk+1−u, that is consider the list of αi variables backwards. After
rearrangements we obtain

UI,β=0 =
r∏

a=1

(−ωa)n
k∏

a=r+1

(−ωa)ik+1−a−1

k∏
a=r+1

(1− ωa)n−ik+1−a

k∏
a=r+1

a−1∏
b=1

1 + ωa − ωb
ωa − ωb

.
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Define

(10) VI = UI,β=0 ·
r∏

a=1

(−ωa)r−a
r∏

a=1

a−1∏
b=1

1

ωa − ωb
.

We claim that

(11)
∑
σ∈Sr

VI(σ(ω1, . . . , ωr), ωr+1, . . . , ωk) = UI,β=0.

Indeed, since UI,β=0 is symmetric in ω1, . . . , ωr, it can be pulled out of the symmetrization, and
the symmetrization of the last two factors of (10) is well known to be 1.

Another interpretation of (11) is that the LHS of (11) equals

1

r!

∑
σ∈Sr

UI,β=0(σ(ω1, . . . , ωr), ωr+1, . . . , ωk).

Thus, for the weight function we obtain

(12) WI,β=0 =
∑
σ∈Sk

VI(σ(ω1, . . . , ωk)).

Lemma 4.5 then completes the proof. �

5. CSM classes of matrix Schubert cells are weight functions

Now we calculate the CSM classes of matrix Schubert cells.

Theorem 5.1. Consider the GLk(C) × B−n representation Hom(Ck,Cn) and the description of
the orbits in Section 3. For the equivariant Chern-Schwartz-MacPherson class of the orbit ΩI we
have

csm(ΩI) = WI(α,β).

Probably the most natural proof of Theorem 5.1 is through the classical method of resolution
of singularities, using the geometry of the weight function, see Section 12. Here we show a proof
based on the interpolation characterization of CSM classes (Theorem 2.7) to illustrate this new
method for future applications where manageable resolutions are not known.

Proof. We will show that WI satisfies the properties of Theorem 2.7 for the representation
Hom(Ck,Cn).

Let J = {j1 < . . . < jd}, d ≤ k. By looking at the matrix MJ one finds that the maximal
torus of GΩJ is of rank n+k−d and the map φJ : H∗

GLk(C)×B−
n

(V )→ H∗(BGΩJ ), composed with

the inclusion H∗(BGΩ) ⊂ H∗(BTΩ) (where TΩ is the maximal torus of GΩ) can be described by

C[α1, . . . , αk, β1, . . . , βn]Sk → C[αd+1, . . . , αk, β1, . . . , βn]

αu 7→

{
βju u = 1, . . . , d

αu u = d+ 1, . . . , k,
βv 7→ βv, v = 1, . . . , n.
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Using the notations in Section 3 we have that

c(TΩj) = φJ

 ∏
(v,u)∈TJ

(1 + βv − αu)

 , e(NΩJ ) = φJ

 ∏
(v,u)∈NJ

(βv − αu)

 ,

and that deg
(
c(TΩJ )e(NΩJ )

)
= nk − d. It follows that the representation satisfies the Euler

condition.
Let I = {i1 < . . . < ie} and recall the definition of UI :

UI =
e∏

u=1

n∏
v=iu+1

(1 + βv − αu)︸ ︷︷ ︸
P1

k∏
u=e+1

n∏
v=1

(βv − αu)︸ ︷︷ ︸
P2

e∏
u=1

iu−1∏
v=1

(βv − αu)︸ ︷︷ ︸
P3

e∏
u=1

k∏
v=u+1

1 + αu − αv
αu − αv︸ ︷︷ ︸

P4

.

We have that φJ(WI) =

(13) φJ

(
1

(k − e)!
∑
σ∈Sk

UI(σ(α);β)

)
=

1

(k − e)!
∑
σ∈Sk

UI(σ(βj1 , . . . , βjd , αd+1, . . . , αk);β).

The main observation of the proof is that is that due to factors of P2 and P3 the term

UI,J,σ := UI(σ(βj1 , . . . , βjd , αd+1, . . . , αk);β)

vanishes for many σ. Namely, if there exists a u = 1, . . . , d such that

(14) σ−1(u) > e or (σ−1(u) ≤ e and iσ−1(u) > ju)

then UI,J,σ = 0. This condition necessarily holds if e < d, so for such cases (13) is 0. Therefore in
the rest of the proof we will assume that d ≤ e. Also, define S∗k by σ ∈ S∗k if for all u = 1, . . . , d
we have σ−1(u) ≤ e and iσ−1(u) ≤ ju, and we have

(15) φJ(WI) =
1

(k − e)!
∑
σ∈S∗

k

φJ(UI(σ(α);β)).

Now we are ready to prove Properties (I)–(III).
If I = J (in particular d = e) then σ ∈ S∗k iff σ(u) = u for u = 1, . . . , e. Hence there are

(k − e)! terms in (15) and each of them is

φJ

 ∏
(v,u)∈A2

(1 + βv − αu)
∏

(v,u)∈A3

(βv − αu)
∏

(v,u)∈A1

(βv − αu)
∏

(v,u)∈A4

(1 + βv − αu)
(βv − αu)

 =

φJ

 ∏
(v,u)∈TI

(1 + βv − αu)
∏

(v,u)∈NI

(βv − αu)

 = c(TΩJ )e(NΩJ ).

This proves Property (I).
To prove Property (II) we need to show that

∏
(v,u)∈A0 ∪A2 ∪A4

φJ(1 + βv − αu) divides the

expression in (15). We claim that this divisibility holds for every term of (15). A term of



CHERN-SCHWARTZ-MACPHERSON CLASSES OF DEGENERACY LOCI 15

(15) is a product of φJ -images of the factors in P1, P2, P3, and P4. For (v, u) ∈ A0 we have
φJ(1 + βv − αu) = 1. For (v, u) ∈ A2 the factor φJ(1 + βv − αu) appears as one factor in φJ(P1)
(because of σ ∈ S∗k). If (v, u) ∈ A4 then the factor φJ(1 + βv − αu) appears either as a factor of
φJ(P1) or φJ(P4) (again, because of σ ∈ S∗k). The factors of

∏
(v,u)∈A2 ∪A4

φJ(1 + βv − αu) are all

different, hence we proved the divisibility Property (II).
To prove Property (III) recall that if e < d then φJ(WI) = 0. If e > d then

deg(φJ(WI)) ≤ deg(WI) = nk − e < nk − d = deg(c(TΩJ )e(NΩJ )).

Let us assume that d = e but J 6= I. Then for each term of (15) there is an u ∈ {1, . . . , d} for
which ju > iσ−1(u). This implies that among the factors of φJ(P1) one is φJ(1 + βju − βju) = 1.
Hence

deg(φJ(WI)) ≤ deg(WI)− 1 = nk − e− 1 < nk − d = deg(c(TΩJ )e(NΩJ )),

which completes the proof. �

Corollary 5.2. Consider the GLk(C)× B−n representation Hom(Ck,Cn) and the description of
the orbits in Section 3. For the equivariant Segre-Schwartz-MacPherson class of the orbit ΩI we
have

ssm(ΩI) =
WI(α,β)∏k

u=1

∏n
v=1(1 + βv − αu)

.

�

TheGLk(C)-equivariant CSM and SSM classes of ΩI are henceWI,β=0 andWI,β=0/
∏k

u=1(1−αu)n.

6. Symmetric functions. Residue generator functions.

In Sections 7 and 8 we will give generating function descriptions of certain CSM/SSM classes.
In this section we recall Schur functions, and develop the (“iterated residue”) generating function
tool we will use later.

Below we will work with integer vectors (λ1, . . . , λµ), and some of them will be weakly decreas-
ing, i.e. satisfying λi ≥ λi+1. A partition is a class of weakly decreasing integer vectors generated
by the relation (λ1, . . . , λµ) ∼ (λ1, . . . , λµ, 0).

Let us warn the reader that certain theorems will deal with weakly decreasing integer vectors,
and in those for example (3, 1) and (3, 1, 0) are different integer vectors.

6.1. Schur functions. Let ci, i = 1, 2, . . ., be a sequence of variables and set c<0 = 0, c0 = 1,
and declare deg(ci) = i. For an integer vector λ = (λ1, . . . , λµ) ∈ Zµ define

sλ = det(cλi+j−i)i,j=1,...,µ ∈ C[c1, c2, . . .].

