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Abstract. Let X be a holomorphic symplectic variety with a torus T action and a finite
fixed point set of cardinality k. We assume that elliptic stable envelope exists for X. Let
AI,J = Stab(J)|I be the k × k matrix of restrictions of the elliptic stable envelopes of X to
the fixed points. The entries of this matrix are theta-functions of two groups of variables:
the Kähler parameters and equivariant parameters of X.
We say that two such varieties X and X ′ are related by the 3d mirror symmetry if the
fixed point sets of X and X ′ have the same cardinality and can be identified so that the
restriction matrix of X becomes equal to the restriction matrix of X ′ after transposition
and interchanging the equivariant and Kähler parameters of X, respectively, with the Kähler
and equivariant parameters of X ′.
The first examples of pairs of 3d symmetric varieties were constructed in [RSVZ], where the
cotangent bundle T ∗Gr(k, n) to a Grassmannian is proved to be a 3d mirror to a Nakajima
quiver variety of An−1-type. In this paper we prove that the cotangent bundle of the full
flag variety is 3d mirror self-symmetric. That statement in particular leads to nontrivial
theta-function identities.
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1 Introduction

1.1 The 3d mirror symmetry

The 3d mirror symmetry has recently received plenty of attention in both representation theory
and mathematical physics. It was introduced by various groups of physicists in [6, 7, 9, 10, 14,
20, 21], where one starts with a pair of 3d N = 4 supersymmetric gauge theories, considered
as mirror to each other. Under the mirror symmetry, the two interesting components – Higgs
branch and Coulomb branch – of the moduli spaces of vacua are interchanged, as well as the
FayetIliopoulos parameters and mass parameters.

Translated into the mathematical language, the N = 4 supersymmetry indicates a hy-
perkähler structure on the moduli space. In particular, for the theories we are interested in, the
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Higgs branch X is a variety which can be constructed as a hyperkähler quotient, or equivalently
in the algebraic setting, as a holomorphic symplectic quotient. As a large class of examples,
Nakajima quiver varieties arise in this way, as Higgs branches of N = 4 supersymmetric quiver
gauge theories. The mass parameters arise here as equivariant parameters of a certain torus T
acting naturally on the Higgs branch X. The FayetIliopoulos parameters, or Kähler parameters
arise as coordinates on the torus K = Pic(X)⊗Z C×.

The “dual” symplectic varieties X ′ – Coulomb branches, however, did not admit a mathe-
matical construction until recently, see [28, 29, 5], where the Coulomb branches are defined as
singular affine schemes by taking spectrums of certain convolution algebras, and quantized by
considering noncommutative structures. Nevertheless, in many special cases, Coulomb branches
admit nice resolutions, and can be identified with the Higgs branches of the mirror theory. These
cases include hypertoric varieties, cotangent bundles of partial flag varieties, the Hilbert scheme
of points on C2 and more generally, moduli spaces of instantons on the minimal resolution of
An singularities. 3d mirror symmetry is often referred to as symplectic duality in mathematics,
see references in [3, 4].

Aganagic and Okounkov in [1] argue that the equivariant elliptic cohomology and the theory
of elliptic stable envelopes provide a natural framework to study the 3d mirror symmetry (See
also the very important talk “Enumerative symplectic duality” given by A. Okounkov during
the 2018 MSRI workshop “Structures in Enumerative Geometry”). In particular, they argue
that the elliptic stable envelopes of a symplectic variety depend on both equivariant and Kähler
parameters in a symmetric way. Motivated by [1] we give the following definition of 3d mirror
symmetric pairs of symplectic varieties X and X ′.

Let a symplectic variety X be endowed with a Hamiltonian action of a torus T. Let the set
XT of torus fixed points be a finite set of cordiality k. For I ∈ XT let Stab(I) be the elliptic
stable envelope of I1. It is a class in elliptic cohomology of X. The restrictions of these elliptic
cohomology classes to points of XT give a k× k matrix AI,J = Stab(I)|J . The matrix elements
AI,J are theta functions of two sets of variables associated with X: the equivariant parameters,
which are coordinates on the torus T, and the Kähler parameters, which are coordinates on the
torus K = Pic(X)⊗Z C×.

Let X and X ′ be two such symplectic varieties.

Definition 1. A variety X ′ is a 3d mirror of a variety X if

(1) There exists a bijection of fixed point sets XT → (X ′)T
′
, I 7→ I ′.

(2) There exists an isomorphism

κ : T→ K′, K→ T′

identifying the equivariant and Kähler parameters of X with, respectively, Kähler and
equivariant parameters of X ′.

(3) The matrices of restrictions of elliptic stable envelopes for X and X ′ coincide after trans-
position (when the set of fixed points are identified by (1)) and change of variables (2):

AI,J = κ∗(A′J ′,I′) (1)

where A′J ′,I′ denotes the restriction matrix of elliptic stable envelopes for X ′.

1For the generality in which elliptic stable envelope can be defined see Chapter 3 in [26]. The existence of
these classes is proven for X given by Nakajima varieties and hypertoric varieties. It is expected, however, that
elliptic stable envelopes exist for more general symplectic varieties.
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The first examples of pairs of 3d symmetric varieties were constructed in [36], where the
cotangent bundle T ∗Gr(k, n) to a Grassmannian is proved to be a 3d mirror of a Nakajima
quiver variety of An−1-type. In this paper we prove that the cotangent bundle of the full flag
variety is 3d mirror self-symmetric.

That statement in particular leads to nontrivial theta-function identities. The left and right-
hand sides of equation (1) are given as sums of alternating products of Jacobi theta functions in
two groups of variables. Equality (1) provides k2 highly nontrivial identities satisfied by Jacobi
theta functions. In Section 3.5 we describe some of these identities in detail.

Alternatively, one could define 3d mirror variety X ′ as a variety which has the same K-
theoretic vertex functions (after the corresponding change of the equivariant and Kähler param-
eters). The vertex functions of X are the K-theoretic analogues of the Givental’s J-functions
introduced in [31]. For the cotangent bundles of full flag varieties the vertex functions were
studied for example in [13, 22, 23]. We believe that this alternative definition is equivalent to
the one we give above.

1.2 Elliptic stable envelopes: main results

The notion of stable envelopes is introduced by Maulik–Okounkov in [26] to study the quantum
cohomology of Nakajima quiver varieties. Stable envelopes depend on a choice of a cocharacter
of the torus T. The Lie algebra of the torus admits a wall-and-chamber structure, such that the
transition matrices between stable envelopes for different chambers turn out to be certain R-
matrices satisfying the Yang–Baxter equations, and hence they define quantum group structures.
In [31, 25, 32], the construction is generalized to K-theory, realizing the representations of
quantum affine algebras. What appears new in K-theoretic stable envelopes is the piecewise
linear dependence on a choice of slope, which lives in the space of Kähler parameters.