If sλ 6= 0 then its degree is |λ| =
∑
λi. We have sλ = sλ,0 as well as the straightening laws

(16) s(I,a,b,J) = − s(I,b−1,a+1,J), s(I,a,a+1,J) = 0.

The collection of sλ’s for partition λ’s is a basis of the vector space of polynomials in ci. For
λ a partition sλ is called a Schur function, other sλ will be called fake Schur functions. Later
we will also deal with formal (infinite) sums of sλ’s, i.e. we formally work in the completion
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C[[c1, c2, . . .]]. Since the straightening laws respect degree, an infinite sum of sλ’s make sense as
long as for every n there are finitely many terms for which |λ| = n.

Certain substitutions will play a key role below. Namely, let α1, . . . , αk, and β1, . . . , βn be two
finite sets of variables (all declared to have degree 1), and define

ρk,n : C[c1, c2, . . .]→ C[α1, . . . , αk; β1, . . . , βn]Sk×Sn

by

(17) ρk,n(1 + c1t+ c2t
2 + . . .) =

∏n
i=1(1 + βit)∏k
i=1(1 + αit)

.

For example ρk,n(s1) =
∑n

j=1 βj −
∑k

i=1 αi, and

ρk,0(s11) =
∑

1≤i<j≤k

αiαj, ρ0,n(s11) =
∑

1≤i<j≤n

βiβj +
∑

1≤i≤n

β2
i .

The statement

(18) ker ρk,n = span{sλ : λk+1 ≥ n+ 1}
is proved (albeit not stated) in [FP, Section 3.2]. Indeed, the ⊃ part follows from the factorization
formula on page 37, and the ⊂ part follows from the Proposition on page 36 of [FP].

Lemma 6.1. For an integer vector λ = (λ1, . . . , λµ) we have

sλ = (−1)µ RESµ

(
µ∏
i=1

zλii ·
∏

1≤i<j≤µ

(
1− zi

zj

)
·
µ∏
i=1

∞∑
u=0

cu
zui
·
µ∏
i=1

dzi
zi

)

ρk,n(sλ) = (−1)µ RESµ

(
µ∏
i=1

zλii ·
∏

1≤i<j≤µ

(
1− zi

zj

)
·
µ∏
i=1

∏n
u=1(1 + βu/zi)∏k
u=1(1 + αu/zi)

·
µ∏
i=1

dzi
zi

)

Proof. Using the identity
∏

1≤i<j≤k(1− zi/zj) =
∑

σ∈Sk sgn(σ)
∏µ

i=1 z
σ(i)−i
i the right hand side of

the first line equals

(19) (−1)µ RESµ

(∑
σ∈Sk

sgn(σ)

µ∏
i=1

z
λi+σ(i)−i
i

µ∏
i=1

∞∑
u=0

cu
zui

µ∏
i=1

dzi
zi

)
.

By iterated application of

Res
z=∞

(
zn

∞∑
u=0

cu
zu
dz

z

)
= −cn

(proved by changing coordinates z = 1/w and calculating the residue at w = 0 by checking the
−1’st coefficient of the Laurent expansion) we obtain that (19) is further equal to∑

σ∈Sk

sgn(σ)

µ∏
i=1

cλi+σ(i)−i = sλ,

what we wanted to prove. The second line follows formally from the first one by (17). �
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6.2. The S operation. Let z1, . . . , zµ be an ordered set of variables. For a monomial zλ1
1 . . . z

λµ
µ

define
Sz1,...,zµ(zλ1

1 . . . zλµµ ) = sλ1,...,λµ .

For polynomials in z1, . . . , zµ we extend this operation linearly. Since the straightening rules (16)
respect the degree the operation extends formally to formal power series, resulting in infinite
sums of sλ’s, that is, formal power series in ci’s. For example

(20) Sz1,z2

(
z3

1z
1
2 ·

∞∑
i=0

zi2

)
=
∞∑
i=1

s3i = s31 + s32 + s33−
∞∑
i=4

si4 .

Observe that the middle expression is an expansion in terms of (possibly) fake Scher functions,
and the last expression is an expansion in terms of Schur functions.

We will use certain rational functions to encode formal power series. Namely, by convention,
the rational functions of the form

p(z1, . . . , zµ)∏µ
i=1(1 + κizi)li

,

where p is a polynomial, κi ∈ Z, will denote the formal power series obtained by replacing each
1/(1 + κizi) factor by

∑∞
j=0(−κizi)j. For example, by Sz1,z2(z3

1z2/(1 − z2)) we mean the same

expression as (20).
Define Sk,nz (f(z)) = ρk,n(Sz(f(z))).
The following proposition—which follows directly from Lemma 6.1—is the reason for calling

the S-operation the “iterated residue operation”.

Proposition 6.2. For a polynomial or formal power series p(z1, . . . , zµ) we have

(21) (−1)µ RESµ

(
p(z) ·

∏
1≤i<j≤µ

(
1− zi

zj

)
·
µ∏
i=1

∞∑
u=0

cu
zui
·
µ∏
i=1

dzi
zi

)
= Sz1,...,zµ(p(z)),

(22) (−1)µ RESµ

(
p(z) ·

∏
1≤i<j≤µ

(
1− zi

zj

)
·
µ∏
i=1

∏n
u=1(1 + βu/zi)∏k
u=1(1 + αu/zi)

·
µ∏
i=1

dzi
zi

)
= Sk,nz1,...,zµ(p(z)).

�

7. Generating functions parameterized by weakly decreasing sequences

In this section we prove a generating sequence descriptions of the GLk(C)-equivariant CSM
and SSM classes of matrix Schubert varieties, namely Theorem 7.6 and Corollary 7.8. These
generating functions will depend on weakly decreasing integer sequences. In Section 8 these
results will be improved to generating sequences depending on partitions.

It is a remarkable fact of Schubert calculus, that the equivariant fundamental class of (the
closure of) a matrix Schubert cells does not change when one attaches a 0 to the end of the
weakly decreasing integer sequence [FR1, KM]. We will see below that the higher order terms
of CSM and SSM classes change with this operation. Yet, there is one version that will depend
only on a partition (see Theorem 8.5 below).
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7.1. Conventions on integer sequences. Recall that the set

Ik,n = {I : I = {i1 < . . . < id} ⊂ {1, . . . , n}, 0 ≤ d ≤ k}

parameterizes the matrix Schubert cells of Hom(Ck,Cn). To an element I ∈ Ik,n we associate a
weakly decreasing sequence λ = (λ1 ≥ λ2 ≥ . . . ≥ λk) of non-negative integers by the conversion
formula

λa = ik+1−a − (k + 1− a)

for a = 1, . . . , k, where by convention id+a = n+ a for a = 1, . . . , k − d.
For a sequence λ = (λ1 ≥ λ2 ≥ . . . ≥ λk) of weakly decreasing integers, let Iλ = {i1 < i2 <

. . . < ik} ⊂ Z be defined by the conversion formula (equivalent to the one above)

ia = λk+1−a + a.

We say that λ = (λ1 ≥ λ2 ≥ . . . ≥ λk) and the non-negative integer n are compatible if the
elements in Iλ larger than n form an interval (possibly empty) starting at n+ 1. That is, if there
exists a q ≥ 0 such that Iλ ∩ Z>n = {n+ 1, n+ 2, . . . , n+ q}.

It follows that map I 7→ λ described above is a bijection between Ik,n and

I ′k,n = {λ : λ = (λ1 ≥ . . . ≥ λk) ∈ Nk, λ and n are compatible}.

The inverse map I ′k,n → Ik,n is λ 7→ Iλ ∩ {1, . . . , n}. Observe that a given λ is compatible with
any sufficiently large n.

Example 7.1. Let k = 2, n = 3 and consider the subsets I ⊂ {1, 2, 3} as in Example 3.1. The
corresponding λ’s are (0, 0), (1, 0), (1, 1), (2, 0), (2, 1), (2, 2), (3, 3), respectively.

Example 7.2. The sequence λ = (3, 1) is compatible with n if and only if n ≥ 4 (since Iλ =
{2, 5}). The element corresponding to λ = (3, 1) in I2,4 is I = {2}. For n ≥ 5 the element
corresponding to λ = (3, 1) in I2,n is I = {2, 5}.

7.2. Generating functions for GLk(C)-equivariant CSM and SSM classes. TheGLk(C)×
B−n -equivariant CSM/SSM classes we study are elements of

C[α1, . . . , αk, β1, . . . , βn]Sk , C[[α1, . . . , αk, β1, . . . , βn]]Sk .

By plugging in βi = 0 for all i = 1, . . . , n we obtain symmetric polynomials (power series) in
α1, . . . , αk, hence linear combinations (formal infinite sums) of polynomials ρk,0(sλ). The topo-
logical counterpart of this substitution is considering equivariant cohomology only with respect
to the GLk(C) factor of GLk(C)×B−n .

Denote

csmβ=0(ΩI) = csm(ΩI)|βv=0,v=1,...,n, ssmβ=0(ΩI) = ssm(ΩI)|βv=0,v=1,...,n.

Our next goal is to find expressions for the Schur function expansions of these functions.
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Proposition 7.3. For λ ∈ I ′k,n let I = Iλ ∩ {1, . . . , n} be the corresponding element in Ik,n. Let

fλ,n =
k∏
i=1

zλi+k−ii

k∏
i=1

(1 + zi)
max(0,n−k−1−λi+i)

∏
1≤i<j≤k

λj−j≤n−k−1

(1 + zi − zj)
∏

1≤i<j≤k

(zj − zi).

We have

csmβ=0(ΩIλ∩{1,...,n}) = (−1)k RESk

(
fλ,n∏k

i=1

∏k
u=1(zi + αu)

dz1 . . . dzk

)
Proof. We have csmβ=0(ΩI) = WI,β=0 due to Theorem 5.1. For the latter we have a residue descrip-
tion, Theorem 4.6, which is reformulated here for λ instead of I. �

Definition 7.4. Let k, n ∈ N. For λ = (λ1 ≥ λ2 ≥ . . . ≥ λk), λk ≥ 0 define

F csmλ,n =
k∏
i=1

zλii ·
k∏
i=1

(1 + zi)
max(0,n−k−1−λi+i) ·

∏
1≤i<j≤k

λj−j≤n−k−1

(1 + zi − zj),

F ssmλ,n =
F csmλ,n∏k

i=1(1 + zi)n
.

Observe that if n is large (in fact n ≥ λ1 +k 1) then F ssmλ,n does not depend on n. The stabilized
value will be called

F ssmλ,∞ =
k∏
i=1

zλii ·
k∏
i=1

(1 + zi)
−k−1−λi+i ·

∏
1≤i<j≤k

(1 + zi − zj)(23)

=
k∏
i=1

(
zi

1 + zi

)λi k∏
j=1

j∏
i=1

1 + zi − zj
1 + zi

.(24)

Example 7.5. We have

F ssm(1,0),0 = z1, F ssm(1,0),1 =
z1(1 + z1 − z2)

(1 + z1)(1 + z2)
,

F ssm(1,0),2 =
z1(1 + z1 − z2)

(1 + z1)(1 + z2)2
, F ssm(1,0),∞ = F ssm(1,0),≥3 =

z1(1 + z1 − z2)

(1 + z1)(1 + z2)3
.

The following theorem gives the generating sequences of GLk(C)-equivariant CSM and SSM
classes of matrix Schubert cells in Hom(Ck,Cn).

Theorem 7.6. For λ ∈ I ′k,n let I = Iλ ∩ {1, . . . , n} be the corresponding element in Ik,n. Then

csmβ=0(ΩI) = Sk,0z1,...,zk(F
csm
λ,n ), ssmβ=0(ΩI) = Sk,0z1,...,zk(F

ssm
λ,n ).

1since λ1 + k = ik in the language of Section 7.1 the condition is ik ≤ n
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Proof. The first statement follows from Proposition 7.3 and Proposition 6.2. The second state-
ment follows from the first one. �

Example 7.7. Let k = 2, λ = (3, 1). Then Iλ = {2, 5}. Hence λ is compatible with n iff n ≥ 4.
The corresponding subset in I2,4 is I = {2}, and for n ≥ 5 the corresponding subset in I2,n is
{2, 5}. Calculating Taylor series of the appropriate explicit rational functions we obtain that for
n = 4 we have

csmβ=0(Ω{2}) = S2,0
z1,z2

(
z3

1z2 + (z4
1z2 + z3

1z
2
2) + (2z4

1z
2
2 − z3

1z
3
2) + (z4

1z
3
2 − z3

1z
4
2)
)

= ρ2,0 (s3,1 +(s4,1 + s3,2) + (2 s4,2− s3,3) + s4,3) .

ssmβ=0(Ω{2}) = S2,0
z1,z2

(z3
1z2 − (3z4

1z2 + 3z3
1z

2
2) + (6z5

1z2 + 10z4
1z

2
2 + 5z3

1z
3
2)

− (10z6
1z2 + 22z5

1z
2
2 + 17z4

1z
3
2 + 7z3

1z
4
2) + . . .)

= ρ2,0 (s3,1−(3 s4,1 +3 s3,2) + (6 s5,1 +10 s4,2 +5 s3,3)− (10 s6,1 +22 s5,2 +17 s4,3) + . . .) .

For n = 5 we have

csmβ=0(Ω{2,5}) = S2,0
z1,z2

(
z3

1z2 + (z4
1z2 + 2z3

1z
2
2) + (3z4

1z
2
2) + (3z4

1z
3
2 − 2z3

1z
4
2) + (z4

1z
4
2 − z3

1z
5
2)
)

= ρ2,0 (s3,1 +(s4,1 +2 s3,2) + (3 s4,2) + 3 s4,3 +2 s4,4) .

ssmβ=0(Ω{2,5}) = S2,0
z1,z2

(z3
1z2 − (4z4

1z2 + 3z3
1z

2
2) + (13z4

1z
2
2 + 5z3

1z
3
2 + 10z5

1z2)

− (20z6
1z2 + 35z5

1z
2
2 + 22z4

1z
3
2 + 7z3

1z
4
2) + . . .)

= ρ2,0 (s3,1−(4 s4,1 +3 s3,2) + (13 s4,2 +5 s3,3 +10 s5,1)− (20 s6,1 +35 s5,2 +22 s4,3) + . . .) .

If n ≥ 5 then F ssm(3,1),n does not depend on n any longer. Hence the last formula for ssmβ=0(Ω{2,5})
holds for any n ≥ 5.

For λ = (λ1 ≥ . . . ≥ λk) assume that n is large enough to ensure λ1 ≤ n− k. Then the set in
Ik,n corresponding to λ is Iλ. Also, the elements of the matrix Schubert cell ΩI ⊂ Hom(Ck,Cn)
have full rank (i.e. rank k).

Corollary 7.8. If λ1 ≤ n− k then

(25) ssmβ=0(ΩIλ) = Sk,0z1,...,zk(F
ssm
λ,∞).

�

The essence of Corollary 7.8 is that given a weakly decreasing sequence of non-negative integers
λ, there is a formula (namely the right hand side of (25)) which expresses the GLk(C)-equivariant
SSM class of ΩIλ ⊂ Hom(Ck,Cn) for all sufficiently large n. Unfortunately the expression given
in Corollary 7.8 does depend on k, that is, it changes if we add a 0 to the end of λ. This will be
improved in Section 8.

Remark 7.9. Corollary 7.8 shows the stabilization of SSM classes when n ≥ k + λ1. There is
another type of stabilization of CSM classes in the n ≥ k + λ1 range. Namely, in this case

F csmλ,n =
k∏
i=1

zλii ·
k∏
i=1

(1 + zi)
n−k−1−λi+i ·

∏
1≤i<j≤k

(1 + zi − zj).
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Hence, if λ = (λ1, . . . , λk) is changed by adding 1 to each component, and n is increased by 1,
then F csmλ,n gets multiplied by z1 · · · zk. This means, that—in the n ≥ k + λ1 range—increasing n

by 1, and increasing λ by (1k) = (1, . . . , 1) changes the GLk(C)-equivariant CSM class of ΩIλ in
a controlled way: in the Schur expansion the partition of each Schur polynomial is increased by
(1k) = (1, . . . , 1). For example for k = 2, λ = (3, 1) we get

csmβ=0

(
Ω{2,5} ⊂ Hom(2, 5)

)
= ρ2,0 (s3,1 +2 s3,2 + s4,1 +3 s4,2 +3 s4,3 +2 s4,4) ,

csmβ=0

(
Ω{3,6} ⊂ Hom(2, 6)

)
= ρ2,0 (s4,2 +2 s4,3 + s5,2 +3 s5,3 +3 s5,4 +2 s5,5) ,

csmβ=0

(
Ω{4,7} ⊂ Hom(2, 7)

)
= ρ2,0 (s5,3 +2 s5,4 + s6,3 +3 s6,4 +3 s6,5 +2 s6,6) ,

and so on, c.f. ‘lowering’ and ‘raising’ operators in [FR3].