The slope dependence is replaced by the meromorphic dependence on a complex Kḧler pa-
rameters µ ∈ K (in the original paper [1] the Kähler parameters are denoted by z), in the
further generalization of stable envelopes to equivariant elliptic cohomology, from which the
cohomological and K-theoretic analogs can be obtained as certain limits. Now the elliptic sta-
ble envelopes depend on both equivariant and Kähler parameters, which makes the 3d mirror
symmetry phenomenon possible.

In this paper, we will consider the special case where X is the cotangent bundle of the variety
of complete flags in Cn, which can be constructed as the Nakajima quiver variety associated to
the An−1-quiver with dimension vector (1, 2, . . . , n− 2, n− 1) and framing vector (0, 0, . . . , 0, n).
There is a torus action induced by the torus T on the framing space Cn. Fixed points XT can
be identified with permutations of the ordered set (1, 2, . . . , n), and hence parameterized by the
symmetric group Sn.

Let q ∈ C∗ be a complex number with |q| < 1, and E = C∗/qZ be the elliptic curve with
modular parameter q. By definition, the extended equivariant elliptic cohomology ET(X) of X
fits into the following diagram

ÔI
� � // ET(X)

��

� � // S(X)× ET × EPic(X)

ET × EPic(X),

(2)

where S(X) =
n−1∏
k=1

SkE is the space of Chern roots, ET and EPic(X) are the spaces of equivariant

and Kähler parameters respectively, and ÔI is an irreducible component of ET(X), associated
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with the fixed point I, called an orbit appearing in the following decomposition given by the
localization:

ET(X) =
( ∐
I∈XT

ÔI

)
/∆.

Here each ÔI is isomorphic to the base ET × EPic(X), and ∆ denotes the gluing data.
Moreover, in our case X is a GKM variety, which by definition means that it admits finitely

many T-fixed points and finitely many 1-dimensional orbits, and implies that ET(X) above is a
simple normal crossing union of the orbits ÔI , along hyperplanes that can be explicitly described.

The dual variety of X is another copy of the cotangent bundle of complete flag variety, which
we denote by X ′, in order to distinguish it from X. From the perspective of the 3d mirror
symmetry, although X and X ′ are isomorphic as varieties, we do not identify them in this naive
way. Instead, we consider the sets of fixed points of X and X ′ which are both parameterized by
permutations I ∈ Sn, and define a natural bijection between the fixed points as

bj : XT ∼−→ (X ′)T
′
, I 7→ I−1,

where I−1 denotes the permutation inverse to I. Moreover, we also identify the base spaces of
parameters in a nontrivial way

κ : EPic(X)
∼= ET′ , EPic(X′ )

∼= ET (3)

µ′i 7→ zi, z′i 7→ µi, ~′ 7→ ~.

By definition, given a fixed point I ∈ XT, and a chosen cocharacter σ of T, the elliptic stable
envelope Stabσ(I) is the section of a certain line bundle T (I) on ET(X), uniquely determined
by a set of axioms. Moreover, explicit formulas for this sections, in terms of theta functions, can
be obtained via abelianization. We will be interested in their restrictions to orbits Stab(I)|ÔJ ,
and the normalized version Stab(I)|ÔJ .

Our main result will be the following identity of the normalized restriction matrices of elliptic
stable envelopes, for X and X ′.

Theorem 1. Let I, J ∈ XT be fixed points and I−1, J−1 be the corresponding fixed points on
the dual variety. Then,

Stab(I)|
ÔJ

= κ∗
(

Stab′(J−1)
∣∣
Ô
′
I−1

)
. (4)

Here κ : ÔJ → Ô
′
I−1 is the isomorphism (3) and the equality (4) means that the corresponding

sections coincide after this change of variables.
Moreover, by the Fourier–Mukai philosophy, a natural idea originally from Aganagic–Okounkov

[1] is to enhance the coincidence above to the existence of a universal duality interface 2 on the
product X ×X ′. Consider the following diagram of embeddings,

X × {J} iJ−→ X ×X ′ iI←− {I} ×X ′.

Theorem 1 can then be rephrased as

Theorem 2. There exists a holomorphic section m (the duality interface) of a certain line
bundle on EllT×T′(X ×X ′) such that

(i∗J)∗(m) = Stab(I), (i∗I)
∗(m) = Stab′(J),

where I is a fixed point on X and J is the corresponding fixed point on X ′ (i.e., J = I−1 as a
permutation).

2In the previous paper [36], it is called the Mother function.
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1.3 Weight functions and R-matrices

Our proof of Theorem 4 relies on the observation that the elliptic stable envelope Stabσ(I), as
defined in Aganagic–Okounkov [1], is related to weight functions W σ

I (t, z, ~,µ), defined in [34].
The weight function W σ

I (t, z, ~,µ) is a section of a certain line bundle over S(X)× ET× EPic(X)

in (2). The elliptic stable envelope Stabσ(I) is the restriction of this section to the extended
elliptic cohomology ET(X).

Weight functions first arise as integrands in the integral presentations of solutions to qKZ
equations, associated with certain Yangians of type A [43, 40, 41, 42, 12, 11, 39]. For us, the
weight functions here are the elliptic version introduced in [34].

Important properties of weight functions are described by the so called R-matrix relations.
These relations describe the transformation properties of weight functions under the permuta-
tions of equivariant parameters. We show that these relations, in fact, uniquely determine the
restriction matrices AI,J .

Similar relations, describing the transformations of weight functions under the permutations
of Kähler parameters were recently found by Rimányi-Weber in [35]. The proof of our main
theorem is based on the observation that these new relations can be understood as the R-matrix
relations for the 3d mirror variety X ′ (because the Kähler parameters of X is identified with
equivariant parameters of X ′ under the 3d mirror symmetry). The R-matrix relations and the
dual R-matrix relations then provide two ways to compute the restriction matrices, which is
essentially two sides of the main equality of Theorem 1.

Let us note that that 3d self symmetry of full flag varieties should have important applications
to representation theory. In particular, we expect that it is closely related to self-symmetry of
double affine Hecke algebra under the Cherednik’s Fourier transform [8]. Another interesting
example of a symplectic variety which is 3d-mirror self-dual is the Hilbert scheme of points on
the complex plane Hilbn(C2). The explicit formulas for the elliptic stable envelopes in this case
were obtained in [38]. In this case, however, Hilbn(C2) is not a GKM variety and therefore
methods used in this paper are unavailable.

We remark also that this paper deals with the cotangent bundles of full flag varieties of A-
type. In general, it is natural to expect that cotangent bundles of the full flag varieties for a
group G is a 3d-mirror of the cotangent bundle of full flag variety for the Langlands dual group
LG. Though in general these flag varieties are not quiver varieties, both the R-matrix and the
Bott-Samelson recursion [35] is available in this setting and the 3d-mirror symmetry can be
proved using technique similar to one in the present paper.

2 Equivariant elliptic cohomology of X

In this section we give a brief introduction to equivariant elliptic cohomology. For detailed
definitions and constructions, we refer the reader to [15, 16, 17, 19, 24, 37], and also the recently
appeared new approach [2].