8. Generating functions parameterized by partitions

Corollary 7.8 claims that ssmβ=0(ΩIλ) is obtained by applying the substitution ρk,0 to the gener-
ating sequence Sz1,...,zk(F

ssm
λ,∞). However this generating sequence changes by adding a 0 to the

end of λ. In this section we present a generating function independent of such change. This new
generating functions depends on infinitely many variables. First, in Section 8.1 we deal with the
algebra of generating functions with infinitely many variables.

8.1. Increasing the number of variables in generating function. Let h(z1, . . . , zk+1) be a
power series in k + 1 variables. We have that Sz1,...,zk,zk+1

(h) is an infinite linear combination of
Schur functions. Some of the terms correspond to partitions of length at most k—call the sum
of these terms S≤kz1,...,zk+1

(h)—and the rest corresponds to partitions of length k + 1.

Lemma 8.1. Let f(z1, . . . , zk) and g(z1, . . . , zk, zk+1) be formal power series such that g(z1, . . . ,
zk, 0) = 1. Then

S≤kz1,...,zk+1
(fg) = Sz1,...,zk(f).

Proof. Let
∏k

i=1 z
ai
i and

∏k+1
i=1 z

bi
i be monomials that occur in f and g, respectively, with non-zero

coefficients. Their product T =
∏k

i=1 z
ai+bi
i · zbk+1

k+1 occurs in fg with non-zero coefficient. From

(16) we have that Sz1,...,zk+1
(T ) is either 0 or equal to ±Sz1,...,zk+1

(
∏k+1

i=1 z
µi
i ) where µ is a partition,

and µk+1 is equal to one of

bk+1, ak + bk + 1, ak−1 + bk−1 + 2, ak−2 + bk−2 + 3, . . . , a1 + b1 + k.

Hence, S≤kz1,...,zk+1
(T ) is non-zero, iff µk+1 = 0. The listed integers are all necessarily positive

except the first one. Hence µk+1 = 0 can only occur if µk+1 = bk+1 = 0. However, the g(z1, . . . ,
zk, 0) = 1 condition then implies that the only monomial in g with bk+1 = 0 is the monomial 1.
That is, we have that bi = 0 for i = 1, . . . , k + 1.

We obtained that the only way of obtaining a partition of length at most k in S≤kz1,...,zk+1
(fg) is

by using the constant term 1 of g. This proves the lemma. �
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For a function f(z1, . . . , zk) and N ∈ N consider

HN = f(z1, . . . , zk)
N∏
j=1

j∏
i=1

1 + zi − zj
1 + zi

.

Observe that

HN = HN−1 ·
N∏
i=1

1 + zi − zN
1 + zi

,

and that the factor
∏N

i=1(1 + zi − zN)/(1 + zi) takes the value 1 if we substitute zN = 0. Hence,
we can apply Lemma 8.1 for k+ 1, k+ 2, . . . and obtain that the coefficient of sµ for any concrete
partition µ stabilizes in HN as N →∞. The sum of the stable terms will be denoted by

Sz1,z2,...

(
f(z1, . . . , zk)

∞∏
j=1

j∏
i=1

1 + zi − zj
1 + zi

)
.

8.2. The s̃λ function. Recall that a partition is an equivalence class of sequences of weakly de-
creasing non-negative integers with respect to the equivalence relation generated by (λ1, . . . , λk) ∼
(λ1, . . . , λk, 0). As usual, we will use a representative to denote a partition. We are ready to make
a key definition of the paper.

Definition 8.2. Denote

s̃λ := Sz1,z2,...

(
k∏
i=1

(
zi

1 + zi

)λi ∞∏
j=1

j∏
i=1

1 + zi − zj
1 + zi

)
.

Example 8.3. Some examples are given in the Introduction. Another one is

s̃31 = s31−(4 s41 +3 s32 +3 s311) + (10 s51 +13 s42 +5 s33 +10 s321 +6 s3111 +13 s411)

− (20 s61 +35 s52 +22 s43 +35 s511 +46 s421 +19 s331 +10 s322 +28 s4111 +22 s3211) + . . . .

Observe how the partitions that occur in the subscripts grow: Not only the components are
larger and larger numbers but the lengths of the partitions are growing as well. In the usual
picture of Young diagrams the shapes not only “grow to the right” but also “grow downwards”.
To our best knowledge this phenomenon is new in algebraic combinatorics; it does not occur in
analogous situations in the theory of equivariant fundamental classes essentially due to [FR4,
Theorem 2.1].

The following conjecture is verified in several special cases.

Conjecture 8.4. For every partition λ the signs in the Schur expansions of s̃λ alternate with
the degree. Namely, for a partition µ, (−1)|µ|−|λ| times the coefficient of sµ in s̃λ is non-negative.

Theorem 8.5. Let λ = (λ1 ≥ . . . ≥ λk) and n ≥ λ1 + k. Consider ΩIλ ⊂ Hom(Ck,Cn). We
have

ssmβ=0(ΩIλ) = ρk,0(s̃λ).
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Proof. The statement follows from Corollary 7.8 if we use the form (24) for F ssmλ,∞, and Lemma 8.1.
�

The advantage of this theorem compared to Corollary 7.8 is that now the generator function
only depends on the partition. The disadvantage is that this general generating function has
infinitely many variables. The condition n ≥ λ1 + k is equivalent to the property that the Young
diagram of λ fits into a k × (n− k) rectangle, or to the property that Iλ ⊂ {1, . . . , n}, or to the
property that the elements of the orbit on the left hand side have full rank k.

8.3. SSM classes of general matrix Schubert cells in terms of s̃λ functions. Theorem 8.5
gives the s̃-expansion of the GLk(C)-equivariant SSM classes of “full-rank” matrix Schubert cells,
that is, those cells in Hom(Ck,Cn) whose elements have rank k. While these cells are of the most
interest, we will need s̃-expansions of the SSM classes of smaller rank cells too.

Let I = {i1 < . . . < id} ∈ Ik,n where |I| = d ≤ k. Recall that the corresponding λ ∈ I ′k,n has
the form

λ = (n− d, . . . , n− d︸ ︷︷ ︸
k−d

, λk−d+1, λk−d+2, . . . , λk).

Let Λ(I) be the set of partitions µ obtained from this λ by weakly increasing only the first k− d
components. That is, elements µ = (µ1, . . . , µk) of Λ(I) are partitions and they satisfy

• µa ≥ n− d for a = 1, . . . , k − d,
• µa = λa = ik+1−a − (k + 1− a) for a = k − d+ 1, . . . , k.

Theorem 8.6. For I ∈ Ik,n, |I| = d ≤ k, ΩI ⊂ Hom(Ck,Cn) we have

ssmβ=0(ΩI) = ρk,0

 ∑
µ∈Λ(I)

s̃µ

 .

Observe that Theorem 8.5 is the d = k special case of this one.

Proof. For N > n let π : Hom(Ck,CN) → Hom(Ck,Cn) be the projection defined by forgetting
the bottom N −n rows of a N × k matrix. The projection π is GLk(C)×B−N -equivariant, where
B−N acts on the target through the map B−N → B−n assigning the upper-left n × n submatrix to
an element of B−N .

Consider the cylinders π−1(ΩI) ⊂ Hom(Ck,CN) for I ∈ Ik,n. They are GLk(C)×B−N -invariant,
and from the rank description of orbits (6) it follows that

π−1(ΩI) =
⋃

J∈Ik,n,N (I)

ΩJ

where

Ik,n,N(I) = {J ∈ Ik,N : J ∩ {1, . . . , n} = I}.
The map π is a projection, hence it is transversal to the ΩJ stratification of Hom(Ck,Cn)

(a Whitney stratification). Hence, (iv) in Section 2.3 implies that in GLk(C) × B−N -equivariant
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cohomology

ssm(ΩI ⊂ Hom(Ck,Cn)) =ssm(π−1(ΩI) ⊂ Hom(Ck,CN))

=
∑

J∈Ik,n,N (I)

ssm(ΩJ ⊂ Hom(Ck,CN)).