2.1 The equivariant elliptic cohomology functor

Let X be a smooth quasiprojective variety over C, and T be a torus acting on X. Recall that T-
equivariant cohomology is a contravariant functor from the category of varieties with T-actions
to the category of algebras over the ring of equivariant parameters H∗T(pt), which is naturally
identified with affine schemes over SpecH∗T(pt) ∼= Cr, where r = dimT. Equivariant K-theory
can be defined in a similar way, with the additive group Cr replaced by the multiplicative
SpecKT(pt) ∼= (C×)r.

Let us set
E := C×/qZ



6 R. Rimányi, A. Smirnov, A. Varchenko, Z. Zhou

which is a family of elliptic curves parametrized by the punctured disk 0 < |q| < 1. In the
general definition of elliptic cohomology one works with more general families of elliptic curves,
but considering E will be sufficient for the purposes of the present paper.

Equivariant elliptic cohomology is constructed as a covariant functor

EllT : {varieties with T-actions} → {schemes},

for which the base space of equivariant parameters is

ET := EllT(pt) ∼= Er.

By functoriality, every X with T-action is associated with a structure map EllT(π) : EllT(X)→
EllT(pt), induced by the projection π : X → pt.

We briefly describe the construction of equivariant elliptic cohomology. For each point t ∈ ET,
take a small analytic neighborhood Ut, which is isomorphic via the exponential map to a small
analytic neighborhood in Cr. Consider the sheaf of algebras

HUt := H•T(XTt)⊗H•T(pt) O
an
Ut ,

where
Tt :=

⋂
χ∈char(T),χ(t̃)∈qZ

kerχ ⊂ T,

and t̃ ∈ T is any lift of t ∈ ET.
Those algebras glue to a sheaf H over ET, and we define EllT(X) := SpecET

H . The fiber
of EllT(X) over t is obtained by setting local coordinates to 0, as described in the following
diagram [1]:

SpecH•(XTt) �
� //

EllT(π)

��

SpecH•T(XTt)

��

(π∗)−1(Ut)oo //

��

EllT(X)

EllT(π)

��
{t} �
� // Cr Utoo // ET.

This diagram describes a structure of the scheme EllT(X) and gives one of several definitions of
elliptic cohomology.

2.2 Chern roots and extended elliptic cohomology

In this subsection, we consider X constructed as a GIT quotient of the form Y//θG, where G is
a linear reductive group acting on an affine space CN , θ is a fixed character of G, and Y ⊂ CN
is a G-invariant subvariety. Let T be a torus acting on CN which commutes with G. The action
hence descends to X.

Given a character χ : G → C∗, the 1-dimensional G-representation Cχ descends to a line
bundle Lχ on the quotient X. In other words, consider the map

X = Y ss/G ⊂ [Y/G] ⊂ [CN/G]→ BG
χ−→ BC∗.

The bundle Lχ is the pullback of the tautological line bundle on BC∗ to X. More generally, any
G-representation pulls back to a vector bundle, called a tautological bundle, on X.

Let K ⊂ G be the maximal torus, and W be the Weyl group. Then EllG(pt) ∼= EdimK/W .
From the diagram above, we have the cohomological Kirwan map

H∗K(pt)W ⊗H∗T(pt) ∼= H∗G(pt)⊗H∗T(pt)→ H∗T(X),
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and also the elliptic Kirwan map

EllT(X)→ (EdimK/W )× ET. (5)

We say that X satisfies Kirwan surjectivity, if (5) is a closed embedding. By the results of
[27], it holds for any Nakajima quiver variety.

To include the dependence on Kähler parameters, consider

EPic(X) := Pic(X)⊗Z E ∼= EdimPic(X),

and define the extended equivariant elliptic cohomology by

ET(X) := EllT(X)× EPic(X).

In particular, if X is a GIT quotient satisfying Kirwan surjectivity, one has the embedding

ET(X)

��

� � // (EdimK/W )× ET × EPic(X)

ET × EPic(X).

The coordinates on the three components of the RHS, as well as their pullbacks to ET(X), will
be called Chern roots, equivariant parameters and Kähler parameters respectively.

2.3 GKM varieties

For a general X, the equivariant elliptic cohomology EllT(X) may be difficult to describe, even if
the diagram above given by Kirwan surjectivity is present. However, for the following large class
of varieties called GKM varieties, it admits a nice explicit combinatorial characterization. There
are many classical examples of GKM varieties, including toric varieties, hypertoric varieties, and
partial flag varieties.

Definition 2. Let X be a variety with a T-action. We say that X is a GKM variety, if

• XT is finite,

• for every two fixed points p, q ∈ XT there is no more than one T-equivariant curve con-
necting them.

• X is T-formal, in the sense of [18].

By definition, a GKM variety admits only finitely many T-fixed points and 1-dimensional
T-orbits. In particular, there are finitely many T-equivariant compact curves connecting fixed
points, and they are all rational curves isomorphic to P1.

By the localization theorem, we know that the irreducible components of EllT(X) are param-
eterized by fixed points p ∈ XT, each isomorphic to the base ET. Therefore, set-theoretically,
EllT(X) is the union of |XT| copies of ET:

EllT(X) =
( ∐
p∈XT

Op
)
/∆, (6)

where Op ∼= ET and /∆ denotes the gluing data. Following [1] we will call Op the T-orbit
associated to the fixed point p in EllT(X) (even though it is not an orbit of any group action).

We have the following explicit description of EllT(X). The proof is a direct application of
the characterization [18] of H∗T(X) when X is GKM, see [36].
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Proposition 1. If X is a GKM variety, then

EllT(X) =
( ∐
p∈XT

Op
)
/∆,

where /∆ denotes the intersections of T-orbits Op and Oq along the hyperplanes

Op ⊃ χ⊥C ⊂ Oq,

for all p and q connected by an equivariant curve C, where χC is the T-character of the tangent
space TpC, and χ⊥C is the hyperplane in ET associated with the hyperplane kerχC ⊂ T. The
intersections of orbits Op and Oq are transversal and hence the scheme EllT(X) is a variety with
simple normal crossing singularities.

The extended version also has the same structure:

ET(X) =
( ∐
p∈XT

Ôp
)
/∆, (7)

where ∆ is the same as before, and Ôp := Op × EPic(X).

For each fixed point p ∈ XT, we have the diagram

Ôp
� � // ET(X)

��

� � // (EdimK/W )× ET × EPic(X)

ET × EPic(X).

(8)

Let t1, . . . , tdimK be the elliptic Chern roots. The embedding of Ôp in (EdimK/W )×ET×EPic(X)

is always cut out by linear equations ti = ti
∣∣
p
, 1 ≤ i ≤ dimK, where ti

∣∣
p

is a certain linear
combination of equivariant parameters.