Because of the GLk(C)×B−N -action on Hom(Ck,Cn) is through GLk(C)×B−n , the left hand side
can be interpreted as the GLk(C) × B−n -equivariant SSM class. In particular—while the iden-
tity is in the completion of C[α1, . . . , αk, β1, . . . , βN ]Sk—both sides only depend on the variables
α1, . . . , αk, β1, . . . ,βn.

It will be convenient to rewrite the last expression as

ssm(ΩI ⊂ Hom(Ck,Cn)) =
∑

J∈Ik,n,N(I),|J |=k

ssm(ΩJ ⊂ Hom(Ck,CN))

+
∑

J∈Ik,n,N(I),|J |<k

ssm(ΩJ ⊂ Hom(Ck,CN)).

Now let us restrict the group action to GLk(C)—that is we substitute βi = 0—and apply Theo-
rem 8.5 to the terms in the first summation. We obtain

ssmβ=0(ΩI ⊂ Hom(Ck,Cn)) =
∑

µ∈Λ(I),µ1≤N−k

ρk,0(s̃µ)(26)

+
∑

|J |<k,J∩{1,...,n}=I

ssmβ=0(ΩJ ⊂ Hom(Ck,CN)).

As N → ∞, the codimensions of the ΩJ ’s appearing in the second summation tend to infinity.
Hence, the degree of the second summation tends to infinity (where degree means the degree of
the smallest non-zero component). Therefore applying N →∞ to (26) proves the theorem. �

Example 8.7. It is instructive to compare the following two examples (c.f. Examples 7.2, 7.7),
both associated with the partition λ = (3, 1) (see Section 7.1).

ssmβ=0

(
Ω{2,5} ⊂ Hom(C2,C5)

)
= ρ2,0(s̃(31)),

ssmβ=0

(
Ω{2} ⊂ Hom(C2,C4)

)
= ρ2,0(s̃(31) + s̃(4,1) + s̃(5,1) + . . .).

The fundamental class of both Ω orbits above is ρ2,0(s(31)). This Schur function is the smallest
term of both SSM classes above. However, the full SSM classes are different. That is, while
the fundamental classes of matrix Schubert varieties only depend on the associated partitions (a
phenomenon observed in [FR1, KM]), in SSM theory this only holds for full rank orbits.

Remark 8.8. Arguments similar to the ones used above (e.g. Theorem 8.6 for k, n =∞, I = ∅)
show that

(27)
∑
λ

s̃λ = 1.
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In fact, using the “triangularity” property

(28) ssmλ = sλ +higher degree terms

we can see that (27) is the only linear relation among the functions s̃λ. If we declare ci “of
order εi”, and we declare the Schur functions sλ “positive”, then property (28) implies that
the terms s̃λ in (27) are positive. Hence the collection {s̃λ}λ is a (formal power series valued)
probability distribution on the set of partitions. In this language the GL∞-equivariant SSM class
of an equivariant constructible function on the GL∞ × B−∞-representation Hom(C∞,C∞) is the
expected value of the constructible function. It would be interesting to see applications of this
probability theory interpretation in enumertive geometry.

9. SSM classes for the A2 quiver representation

Let k ≤ n be non-negative integers, l = n−k, and consider theGLk(C)×GLn(C) representation
Hom(Ck,Cn) defined by (A,B) ·φ = B ◦φ ◦A−1. This representation is also called the A2 quiver
representation. The orbits of this representations are

Σr = Σr
k,n = {φ ∈ Hom(Ck,Cn) : dim kerφ = r}

for r = 0, . . . , k.
The SSM class of Σr

k,n is a non-homogeneous element in (the completion of)

H∗(B(GLk(C)×GLn(C))) = C[α1, . . . , αk, β1, . . . , βn]Sk×Sn .

Theorem 9.1. We have

(29) ssm(Σr
k,n) = ρk,n

 ∑
λr≥r+l
λr+1≤r+l

s̃λ

 .

Another way of describing the indexing set in (29) is that it consists of partitions whose Young
diagram contains the box (r, r + l) but does not contain the box (r + 1, r + l + 1).

Proof. First we claim that there exist a formal power series Prl in c1, c2, . . . only depending on r
and l (not on k and n separately), such that

ssm(Σr
k,n) = ρk,n (Prl ) .

This follows from the fact that the exclusion-inclusion formula given in [PP] for ssm(Σr
k,n)—

recalled in Theorem 10.1—only depends on r and l. 2

It follows that

(30) ssmβ=0(Σr
k,n) = ρk,0 (Prl ) .

We have
Σr
k,n = ∪I∈Ik,n,|I|=k−rΩI ,

2Reference to [PP] can be avoided by verifying that the inclusion i : Hom(Ck,Cn) ⊂ Hom(Ck+1,Cn+1) is
transversal to the Σs

k+1,n+1 stratification, i−1(Σr
k+1,n+1) = Σr

k,n, and hence i∗(ssm(Σr
k+1,n+1)) = ssm(Σr

k,n).
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and both the Σr
k,n and the ΩI sets are GLk(C)-invariant. Therefore from Theorem 8.6 we get

ssmβ=0(Σr
k,n) = ρk,0

 ∑
I∈Ik,n
|I|=k−r

∑
λ∈Λ(I)

s̃λ

 .

Using the conversion formulas of Section 7.1 this is rewritten as

(31) ssmβ=0(Σr
k,n) = ρk,0

 ∑
λ=(λ1,...,λk)

λr≥r+l,λr+1≤r+l

s̃λ

 .

Comparing (30) with (31), and using the fact that ker ρk,n =span{sλ : λk+1 ≥ n+ 1} we obtain

Prl =
∑

λ=(λ1,...,λk)

λr≥r+l,λr+1≤r+l

s̃λ +
∑

λk+1≥1

aλ sλ .

Since this holds for all k ≥ r, we have

Prl =
∑

λr≥r+l
λr+1≤r+l

s̃λ

what we wanted to prove. �

Remark 9.2. The A2 quiver representation is the prototype of degeneracy loci theory. The fun-
damental class of the orbit closures for this representation, [Σr

k,n] = ρk,n(s(r+l)r) (called Giambelli-
Thom-Porteous formula) is a positive and a very simple (one-term) expansion in terms of the
“atoms” of fundamental class theory, the Schur functions. The very same positivity and sim-
plicity is displayed in Theorem 9.1 for the SSM class, if we choose our “atoms” for the SSM
theory to be the s̃λ functions. This is one of the main messages of the present paper: the natural
presentation of SSM classes is in terms of s̃λ functions. Of course, for more complicated quivers,
or for higher jet representations (singularity theory) the coefficients will be more complicated.
We expect, however, that the coefficients will still be non-negative for many geometrically rele-
vant representations. More evidence towards this expectation will be shown in [Ko, Pr]. Finally,
this expectation, together with Conjecture 8.4, is the “two-step” positivity structure we are
conjecturing for SSM classes of geometrically relevant degeneracy loci.

An exclusion-inclusion (a.k.a. sieve) type formula for ssm(Σr
k,n) was proved by Parusinski-

Pragacz [PP]. For completeness, in Appendix A (Section 10) we reprove the Parusinski-Pragacz
formula, together with some additional generating series description.
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10. Appendix A: The Parusinski-Pragacz-formula

A seminal paper on CSM/SSM classes of degeneracy loci is [PP], where the authors present a
sieve type formula for ssm(Σr

k,n) for the A2 quiver representation (see Section 9). In this section
we give a modern proof of their result, but essentially following the line of their arguments. The
reason for giving a new proof is twofold. On the one hand we add to the results of [PP] by giving
a generating series description of a main ingredient. On the other hand, in Section 10.1 we set
up a general framework of calculating SSM classes of degeneracy loci once a fibered resolution is
found; we believe this will be useful in future calculations both for quivers and singularities.

The equivariant CSM/SSM classes of Σr
k,n are also studied in [W]. Moreover, in the recent

paper [Z] not only the CSM/SSM classes are calculated for the A2 representation but also the
so-called Mather classes.

For k ≤ n, and µ, ν partitions of length at most k let

Dk,n
µ,ν = det

((
µi+k−i+νj+n−j

µi+k−i

))
i,j=1,...,k

.