Example 1. Consider the (C∗)N+1-action on PN . The equivariant K-theory ring, viewed as a
scheme, fits into the following diagram

SpecC[L±1, z±11 , · · · , z±1N+1, µ
±1]/〈(1− z1L) · · · (1− zN+1L)〉

��

� � // SpecC[L±1, z±11 , · · · , z±1N+1, µ
±1]

SpecC[z±11 , · · · , z±1N+1, µ
±1]

,

where L is the class of O(1), z1, · · · , zN+1 are equivariant parameters, and µ is the Kähler

parameter. Intuitively, ET (PN ) is simply the same picture “quotient by qZ
N+1×Z”. In particular,

the relation (1− z1L) · · · (1− zN+1L) gives a simple normal crossing of N + 1 components, each
isomorphic to the base. The i-th component Ôpi , which we call orbit corresponding to the fixed
point i, is cut out by the linear equation 1− ziL = 0.

2.4 Geometry and extended elliptic cohomology of X

From now on, let X be the Nakajima quiver variety associated to the An−1-quiver, with dimen-
sion vector (1, 2, . . . , n− 1) and framing vector (0, 0, . . . , 0, n). More precisely, the quiver looks
like

V1
a1 // V2

a2 //
b1

oo · · ·
b2

oo
an−2 // Vn−1
bn−2

oo

j
��

W,

i

OO
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where

Vi = Ci, 1 ≤ i ≤ n− 1; W = Cn.

By definition, one considers the vector space

R =
n−2⊕
i=1

Hom(Vi, Vi+1)⊕Hom(Vn−1,W ),

acted upon naturally by G :=
∏n−1
i=1 GL(Vi), and the moment map µ : T ∗R →

∏n−1
i=1 gl(Vi)

∗

given by

b1a1 = 0; aibi − bi+1ai+1 = 0, 1 ≤ i ≤ n− 3; an−2bn−2 − ij = 0.

Given any stability condition θ = (θ1, · · · , θn−1) ∈ Zn−1, there is a G-character (gi)
n−1
i=1 7→∏n−1

i=1 (det gi)
θi . We choose the stability condition to be θi < 0, 1 ≤ i ≤ n− 1, and define

X := µ−1(0)//θG.

Proposition 2. The quiver variety X defined above is isomorphic to the cotangent bundle of
the complete flag variety in Cn.

Proof. Recall the following criterion of stability [30]: a representative (a,b, i, j) is stable if and
only if for any invariant subspace S ⊂ V :=

⊕
i Vi, the following two conditions hold

1) If S ⊂ ker j, then either θ · dimS > 0 or S = 0;

2) if S ⊃ im i, then either θ · dimS > θ · dimV or S = V .

For a representative (a,b, i, j) the space

S =
n−2⊕
i=1

ker ai ⊕ ker j

is stable under a and b by the moment map equations. Hence for the representative to be stable,
it has to satisfy 1), which implies S = 0. In other words, ai and j are injective, which gives a
complete flag in Cn. The maps bi then represent a point in the cotangent fiber. �

Consider the torus (C∗)n acting on (x1, . . . , xn) ∈ W , which descends to X, and an extra
torus C∗~ scaling the cotangent fibers

(x1, · · · , xn) 7→ (x1z
−1
1 , · · · , xnz−1n ), (a,b, i, j) 7→ (a, ~−1b, ~−1i, j),

where z1, · · · , zn, ~ are the equivariant parameters.

Let Vk, 1 ≤ k ≤ n − 1 be the tautological bundles associated with Vk. Denote their Chern
roots decomposition by

Vk = t
(k)
1 + . . .+ t

(k)
k .

in the K-theory of X. Let {e1, . . . , en} be the standard basis of W = Cn. Fixed points of X are
parameterized by complete flags V1 ⊂ · · · ⊂ Vn−1 ⊂ W , where each Vk is a coordinate subspace
in W , i.e., spanned by a subset of size k of ei’s. For any 1 ≤ k ≤ n, let Ik be the index such
that Vk/Vk−1 = CeIk . Then the tuple (I1, . . . , In) is a permutation of the indices (1, . . . , n). In
other words, for each element of the symmetric group I ∈ Sn, there is a fixed point of X, given
by the complete flag V1(I) ⊂ · · · ⊂ Vn−1(I) ⊂W , where

Vk(I) = SpanC{eI1 , . . . , eIk}, 1 ≤ k ≤ n.
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We also introduce the notation of ordered indices:

{i(k)1 < · · · < i
(k)
k } = {I1, · · · , Ik}, 1 ≤ k ≤ n. (9)

By Kirwan surjectivity, the extended elliptic cohomology ET(X) embeds into the space

E × Sym2E × · · · × Symn−1E × ET × EPic(X)

with coordinates

(t
(1)
1 , t

(2)
1 , t

(2)
2 , · · · , t(n−1)1 , · · · , t(n−1)n−1 , z1, · · · , zn, ~, µ1, · · · , µn).

Moreover, by the GKM description, the extended elliptic cohomology is a union of orbits:

ET(X) =
( ∐
I∈Sn

ÔI

)
/∆, (10)

where ÔI is cut out by the linear equations

t
(k)
l = z

i
(k)
l

, 1 ≤ l ≤ k ≤ n. (11)

Note that in these equations of Chern root restrictions, we have implicitly chosen an ordering

of Chern roots t
(k)
1 , · · · , t(k)k , depending on each fixed point.

The tangent bundle at the fixed point I is

TIX =
∑

1≤l<k≤n

zIl
zIk

+ ~−1
∑

1≤l<k≤n

zIk
zIl
.

Choose a cocharacter of the torus (C)∗

σ = (1, 2, · · · , n) ∈ Rn,

which decomposes the tangent bundle as TIX = N+
I ⊕N

−
I , where

N−I =
∑

1≤l<k≤n
Il<Ik

zIl
zIk

+ ~−1
∑

1≤l<k≤n
Il>Ik

zIk
zIl
, N+

I =
∑

1≤l<k≤n
Il>Ik

zIl
zIk

+ ~−1
∑

1≤l<k≤n
Il<Ik

zIk
zIl
.

3 Elliptic weight functions and R-matrices

3.1 Notations and parameters

Let q ∈ C∗ be a complex number with |q| < 1. The skew Jacobi theta function is defined by

ϑ(x) = (x1/2 − x−1/2)φ(qx) φ(q/x), φ(x) =

∞∏
s=0

(1− qsx). (12)

It has the following properties

ϑ(qx)

ϑ(x)
= − 1

q1/2x
, ϑ(1/x) = −ϑ(x). (13)

The elliptic weight functions depend on the following sets of parameters:

• The equivariant parameters z = (z1, . . . , zn) representing the coordinates on OI ∼= ET in
(6).
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• The Kähler (or dynamical) parameters µ = (µ1, . . . , µn) representing the coordinates on
EPic(X)-part of the extended orbits ÔI in (7).

• The Chern roots t(k) = (t
(k)
1 , . . . , t

(k)
k ) of the rank k tautological bundle Vk over X. We

will abbreviate by t = (t
(1)
1 , . . . , t

(n)
n ) the set of all Chern roots of all tautological bundles.

• The T-equivariant weight ~ representing the weight of the symplectic form on X.

For a permutation σ we write zσ = (zσ(1), . . . , zσ(n)) and 1/z = (1/z1, . . . , 1/zn).