Theorem 10.1 (essentially [PP]). For k ≤ n, l = n− k, we have

(32) ssm(Σr) =
k∑
s=r

(−1)s−r
(
s

r

)
Φs
k,n,

where

(33) Φs
k,n = Sk,nz1,...

(
s∏
i=1

(
zi

1 + zi

)s+l ∞∏
j=s+1

s∏
i=1

1 + zi − zj
1 + zi

)
,

as well as

(34) Φs
k,n = ρk,n

∑
l(µ)≤s

∑
l(ν)≤s

(−1)|µ|+|ν|Ds,s+l
µ,ν s(s+l)s+µ,νT

 ,

and

(35) Ds,s+l
µ,ν ≥ 0.

In (34) the summation runs for partitions µ, ν whose lengths (i.e. the number of their non-zero
parts denoted by l(µ), l(ν)) are at most s. The symbol (s + l)s + µ, νT denotes the partition
whose Young-diagram is obtained from an s× (s+ l) rectangle by gluing the Young diagram of
µ to the right edge, and the “transpose” of the Young diagram of ν the the bottom edge. For
example “(2 + 1)2 + (2, 1), (3, 1)T” is the partition (5, 4, 2, 1, 1).

Remark 10.2. Statements (32) and (34) were proved in [PP] (precisely speaking, Theorem 2.1
of [PP] is for the closure of Σr, but due to additivity of SSM classes it is obviously equivalent to
(32), cf. Theorem 10.4 (2)).
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Statement (35) is known in relation with Segre classes of tensor products of vector bundles (see
[LLT]). Here is a sketch of a combinatorial proof. Consider the oriented graph whose vertices are
the integer points of the real plane, and whose edges are all the length 1 segments among them,
oriented left/up. Consider the “source” points Pi = (µi + s− i, 0) for i = 1, . . . , s and the “sink”
points Qj = (0, νj + (s+ l)− j) for j = 1, . . . , s. Applying the Lindström-Gessel-Viennot lemma
(e.g. [L]) to this situation interprets Ds,s+l

µ,ν as the number of certain non-intersection paths, that

is, Ds,s+l
µ,ν is non-negative.

In the rest of this section—after proving some generalities about fibered resolutions—we give
a full proof of Theorem 10.1. Namely Theorem 10.4 proves (32), Theorem 10.8 proves (33), and
Theorem 10.9 proves (34).

10.1. Fibered resolution. Let Σ ⊂ V be an invariant subvariety of the G-representation V .
The G-equivariant map η : Σ̃ → V is called a fibered resolution of Σ, if it is a resolution of
singularities of Σ, moreover, if Σ̃ is a total space of a G-vector bundle Σ̃ → K over a smooth
compact G-variety K and the resolution η factors as η = πV ◦ i, where i : Σ̃ ⊂ K × V is a
G-equivariant embedding of vector bundles and πV is the projection to V . That is, η : Σ̃→ V is
a G-equivariant fibered resolution, if we have a G-equivariant commutative diagram

(36) Σ̃

##

i //

η

##
K × V

πK
��

πV // V

K.

Consider the G-equivariant quotient bundle ν = (K × V → K)/(Σ̃→ K) over K. This bundle,
pulled back to Σ̃ is the normal bundle of the embedding i : Σ̃ → K × V . The bundle ν pulled
back over K×V has a natural section σ given by σ(k, v) = v+ i(Σ̃k) (where k ∈ K, v ∈ V and Σ̃k

is the fiber of Σ̃→ K over k). The section σ is transversal to the 0-section, and σ−1(0) = i(Σ̃).
Hence we have the remarkable situation that the normal bundle of i(Σ̃) ⊂ K × V extends to a
bundle ν over K × V .

In the cohomology calculations below we work in G-equivariant cohomology, and—as custo-
mary—we do not indicate pull-back bundles (e.g. ν may denote bundles over Σ̃, K, or K × V
respectively). The cohomology of a total space and the base space of a vector bundle will be
identified without explicit notation.

We will be concerned with two G-equivariant cohomology classes in V : the fundamental class
[Σ] of Σ in V , and the common value

(37) ΦΣ :=
η∗(c(T Σ̃))

c(V )
= η∗

(
c(T Σ̃)

c(V )

)
= η∗ (c(−ν)c(TK)) .
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The first equality follows by adjunction and second one follows from the calculation

c(T Σ̃)

c(V )
=

c(T Σ̃)

c(V )c(TK)
c(TK) = c(−ν)c(TK).

Proposition 10.3. We have

[Σ] =

∫
K

e(ν), ΦΣ =

∫
K

e(ν)c(−ν)c(TK).

Proof. Since the section σ described above is transversal to the 0-section, and σ−1(0) = i(Σ̃) we
have i∗(1) = e(ν) and

[Σ] = η∗(1) = πV ∗i∗(1) = πV ∗(e(ν)) =

∫
K

e(ν)

proving the first statement. The second statement follows from the calculation

ΦΣ = η∗(c(−ν)c(TK)) =

∫
K

i∗(c(−ν)c(TK))

=

∫
K

i∗(i
∗c(−ν))c(TK) =

∫
K

i∗(1)c(−ν)c(TK) =

∫
K

e(ν)c(−ν)c(TK),

where we used the adjunction formula, and the fact that ν extends from Σ̃ to K × V . �

Only the second statement of Proposition 10.3 is relevant for the present paper—and in fact
the first one follows from the second one. We included the first one (well known in the theory of
fundamental classes [BSz, K, FR4]) for comparison purposes.

10.2. CSM/SSM classes in terms of Φ-classes. Consider the fibered resolution

(38) Σ̃r

((

i //

ηr

**

Grr(Ck)× Hom(Ck,Cn)

π1

��

π2 // Hom(Ck,Cn)

Grr(Ck)

of Σr, where
Σ̃r = {(V, φ) ∈ Grr(Ck)× Hom(Ck,Cn) : φ|V = 0}

with the obvious embedding into Grr(Ck)× Hom(Ck,Cn) and projection to Grr(Ck).
Define Φr

k,n to be the class in (37) for the fibered resolution (38). The following theorem is
equivalent to Theorem 2.1 of [PP].

Theorem 10.4. We have

(1)

Φr
k,n =

k∑
s=r

(
s

r

)
ssm(Σs) =

k∑
s=r

(
s− 1

r − 1

)
ssm(Σs).
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(2)

ssm(Σr) =
k∑
s=r

(−1)s−r
(
s− 1

r − 1

)
Φs
k,n, ssm(Σr) =

k∑
s=r

(−1)s−r
(
s

r

)
Φs
k,n.

Proof. The preimage at ηr of a point in Σs (r ≤ s ≤ k) is Grr(Cs) whose Euler characteristic
is
(
s
r

)
. Hence property (ii) from Section 2.3 for ηr implies

ηr!(c(T Σ̃r)) =
k∑
s=r

(
s

r

)
csm(Σs).

Dividing both sides by c(Hom(Ck,Cn)) we obtain Φr
k,n on the left hand side, and

∑k
s=r

(
s
r

)
ssm(Σs)

on the right hand side, which proves the first equality in part (1). Using the additivity property
of CSM classes, (i) from Section 2.3, we obtain

k∑
s=r

(
s

r

)
csm(Σs) =

k∑
s=r

(
s

r

)
(csm(Σs)− csm(Σs+1)) =

k∑
s=r

((
s

r

)
−
(
s− 1

r

))
csm(Σs) =

k∑
s=r

(
s− 1

r − 1

)
csm(Σs).

Dividing by c(Hom(Ck,Cn)) proves the second equality in part (1).
Part (2) of the theorem is the algebraic consequence of part (1); it follows from the fact that

the inverse of the Pascal matrix
((
s
r

))
s,r

is the matrix
(
(−1)s−r

(
s
r

))
s,r

, see e.g. [CV]. �

10.3. Formulas for Φ-classes. Let αu, u = 1, . . . , k and βv, v = 1, . . . , n denote the Chern
roots of GLk(C) and GLn(C) respectively. Then

Φs
k,n ∈ C[α1, . . . , αk, β1, . . . , βn]Sk×Sn

Denoting the Chern roots of the tautological subbundle over Grs(Ck) by γ1, . . . , γs, and the Chern
roots of the tautological quotient bundle by δ1, . . . , δk−s Proposition 10.3 implies

(39) Φs
k,n(α1, . . . , αk; β1, . . . , βn) =

∫
Grs(Ck)

s∏
i=1

n∏
v=1

βv − γi
1 + βv − γi

s∏
i=1

k−s∏
j=1

(1 + δj − γi).

First let us calculate a special case, s = k. We have

Φs
s,s+l =

s∏
u=1

s+l∏
v=1

βv − αu
1 + βv − αu

=
s∏

u=1

s+l∏
v=1

(βv − αu)
∑
l(µ)≤s

∑
l(ν)≤s

(−1)|µ|+|ν|Ds,s+l
µ,ν ρs,0(sµ)ρ0,s+l(sνT ).

Here we used the Schur function expansion of “Segre classes of a tensor product” from [LLT].
Using the “factorization formula” of Schur functions we obtain

(40) Φs
s,s+l = ρs,s+1

∑
l(µ)≤s

∑
l(ν)≤s

(−1)|µ|+|ν|Ds,s+l
µ,ν s(s+l)s+µ,νT

 .
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Lemma 10.5 (Supersymmetry lemma). We have

Φs
k+1,n+1(α1, . . . , αk, t; β1, . . . , βn, t) = Φs

k,n(α1, . . . , αk; β1, . . . , βn).

Proof. The equality follows from interpreting both sides with equivariant localization

Φs
k,n =

∑
I

∏
u∈I

n∏
v=1

βv − αu
1 + βv − αu

∏
u∈I

∏
w∈Ī

1 + αw − αu
αw − αu

where the summation runs for s-element subsets I of {1, . . . , k}, and Ī = {1, . . . , k} − I. �

Definition 10.6. For k ≤ n non-negative integers, l = n− k, and 1 ≤ s ≤ k define

F sk,n =
s∏
i=1

(
zi

1 + zi

)s+n−k k∏
j=s+1

s∏
i=1

1 + zi − zj
1 + zi

,

F sl = F s∞,∞+l =
s∏
i=1

(
zi

1 + zi

)s+l ∞∏
j=s+1

s∏
i=1

1 + zi − zj
1 + zi

.

Proposition 10.7. For k ≤ n, l = n− k, and 1 ≤ s ≤ k we have

Φs
k,n,β=0 = Sk,0z1,...,zk

(
F sk,n

)
= Sk,0z1,... (F

s
l ) .

Proof. Let

U =
s∏

u=1

(
−αu

1− αu

)n k∏
w=s+1

s∏
u=1

1 + αw − αu
αw − αu

.

Substituting βi = 0 for i = 1, . . . , n in (39) the equivariant localization formula for the integral
yields

Φs
k,n,β=0 =

∑
σ∈Sk/Ss×Sk−s

U(σ(α1, . . . , αk)).

For

V = U ·

(
s∏

u=1

(−αu)s−u
s∏

w=1

w−1∏
u=1

1

αw − αu

)(
k∏

u=s+1

(−αu)k−u
k∏

w=s+1

w−1∏
u=s+1

1

αw − αu

)
we have ∑

σ∈Ss×Sk−s

V (σ(α1, . . . , αk)) = U,

and hence

(41) Φs
k,n,β=0 =

∑
σ∈Sk

V (σ(α1, . . . , αk)).

Observe that

(42) V (σ(α1, . . . , αk)) = Res
zk=−ασ(k)

. . . Res
z2=−ασ(2)

Res
z1=−ασ(1)

f
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for

f =
s∏
i=1

(
zi

1 + zi

)n k∏
j=s+1

s∏
i=1

(1 + zi − zj)
s∏
i=1

zs−ii

k∏
i=s+1

zk−ii

∏
1≤j≤i≤k(zi − zj)∏k

j=1

∏k
u=1(zj + αu)

= F s
k,n ·

∏
1≤i<j≤k

(
1− zi

zj

) k∏
i=1

1∏k
u=1(1 + αu/zi)

k∏
i=1

dzi
zi
.

The only non-zero finite residues of the form f are the ones on the right hand side of (42)—
remember that the 1/(1 + zi) factors are just abbreviations of the formal series 1− z1 + z2

1 − . . ..
Hence from (41) and (42), using the Residue Theorem, we obtain that

Φs
k,n,β=0 = (−1)k RESk (f) ,

which, using (22) yields the first equality of the proposition.
The second equality follows from the first one and Lemma 8.1. �

Theorem 10.8. For k ≤ n, l = n− k, and 1 ≤ s ≤ k we have

Φs
k,n = Sk,nz1,... (F

s
l ) .

Proof. Let N be a non-negative integer and consider Φs
k+N,n+N . Supersymmetry (Lemma 10.5)

implies that this can be written as a linear combination of Schur functions ρk+N,n+N(sλ). Recall
from Section 8.1 that for such linear combinations f , the notation f≤m is meant to be the sum
of terms corresponding to partition with length at most m. By Proposition 10.7

Φs
k+N,n+N(α1, . . . , αk+N ; 0, . . . , 0) = Sk+N,0

z1,...
(F sl ).

Since ρk+N,0(sλ) = 0 if and only if l(λ) > k +N (see (18)) we have that(
Φs
k+N,n+N

)≤k+N
=
(
Sk+N,n+N
z1,...

(F sl )
)≤k+N

.

Substituting αk+1 = αk+2 = . . . = αk+N = βn+1 = βn+2 = . . . = βn+N = 0, and using the
Supersymmetry Lemma 10.5 we get(

Φs
k,n

)≤k+N
=
(
Sk,nz1,...(F

s
l )
)≤k+N

.

Since this holds for any N , the proof is complete. �

Theorem 10.9. For k ≤ n, l = n− k, 0 ≤ s ≤ k we have

(43) Φs
k,n = ρk,n

∑
l(µ)≤s

∑
l(ν)≤s

(−1)|µ|+|ν|Ds,s+l
µ,ν s(s+l)s+µ,νT

 ,

Proof. By the Supersymmetry Lemma 10.5 we know that

(44) Φs
k,n = ρk,n

(∑
dλ sλ

)
.

First we claim that if λs+1 > s then dλ = 0.
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According to Theorem 10.8 we have Φs
k,n = Sk,nz1,...(F

s
l ). The monomials occurring in the Taylor

expansion of F sl are of the form

za1
1 . . . zass z

ε1
s+1z

ε2
s+2 . . . z

εq
s+q,

with all εi ∈ {0, 1, . . . , s}. Hence Φs
k,n is a sum of possibly fake Schur functions sλ satisfying

(45) i > s⇒ λi ≤ s.

Observe that property (45) does not change if one applies the straightening laws (16). Hence
Φs
k,n is also the sum of Schur functions satisfying (45). For partitions this property is equivalent

to λs+1 ≤ s.
We can hence improve (44), and write

(46) Φs
k,n = ρk,n

(∑
λs≤s

dλ sλ

)
.

Let us substitute αs+1 = αs+1 = . . . = αk = βs+l+1 = βs+l+2 = . . . = βn = 0 in (46). According
to the Supersymmetry Lemma 10.5 we obtain

(47) Φs
s,s+l = ρs,s+l

(∑
λs≤s

dλ sλ

)
.

Observe that for a λ with λs ≤ s the Schur function ρk,n(sλ) is not 0. Hence each dλ in (47) has
to be the value described in (40). This proves the theorem. �

11. Appendix B: Comparing CSM and SSM classes of Schubert and matrix
Schubert cells

In this section we summarize the localization and residue formulas for both equivariant CSM
and SSM classes of both matrix Schubert cells and Schubert cells.

Matrix Schubert cells are subsets of Hom(Ck,Cn), and their GLk × B−n -equivariant CSM and
SSM classes are elements of C[α1, . . . , αk, β1, . . . , βn]Sk (and its completion). Schubert cells are
subsets of the Grassmannian Grk(Cn), and their B−n -equivariant CSM and SSM classes are ele-
ments of a quotient ring of C[α1, . . . , αk, β1, . . . , βn]Sk .

For matrix Schubert cells let us now restrict our attention to the ones whose elements have full
rank k. Then both versions of Schubert cells can be parameterized by partitions λ = (λ1 ≥ . . . ≥
λk) with λ1 ≤ n − k and λk ≥ 0, or equivalently, by subsets {i1 < i2 < . . . < ik} of {1, . . . , n}.
The transition between the two parameters is ia = λk+1−a + a.