As we discussed in Section 2.4 the fixed pointsXT are labeled by permutations I = (I1, . . . , In)
of the ordered set (1, . . . , n). By abuse of language we will denote the fixed point corresponding
to I by I as well. For another permutation σ ∈ Sn, the product σ · I will denote the composed
permutation (and also the corresponding fixed point)

(1, . . . , n) 7→ (σ(1), . . . , σ(n)) 7→ (Iσ(1), . . . , Iσ(n)).

We will denote the restrictions of Chern roots to the orbits corresponding to fixed points (11)
by:

zI = (t(k)a = z
i
(k)
a

), (14)

where i
(k)
a are defined by (9).

3.2 Weight functions

Let us define the elliptic weight functions

WI(t, z, ~,µ) = Sym t(1) · · · Sym t(n−1) UI(t, z, ~,µ) , (15)

where the symbol Sym denotes the symmetrization over the corresponding set of variables and

UI(t, z, ~,µ) =

n−1∏
k=1


k∏
a=1

k+1∏
c=1

ψI,k,a,c

( t(k+1)
c

t
(k)
a

)
∏

1≤a<b≤k
ϑ
( t(k)a ~
t
(k)
b

)
ϑ
( t(k)b
t
(k)
a

)
 (16)

with convention t
(n)
i = zi and

ψI,k,a,c(x) =



ϑ(~x) , if i(k+1)
c < i(k)a ,

ϑ

(
x~1−pI,k+1(i

(k)
a )µk+1

µj(I,k,a)

)
, if i(k+1)

c = i(k)a ,

ϑ(x), if i(k+1)
c > i(k)a .

(17)

Here the index j(I, k, a) ∈ {1, . . . , n} is defined such that

Ij(I,k,a) = i(k)a ,

and

pI,j(m) =

{
1, Ij < m

0, Ij ≥ m.
(18)
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For a permutation σ ∈ Sn we also define the elliptic weight function:

Wσ,I(t, z, ~,µ) := Wσ−1(I)(t, zσ, ~,µ).

Of particular importance will be the weight function corresponding to the longest permutation
σ0 = (n, n− 1, · · · , 2, 1) ∈ Sn.

Define

AσI,J(z,µ) = Wσ,I(zJ , z, h,µ), (19)

the matrix of restrictions of elliptic weight functions to fixed points. For σ = id we will abbreviate
it to AI,J(z,µ).

3.3 Properties of weight functions and restriction matrices

The elliptic weight functions enjoy several interesting combinatorial identities. Here we list some
of them which will be used below. A more detailed exposition can be found in [33, 34].

Let us set

PI(z1, . . . , zn) =
∏

1≤k<l≤n
Il<Ik

ϑ
(~zIl
zIk

) ∏
1≤k<l≤n
Il>Ik

ϑ
( zIl
zIk

)
.

This function satisfies the following property:

Lemma 1.
Pσ0·I·σ0(z−1σ0(1), . . . , z

−1
σ0(n)

) = PI(z1, . . . , zn).

Proof. By direct computation. �

Lemma 2. For the dominance order on permutations, the matrix AI,J(z,µ) is lower triangular,
i.e.,

AI,J(z,µ) = 0, if J � I

and the diagonal elements are given by

AI,I(z,µ) = (−1)IPI(z1, . . . , zn)PI−1·σ0(µσ0(1), . . . , µσ0(n)) (20)

where (−1)I stands for the parity of the permutation I. The matrix functions AI,J(z,µ) are
holomorphic in all variables z, ~,µ.

Proof. Lemmas 2.4, 2.5 and 2.6 in [34]. �

Let us consider the elliptic dynamical R-matrix in the Felder’s normalization:

Rj,jj,j(x,µ) = 1, Rj,kj,k(x,µ) =

ϑ(x)ϑ
(~µj
µk

)
ϑ(x~)ϑ

(µj
µk

) , Rj,kk,j(x,µ) =

ϑ
(xµj
µk

)
ϑ(~)

ϑ(x~)ϑ
(µj
µk

) ,
where 1 ≤ j, k ≤ n, j 6= k.

Lemma 3. The weight functions (15) satisfy the following recursive relations:

W
zk↔zk+1

I·sk = Ra,ba,b

( zk
zk+1

)
WI +Rb,aa,b

( zk
zk+1

)
WI·sk ,

where a := I−1(k), b := I−1(k+ 1), and sk denotes the transposition (k, k+ 1). The superscript
zk ↔ zk+1 denotes the function in which zk is substituted by zk+1 and zk+1 by zk.
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Proof. Theorem 2.2 in [34]. �

We can reformulate those as relations among the matrix elements of the restriction matrix.

Corollary 1. The elements of the restriction matrix satisfy the following relations:

AI·sk,J ·sk(z,µ)zk↔zk+1 = Ra,ba,b

( zk
zk+1

)
AI,J(z,µ) +Rb,aa,b

( zk
zk+1

)
AI·sk,J(z,µ). (21)

The identity (21) can be used to compute recursively all matrix elements AI,J(z,µ) from the
known diagonal entries (20):

Lemma 4. The restriction matrix AI,J(z,µ) is the unique lower triangular matrix (in the basis
of indexes I ordered by �) with the diagonal elements given by (20) satisfying the R-matrix
relations (21).

Proof. The proof is by induction on rows of the restriction matrix. The restriction matrix
AI,J(z,µ) is lower triangular if I, J are ordered by the dominance order �. Thus, the only
nontrivial matrix element in the first row is Aid,id(z,µ). This matrix element is fixed by (20)
and thus all elements in the first row are uniquely determined.

Note that (21) can be rewritten as:

AI·sk,J ·sk(z,µ) = αskAI,J(z,µ)zk↔zk+1 + βskAI,J ·sk(z,µ)

for certain explicit functions αsk and βsk . For any I ′ 6= id, there always exists some k, such that
for I := I ′ · sk, we have I ′ = I · sk � I. Thus, the last identity is the expression for matrix
elements in the I ′-th row in terms of its values in the previous rows. The result follows by
induction. �

3.4 Dual R-matrix relations

Recent results in [35] show that the matrix elements of the restriction matrices satisfy another
recursion, named “Bott-Samelson recursion” in [35]. We will call this other recursion the “dual
R-matrix relations” and explain later that these relations correspond to R-matrix relations on
the symplectic dual variety X ′.

Theorem 3. The elements of the restriction matrix satisfy the following relations:

Ask·I,sk·J(z,µ)µk↔µk+1 = R̃a,ba,bAI,J(z,µ) + R̃b,aa,bAI,sk·J(z,µ), (22)

where a = n−Jk + 1 and b = n−Jk+1 + 1 and the coefficients R̃a,bc,d are related to the coefficients
of Felder’s R-matrix by

R̃a,bc,d = Ra,bc,d

∣∣∣
zi 7→µ−1

i , µi 7→zσ0(i)
. (23)

Proof. This identity is equivalent to Theorem 11.1 in [35]. Indeed, direct computations show
that the weight functions wI used in [35] differ from the one used in the present paper by a
factor:

WI = wI · C
( ϑ(~)

ϑ′(1)

)]{(i,j)|1≤i<j≤n, Ii>Ij} ∏
1≤i<j≤n

ϑ
(
~1−pj−1(i)

µj
µi

)
,

where C a constant independent of I, and pj−1(i) is given by (18). Substituting this to the
equation (33) of [35], we arrive at (22). �

The following Lemma and its proof is analogous to Lemma 4.
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Lemma 5. The restriction matrix AI,J(z,µ) is the unique lower triangular matrix (in the basis
of indexes I ordered by �) with diagonal elements given by (20) satisfying the recursive relations
(22). �

Note. We found that the matrix elements AI,J(z,µ) can be computed in two different ways:
using recursion (21) or recursion (22). This fact provides a set of highly nontrivial identities
for elliptic functions. We give several examples of these identities in Section 3.5, see also [35,
Section 9]. In general, these identities can be formulated as Theorem 4 below.

The recursive relations (21) and (22) are closely related:

Proposition 3. Let AI,J(z,µ) be a matrix satisfying relations (21). Let BI,J(z, µ) be the matrix
defined by

BI,J(z1, . . . , zn, µ1, . . . , µn) = Aσ0·J−1,σ0·I−1(µ−11 , . . . , µ−1n , zσ0(1), . . . , zσ0(n)). (24)

Then, the matrix BI,J(z,µ) satisfies the relations (22).

Proof. Expressing AI,J(z,µ) from (24), we find

AI,J(z1, . . . , zn, µ1, . . . , µn) = BJ−1·σ0,I−1·σ0(µσ0(1), . . . , µσ0(n), z
−1
1 , . . . , z−1n ).

Substituting this into (21) we obtain:

Bsk·J−1·σ0,sk·I−1·σ0(µσ0(1), . . . , µσ0(n), z
−1
1 , . . . , z−1n )zk↔zk+1 =

Ra,ba,bBJ−1·σ0,I−1·σ0(µσ0(1), . . . , µσ0(n), z
−1
1 , . . . , z−1n )+

Rb,aa,bBJ−1·σ0,sk·I−1·σ0(µσ0(1), . . . , µσ0(n), z
−1
1 , . . . , z−1n ).

To see that this identity is equivalent to (22), we change the indices of the matrices by

J−1 · σ0 7→ I, I−1 · σ0 7→ J, (25)

such that

Bsk·I,sk·J(µσ0(1), . . . , µσ0(n), z
−1
1 , . . . , z−1n )zk↔zk+1 =

Ra,ba,bBI,J(µσ0(1), . . . , µσ0(n), z
−1
1 , . . . , z−1n ) +Rb,aa,bBI,sk·J(µσ0(1), . . . , µσ0(n), z

−1
1 , . . . , z−1n ).

Substitution zi 7→ µ−1i , µi 7→ zσ0(i) simplifies it to

Bsk·I,sk·J(z,µ)µk↔µk+1 = R̃a,ba,bBI,J(z,µ) + R̃b,aa,bBI,sk·J(z,µ), (26)

where R̃b,aa,b are related to Felder’s R-matrix as in (23). Finally, in R-matrix relations (21) the
index a is the number of the element k in the permutation I and b is the number of the element
k + 1 in I. After changing indexes as in (25) we find that a = n− Jk + 1 and b = n− Jk+1 + 1.
We see that relation (26) coincides with (22). �

We conclude the following result.

Theorem 4. The elements of the restriction matrix satisfy the following identities:

AI,J(z,µ) = (−1)n(n−1)/2AJ−1·σ0,I−1·σ0(µσ0(1), . . . , µσ0(n), z
−1
1 , . . . , z−1n ), (27)

where σ0 denotes the longest permutation in the symmetric group Sn.
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Proof. LetBI,J(z, µ) be as in the previous proposition. FirstAI,I(z, µ) = (−1)n(n−1)/2BI,I(z, µ).
This follows from (20) Lemma 1 and (−1)σ0 = (−1)n(n−2)/2.

By Corollary 1 AI,J(z, µ) satisfies the R-matrix relations, and thus by the previous proposi-
tion BI,J(z, µ) satisfies relations (22). By Lemma 4 and Lemma 5 we conclude:

AI,J(z, µ) = (−1)n(n−1)/2BI,J(z, µ).

This identity is equivalent to (27) after the change of variables zi 7→ µσ0(i), µi 7→ z−1i and indexes
σ0 · J−1 7→ I, σ0 · I−1 7→ J . �

Note. We would like to stress here that the identity (27) describes a symmetry between two
sets of parameters of completely different nature: the equivariant parameters z and the Kähler
parameters µ. The symmetry of the elliptic stable envelopes with respect to the transformation
z ↔ µ is one of the predictions of 3d-mirror symmetry. We will discuss this point of view in
Section 4.

3.5 Examples

Case n = 2. Using (15) we find that the weight functions are equal:

W(1,2) = ϑ
(~z1µ2
t
(1)
1 µ1

)
ϑ
( z2
t
(1)
1

)
, W(2,1) = ϑ

(~z1
t
(1)
1

)
ϑ
( z2µ2
t
(1)
1 µ1

)
.

Here, as we defined in Section 3.1, (1, 2) and (2, 1) denote the fixed points corresponding to the
trivial and non-trivial permutations of S2 respectively.

By (14) the restriction to the point (1, 2) is given by the substitution t
(1)
1 = z1 and that to

the point (2, 1) is given by the substitution t
(1)
1 = z2. Thus, in the basis of permutations ordered

by (1, 2), (2, 1), the matrix of restrictions equals:

AI,J(z1, z2, µ1, µ2) =

 ϑ
(~µ2
µ1

)
ϑ
(z2
z1

)
0

ϑ(~)ϑ
(z2µ2
z1µ1

)
ϑ
(~z1
z2

)
ϑ
(µ2
µ1

)
 .

The statement of Theorem 4 in this case is equivalent to the following system of identities:

A(1,2),(1,2)(z1, z2, µ1, µ2) = −A(2,1),(2,1)(µ2, µ1, 1/z1, 1/z2),

A(1,2),(2,1)(z1, z2, µ1, µ2) = −A(1,2),(2,1)(µ2, µ1, 1/z1, 1/z2),

A(2,1),(1,2)(z1, z2, µ1, µ2) = −A(2,1),(1,2)(µ2, µ1, 1/z1, 1/z2),

A(2,1),(2,1)(z1, z2, µ1, µ2) = −A(1,2),(1,2)(µ2, µ1, 1/z1, 1/z2).

It is easy to observe that all these identities trivially follow from ϑ(1/x) = −ϑ(x). The situation,
however, is more involved in the “non-abelian” cases n ≥ 3.

Case n = 3. In this case one checks that the identities (27) are all trivial (i.e. both sides are
equal to zero or coincide trivially) except the following matrix elements:

A(3,1,2),(1,2,3)(z1, z2, z3, µ1, µ2, µ3) = −A(3,2,1),(2,1,3)(µ3, µ2, µ1, 1/z1, 1/z2, 1/z3),

A(3,2,1),(2,1,3)(z1, z2, z3, µ1, µ2, µ3) = −A(2,3,1),(1,2,3)(µ3, µ2, µ1, 1/z1, 1/z2, 1/z3).