Below we give two formulas for CSM and SSM classes of matrix and ordinary Schubert cells.
The first one is the formula for the appropriate class of the given Schubert cell. The second
formula is the Schur polynomial expansion of the βv = 0 substitution. In matrix Schubert
settings this means GLk(C)-equivariant formulas, and in the Grassmannian settings this means
non-equivariant formulas. Denote Sym f =

∑
σ∈Sk f(ασ(1), . . . , ασ(k)).

Theorem 11.1. We have the following formulas for matrix and ordinary Schubert cells.
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(1) CSM class of a matrix Schubert cell:

Sym
k∏

u=1

(
n∏

v=iu+1

(1 + βv − αu)
iu−1∏
v=1

(βv − αu)
k∏

v=u+1

1 + αu − αv
αu − αv

)
,

Sk,0z

(
k∏
j=1

z
λj
j

k∏
j=1

(1 + zj)
n−ik+1−j

∏
1≤i<j≤k

(1 + zi − zj)

)
;

(2) CSM class of a Schubert cell:

Sym
k∏

u=1

(
n∏

v=iu+1

(1 + βv − αu)
iu−1∏
v=1

(βv − αu)
k∏

v=u+1

1

(αu − αv)(1 + αv − αu)

)
,

Sk,0z

(
k∏
j=1

z
λj
j

k∏
j=1

(1 + zj)
n−ik+1−j

1∏
1≤j<i≤k(1 + zi − zj)

)
;

(3) SSM class of a matrix Schubert cell:

Sym
k∏

u=1

(
1

1 + βiu − αu

iu−1∏
v=1

βv − αu
1 + βv − αu

k∏
v=u+1

1 + αu − αv
αu − αv

)
,

Sk,0z

(
k∏
j=1

(
zj

1 + zj

)λj k∏
j=1

j∏
i=1

1 + zi − zj
1 + zi

)
.

(4) The SSM classes of Schubert cells are represented by SSM classes of matrix Schubert cells
(hence formulas of (3) are representatives of these SSM classes).

Proof. Formulas in (1) and (3) are in this paper (Theorems 5.1, 7.6, Corollary 5.2, Theorem 7.6),
(4) follows from (3) via Theorem 2.2. Formulas in (2) follow from (4)—or can be deduced from
results in [AM1, RV]. �

Let us comment on the two positivity results/conjectures known about these classes. One is
the result of Huh [H] (conjectured earlier by Aluffi and Mihalcea [AM1]): the Schur expansion
in (2) has non-negative coefficients. The other is our Conjecture 8.4, that the Schur expansion
in (3) has alternating signs.

We are not aware of any connection between the two positivity properties. One fact which
makes the comparison difficult is that the three-term factors 1 + zi− zj are in the numerator and
denominator respectively in the two cases. Another key difference is that not all the infinitely
many coefficients of the generating sequence in (2) are positive, only the ones corresponding to
partitions ⊂ (n−k)k—which fact does not contradict to Huh’s theorem since the Schur functions
corresponding to the other partitions are 0 in the quotient ring. However, our Conjecture 8.4 is
about all the Schur coefficients of the series in (3)—even if k →∞.
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12. Appendix C: The geometry of the weight function

In this section we give a geometric interpretation of the weight function of Definition 4.1.
Let k ≤ n non-negative integers, I = {i1 < . . . < id} ⊂ {1, . . . , n}, |I| = d ≤ k. Consider the

partial flag variety F parameterizing chains of subspaces of Ck:

V• = (Vd+1 ⊂ Vd ⊂ Vd−1 ⊂ . . . ⊂ V1), dimVi = k + 1− i.

Let Fj = span(εj, εj+1, . . . , εn) ⊂ Cn where εi are the standard basis vectors of Cn. Define

Ω̃I = {(V•, φ) ∈ F ×Hom(Ck,Cn) : φ(Vj) ⊂ Fij (j = 1, . . . , d), φ(Vd+1) = 0},
DI,j = {(V•, φ) ∈ Ω̃I : φ(Vj) ⊂ Fij+1} for j = 1, . . . , d,(48)

Ω̃o
I = Ω̃I − ∪dj=1DI,j.

The GLk(C)×B−n -equivariant diagram

Ω̃I

''

i //

η

))

F ×Hom(Ck,Cn)

π1

��

π2 // Hom(Ck,Cn)

F

is a fibered resolution of ΩI ⊂ Hom(Ck,Cn) in the sense of Section 10.1, and η restricted to Ω̃o
I

is an isomorphism to ΩI .

Proposition 12.1. We have

WI =

∫
F

c(Ω̃I)e(Hom(Ck,Cn)/Ω̃I)c(T F)∏d
j=1(1 + [Dj])

∈ H∗
GLk(C)×B−

n
(pt) = Z[α1, . . . , αk, β1, . . . , βn]Sk .

In the numerator the three factors are total Chern, Euler, and total Chern classes of bundles
over F . By [Dj] we mean the fundamental class of the divisor Dj in Ω̃J as an element of

H∗
GLk(C)×B−

n
(Ω̃J) = H∗

GLk(C)×B−
n

(F). The map
∫
F is the push-forward to a point in equivariant

cohomology.

Proof. The torus fixed points of F are naturally indexed by injective maps {1, . . . , d} → {1, . . . , k}.
For such an injective map r let R(r) be its range; then the corresponding torus fix point is

fr =
(
span{εj}j 6∈R(r), span{εr(d), εj}j 6∈R(r), span{εr(d−1), εr(d), εr(d−1), εj}j 6∈R(r), . . .

)
∈ F .
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We have the following restrictions to the torus fixed point fr:

c(Ω̃I)|fr =
d∏

u=1

n∏
v=iu

(1 + βv − αr(u))

e(Hom(Ck,Cn)/Ω̃I)|fr =
d∏

u=1

iu−1∏
v=1

(βv − αr(u)) ·
∏

u6∈R(r)

n∏
v=1

(βv − αu)

c(T F)|fr =
d∏

u=1

d∏
v=1

(1 + αr(u) − αr(v)) ·
d∏

u=1

∏
v 6∈R(r)

(1 + αr(u) − αv)

(1 + [Dj])|fr =1 + βiu − αr(u).

Observe that the last expression appears as one of the factors in the first line. Hence, by
equivariant localization, the integral displayed in the theorem equals

∑
r Ũr(α,β), where the

summation is for injective maps r, and

Ũr(α,β) =
d∏

u=1

n∏
v=iu+1

(1 + βv − αr(u))
d∏

u=1

iu−1∏
v=1

(βv − αr(u)) ·
∏

u6∈R(r)

n∏
v=1

(βv − αu)×

×
d∏

u=1

d∏
v=1

1 + αr(u) − αr(v)

αr(u) − αr(v)

·
d∏

u=1

∏
v 6∈R(r)

1 + αr(u) − αv
αr(u) − αv

.

We can extend an injective map r to a permutation of {1, . . . , k} (in (k − d)! ways), and hence
we can re-index

∑
r Ũ(α,β) by permutations:∫

F

c(Ω̃I)e(Hom(Ck,Cn)/Ω̃I)c(T F)∏d
j=1(1 + [Dj])

=
∑
r

Ũr(α,β) =
1

(k − d)!

∑
σ∈Sk

UI(σ(α),β) = WI(α,β)

for the UI(α,β) function defined in Definition 4.1. �

Proposition 12.1 explains our terminology of calling the form presented in Definition 4.1 of the
weight function a “localization form”. The geometric meaning of other sum-product-type, and
residue-type formulas for various versions of weight functions in Section 4 stem from Proposi-
tion 12.1.

Moreover, Proposition 12.1 can also be used to give an alternative proof of Theorem 5.1, by
proving the following two statements:

• Suppose in diagram (36) we have finitely many smooth normal crossing divisors Dj ⊂ Σ̃

such that ρ restricted to Σ̃− ∪Dj is an isomorphism. Then

csm(ρ(Σ̃− ∪Dj)) =

∫
K

c(Σ̃)e(V/Σ̃)c(TK)/
∏

(1 + [Dj]).

• The DI,j’s in (48) are smooth normal crossing divisors in Ω̃I .
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The first statement is essentially Aluffi’s method of calculating CSM classes via a resolution with
normal crossing divisors [A1]. The second statement follows from explicit coordinate calculations.
Details of a proof of Theorem 5.1 along these lines are not given here, but a K-theoretic version
of that argument will appear in [FRW].
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