A(3,2,1),(1,2,3)(z1, z2, z3, µ1, µ2, µ3) = −A(3,2,1),(1,2,3)(µ3, µ2, µ1, 1/z1, 1/z2, 1/z3),
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Let us, for instance, compute the two sides of the last line. Using the definition (15) we have

W(3,2,1)(t, z, ~,µ) =

ϑ
(~t(2)1

t
(1)
1

)
ϑ
( t(2)2 µ2

t
(1)
1 µ1

)
ϑ
(~z1
t
(2)
1

)
ϑ
(
z2µ3

t
(2)
1 µ2

)
ϑ
( z3
t
(2)
1

)
ϑ
(~z1
t
(2)
2

)
ϑ
(~z2
t
(2)
2

)
ϑ
(
z3µ3

t
(2)
2 µ1

)
ϑ
(~t(2)1

t
(2)
2

)
ϑ
( t(2)2

t
(2)
1

) + (t
(2)
1 ↔ t

(2)
2 ).

where the second term (t
(2)
1 ↔ t

(2)
2 ) denotes the first term with t

(2)
1 , t

(2)
2 switched.

By (14), the restriction of a weight function to (3, 2, 1) corresponds to the specialization

t
(1)
1 = z1, t

(2)
1 = z1, t

(2)
2 = z2. Thus, we compute

A(3,2,1),(1,2,3)(z1, z2, z3, µ1, µ2, µ3) =

−
ϑ(~)3ϑ

(z1µ1
z2µ2

)
ϑ
(z1µ2
z2µ3

)
ϑ
(z1
z3

)
ϑ
(z2µ1
z3µ3

)
ϑ
(z1
z2

) +

ϑ(~)ϑ
(~z1
z2

)
ϑ
(µ1
µ2

)
ϑ
(z2
z3

)
ϑ
(µ2
µ3

)
ϑ
(z1µ1
z3µ3

)
ϑ
(~z2
z1

)
ϑ
(z1
z2

) ,

and the identity above takes the form:

−
ϑ(~)3ϑ

(z1µ1
z2µ2

)
ϑ
(z1µ2
z2µ3

)
ϑ
(z1
z3

)
ϑ
(z2µ1
z3µ3

)
ϑ
(z1
z2

) +

ϑ(~)ϑ
(~z1
z2

)
ϑ
(µ1
µ2

)
ϑ
(z2
z3

)
ϑ
(µ2
µ3

)
ϑ
(z1µ1
z3µ3

)
ϑ
(~z2
z1

)
ϑ
(z1
z2

) =

−
ϑ(~)3ϑ

(z2µ3
z1µ2

)
ϑ
(z3µ3
z2µ2

)
ϑ
(µ3
µ1

)
ϑ
(z3µ2
z1µ1

)
ϑ
(µ3
µ2

) +

ϑ(~)ϑ
(~µ3
µ2

)
ϑ
(z2
z1

)
ϑ
(µ2
µ1

)
ϑ
(z3
z2

)
ϑ
(z3µ3
z1µ1

)
ϑ
(~µ2
µ3

)
ϑ
(µ3
µ2

) .

This is an example of nontrivial identity satisfied by the Jacobi theta-functions. It is equivalent to
the so called four-term identity for the theta functions, see (2.7) in [34], after some identification
of the parameters.

4 Elliptic stable envelopes

4.1 Elliptic stable envelopes in holomorphic normalization

The elliptic stable envelopes for Nakajima quiver varieties were defined in [1]. If X is the
Nakajima quiver variety defined in Section 2.4 (the cotangent bundle over the full flag variety)
and I ∈ XT is a fixed point then the elliptic stable envelope Stabσ(I) is the unique section
of a certain line bundle over ET(X) distinguished by a set of remarkable properties. We refer
to Section 3 of [1] for the original definition. The elliptic stable envelope depends on a choice
of a chamber σ. For X the set of chambers coincides with the set of Weyl chambers of the
Lie algebra sln and thus, the chambers are parameterized by permutations σ, see [33] for the
detailed discussion of cotangent bundles over partial flag varieties.

Let us set S(X) =
n−1∏
k=1

SkE where SkE denotes the k-th symmetric power of the elliptic curve

E. Coordinates on S(X) are symmetric functions in Chern roots t of the tautological bundles.
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Recall the following map as in (8)

ET(X)
cX−→ S(X)× ET × EPic(X),

given by the elliptic Chern classes of the tautological bundles over X. It is known that cX is an
embedding [27], see also Section 2.4 in [1].

The elliptic weight functions Wσ,I(t, z, ~, µ) are symmetric in t and thus represent sections
of certain line bundles over the scheme S(X) × ET × EPic(X). The following theorem describes
the known relation between the weight functions and the elliptic stable envelopes for X.

Theorem 5. The elliptic stable envelope of a fixed point I ∈ XT for a chamber σ is given by
the restriction of the corresponding elliptic weight function to elliptic cohomology of X:

Stabσ(I) = c∗XWσ,I(t, z, ~,µ). (28)

Proof. In the original paper [1] the elliptic stable envelope Stabσ(I) was defined as the unique
section of certain line bundle satisfying a list of defining conditions. It was checked in Theorem
7.3 of [34] that the right side of (28) satisfies these conditions. �

Remark. The elliptic stable envelopes StabAOσ (I) defined by Aganagic-Okounkov in [1] and the
restrictions (28) differ by a normalization (i.e. by a factor). One of the defining properties in
[1] fixes the diagonal restriction

StabAOσ (I)
∣∣
ÔI

= Pσ−1·I(zσ),

while in our normalization of the elliptic weight functions the diagonal restrictions are given
by (20). This means that the Aganagic-Okounkov stable envelopes and the ones we use in the
present paper are related by

Stabσ(I) = (−1)σ
−1IPI−1σσ0(µσ0(1), . . . , µσ0(n)) StabAOσ (I).

That is, the two versions of stable envelopes are sections of line bundles related by the twist of
a line bundle which PI−1σσ0(µσ0(1), . . . , µσ0(n)) is a section of. We chose to use (28) is this paper
because in this normalization the stable envelopes are holomorphic, see Lemma 2.

4.2 Dual variety X ′ and dual stable envelope

Let us fix a second copy of symplectic variety isomorphic to the cotangent bundle over the full
flag variety. To distinguish it from X we denote it by X ′. We will refer to X ′ as “dual variety”.
We denote the torus acting on X ′ by T′ (by definition, it acts on X ′ in the same way the torus
T acts on X). As in (10) the extended equivariant elliptic cohomology scheme of this variety
has the following form:

ET′(X
′) =

 ∐
I∈(X′)T′

Ô
′
I

 /∆ (29)

where Ô
′
I
∼= ET′ × EPic(X′). We will denote by (z′, ~′,µ′) the coordinates on Ô

′
I .

We denote by Stab′ the elliptic stable envelope for the dual variety corresponding to the
chamber σ0:

Stab′(I) = (−1)n(n−1)/2c∗X′Wσ0,I(t
′, z′, ~′, 1/µ′) (30)

where t′ stands for the set of Chern roots of the tautological bundles over X ′ and cX′ is the
same as in the previous subsection.
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4.3 Identification of Kähler and equivariant parameters

Although as varieties X and X ′ are isomorphic, we treat them differently. In particular, fixed
points and parameters will be identified in a nontrivial way.

We fix an isomorphism of extended orbits of dual varieties

κ : ÔI → Ô
′
J (31)

defined explicitly in coordinates by:

µ′i 7→ zi, z′i 7→ µi, ~′ 7→ ~, i = 1, . . . , n.

Note that κ maps the equivariant parameters of X to the Kähler parameters of X ′ and vice
versa. In particular, it provides an isomorphisms (which we denote by the same symbol, for
simplicity):

κ : EPic(X)
∼= ET′ , EPic(X′)

∼= ET. (32)

4.4 3D mirror symmetry of cotangent bundles over full flag varieties

It is clear that XT and (X ′)T
′

are the same sets. We define a bijection

bj : XT → (X ′)T
′
, bj(I) := I−1.

We say that J ∈ (X ′)T
′

is the fixed point corresponding to a fixed point I ∈ XT if J = bj(I).

Now we are ready to formulate our main theorem revealing z ↔ µ symmetry of elliptic stable
envelopes associated with the cotangent bundles over full flag varieties:

Theorem 6. Let I, J ∈ XT be fixed points and I−1, J−1 be the corresponding fixed points on
the dual variety. Then,

Stab(I)|
ÔJ

= κ∗
(

Stab′(J−1)
∣∣
Ô
′
I−1

)
. (33)

Proof. By definition Stab(I)|
ÔJ

= AI,J(z,µ). Similarly, by (30) we have

Stab′(J−1)
∣∣
Ô
′
I−1

= (−1)n(n−1)/2AJ−1·σ0,I−1·σ0(z′σ0(1), . . . , z
′
σn(1)

, 1/µ′1, . . . , 1/µ
′
n).

From the definition of κ we obtain:

κ∗
(

Stab′(J−1)
∣∣
Ô
′
I−1

)
= (−1)n(n−1)/2AJ−1·σ0,I−1·σ0(µσ0(1), . . . , µσ0(n), 1/z1, . . . , 1/zn).

Thus, the statement is equivalent to Theorem 4. �

Our Definition 1 of 3d mirror symmetry then implies:

Corollary 2. The variety X ′ is a 3d mirror of X.

As X ∼= X ′ we say that X is 3d mirror selfdual.
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5 The duality interface

5.1 Interpolation function

Let us define the following combination of elliptic weight functions:

m̃(t, t′) := (−1)n(n−1)/2
∑

I,J∈Sn

A−1I,J(z, z′)WJ(t, z, ~, z′)WI−1·σ0(t′, z′σ0 , 1/z).

This function interpolates the elliptic weight functions in the following sense.

Lemma 6.

m̃(t, z′I−1) = WI(t, z, ~, z′), m̃(zI−1 , t′) = (−1)n(n−1)/2WI·σ0(t′, z′σ0 , ~, 1/z).

Proof. Obvious from the definition of restriction matrix (19) and Theorem 4. �

Let us consider the scheme S(X)×S(X ′)×ET×T′ . As before, we assume that the coordinates
on S(X) are symmetric functions in Chern roots t and coordinates on S(X ′) are symmetric
functions in t′. By definition, m̃(t, t′) is symmetric function in t and t′. Therefore, it represents
a section of certain line bundle on this scheme.

5.2 Interpolation function as a section of a line bundle

We would like to rewrite the statement of the previous lemma in geometric terms. For a fixed
point L ∈ (X ′)T

′
we denote by α′L the composition of the following maps:

ET × EPic(X) × S(X)→ ET′ × EPic(X′) × S(X) ∼= Ô
′
L × S(X)

eL→ ET′(X
′)× S(X)

cX′−→ S(X)× S(X ′)× ET′ × EPic(X′) → S(X)× S(X ′)× ET×T′ ,

where the first and the last maps are given by κ (just a change of variables), eL is the inclusion

of the extended orbit Ô
′
L to the extended cohomology ET′(X

′) (29) and cX′ is the elliptic Chern
class for X. We denote by

αL : ET′ × EPic(X′) × S(X ′) −→ S(X)× S(X ′)× ET×T′

the map given by the same chain of maps with X ′ in place of X. Lemma 6 can be formulated
as follows:

Lemma 7.

α
′∗
L−1(m̃) = WL(t, z, ~,µ), α∗L−1(m̃) = (−1)n(n−1)/2WL·σ0(t′, z′σ0 , ~, 1/µ

′).

Proof. The map (cX′ ◦ eL)∗ in α
′∗
L is the restriction of a section to the orbit Ô

′
L. By definition,

it is given by a substitution t′ = z′L. The same for α∗L. The result follows from the Lemma 6
after the change of variables by κ. �

5.3 The duality interface

Let us consider a T × T′-variety X ×X ′. For fixed points I ∈ XT, J ∈ (X ′)T
′

we consider the
equivariant embeddings:

X × {J} iJ−→ X ×X ′ iI←− {I} ×X ′. (34)
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We have

EllT×T′(X × {J}) = EllT(X)× ET′
∼= ET(X),

where the last equality is by (32). Similarly, we use (32) to fix the isomorphism EllT×T′({I} ×
X ′) ∼= ET′(X

′). By covariance of the equivariant elliptic cohomology functor, the maps (34)
induce the following embeddings:

ET(X)
i∗J−→ EllT×T′(X ×X ′)

i∗I←− ET′(X
′).

Theorem 7. There exists a holomorphic section m (the duality interface 3) of a certain line
bundle on EllT×T′(X ×X ′) such that

(i∗J)∗(m) = Stab(I), (i∗I)
∗(m) = Stab′(J),

where I is a fixed point on X and J is the corresponding fixed point on X ′ (i.e., J = I−1 as a
permutation).

Proof. Let

EllT×T′(X ×X ′)
c−→ S(X)× S(X ′)× ET×T′

be the embedding by the elliptic Chern classes. Define m = c∗(m̃). For I ∈ XT we can factor
the inclusion map as i∗I = αI ◦ cX′ where cX′ : ET(X ′) → S(X ′) × ET′ × EPic(X′) the elliptic
Chern classes of tautological bundles over X ′. Thus,

(i∗I)
∗(m) = c∗X′ ◦ α∗I(m̃) = c∗X′(WI−1·σ0(t′, z, ~, 1/µ′)) = Stab′(I−1) = Stab′(J)

where the second equality is by Lemma 7 and the third is by (30). The calculation for a fixed
point on J ∈ (X ′)T

′
is the same.

Finally, by definition, m is holomorphic if every restriction m|OI,J is holomorphic. But,

m|OI,J = AI,J(z, z′)

which is holomorphic by Lemma 2.

�
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