A GENERALIZATION OF BANCHOFF'S TRIPLE POINT THEOREM

P. Akhmetiev, R. Rimányi, A. Szűcs

Abstract

Consider an immersion of a surface into S^{3}. Banchoff's theorem [B] states that the parity of the number of triple points and the parity of the Euler characteristic of the surface coincide. Here we generalize this theorem to codimension 1 immersions of arbitrary even dimensional manifolds in spheres. The proof is an analogue of a proof of Banchoff's theorem circulated in preprint form by R. Fenn and P. Taylor in 1977 [FT].

Let us consider a codimension 1 smooth generic (i.e. self-transverse) immersion f of a closed manifold M^{n} in the sphere S^{n+1}. Let us recall how a neighborhood of an i-tuple point (in $R^{n+1} \subset S^{n+1}$) looks like in such a self-transverse immersion. Consider the coordinate hyperplanes in R^{i} and take the direct product of this configuration with R^{n+1-i}. What is obtained is diffeomorphic to the neighborhood of an i-tuple point in the image of f.

For any natural number $i, 1 \leq i \leq n+1$, let us denote by $\tilde{\Delta}_{i}$ the set of i-tuple points in S^{n+1} i.e.

$$
\tilde{\Delta}_{i}=\left\{y \in S^{n+1} \mid f^{-1}(y) \text { consists of } i \text { different points }\right\} .
$$

As it is well known, $\operatorname{dim} \tilde{\Delta}_{i}=n+1-i$, and $\cup_{r=i}^{\infty} \tilde{\Delta}_{r}$ is an immersed manifold (although it is not in general position i.e. it is the image of a non-selftransverse immersion). Let Δ_{i} be a closed manifold such that $\cup_{r=i}^{\infty} \tilde{\Delta}_{r}$ is the image of an immersion of Δ_{i} in S^{n+1}.

Remark. Of course, many different manifolds can be immersed into S^{n+1} so that their images are $\cup_{r=i}^{\infty} \tilde{\Delta}_{r}$. For example if a possible Δ_{i} is given, then any of its finite coverings serves as well. We make the choice of Δ_{i} explicit by assuming that the i-tuple points of f are non-multiple points of the immersion $\Delta_{i} \rightarrow S^{n+1}$.

We shall call the manifold Δ_{i} the i-tuple manifold of f. Our theorem claims that for n even the sum of the Euler characteristics of i-tuple manifolds is even. (For $n=2$ this is exactly Banchoff's theorem.)

The second and the third author was supported by the Hungarian National Science Foundation Grant No. F-014906 and 4232 resp.

Theorem. If $n>0$ is even, then

$$
\sum_{i=1}^{n+1} \chi\left(\Delta_{i}\right) \equiv 0 \bmod 2
$$

The following proof is an analogue of the proof in [FT] for Banchoff's triple point theorem.

Proof. Since n is even, we can omit the terms corresponding to even i 's, because in those cases the dimension of Δ_{i} is odd. Now let us triangulate the image of f such a way that for any i the set of points of multiplicity i or higher forms a subcomplex of $f(M)$.

Let α_{r}^{i} denote the number of i-dimensional simplexes whose interiors lie in $\tilde{\Delta}_{r}$, and let

$$
\beta_{r}=\alpha_{r}^{0}-\alpha_{r}^{1}+\ldots \pm \alpha_{r}^{n+1-r} .
$$

Observe, that β_{r} is not the Euler characteristic of any complex. However, we have that

$$
\chi\left(\Delta_{i}\right)=\sum_{r=i}^{n+1}\binom{r}{i} \beta_{r}
$$

The coefficient $\binom{r}{i}$ counts the multiplicity of the self-intersection of Δ_{i} at $\tilde{\Delta}_{r}$. So

$$
\sum_{i=1}^{n+1} * \chi\left(\Delta_{i}\right)=\sum_{i=1}^{n+1} * \sum_{r=i}^{n+1}\binom{r}{i} \beta_{r}
$$

where * indicates that the sum is taken only for odd i 's. After changing the order of the summations we get:

$$
\begin{equation*}
\sum_{r=1}^{n+1}\left(\sum_{i=1}^{r} *\binom{r}{i}\right) \beta_{r}=\sum_{r=1}^{n+1} 2^{r-1} \beta_{r} \equiv \beta_{1} \bmod 2 \tag{1}
\end{equation*}
$$

Now let us color the complement of $f(M)$ in S^{n+1} in two colors in a chessboardstyle, i. e. let any two neighboring domains have different colors (where "neighboring" means that they are separated by a component of $\tilde{\Delta}_{1}$). This is possible, since $H_{n}\left(S^{n+1} ; Z_{2}\right)=0$.

Let N be the boundary of an ε-neighborhood of $f(M)$ in the black subset of S^{n+1}. Notice, that from the given triangulation of $f(M)$ we can construct a triangulation of N by pushing the simplexes from $f(M)$ to N in a reasonable way. Simplexes in $\tilde{\Delta}_{i}$ will have 2^{i-1} counterparts in N (i hyperplanes divide the Euclidean n-space into 2^{i} parts, half of which are black). Thus:

$$
\chi(N)=\sum_{i=1}^{n+1} 2^{i-1} \beta_{i} \equiv \beta_{1} \bmod 2
$$

But $\chi(N)$ is even, because N is embedded in codimension 1 (and $n>0$), so the proof is complete.

Remark 1. As it is clear from the proof, the space S^{n+1} can be replaced by any manifold such that its $n^{\text {th }} Z_{2}$-homology group is 0 .
Remark 2. The above proof does not work for n odd, since the sum $\sum_{i=1}^{r} *\binom{r}{i}$ (where the star this time means summation for even i 's) equals to $2^{r-1}-1$, so the sum in formula (1) gives $\sum_{r=2}^{n+1} \beta_{r}$ (which is clearly the Euler characteristic of the complex $f(M))$.

The figure 8 immersion of the circle in the plane shows that the statement of the theorem is false for $n=1$. A theorem of Freedman $[\mathrm{F}]$ (and its generalization to unoriented 3 -manifolds given in $[\mathrm{A}]$) shows that it is true for $n=3$. We do not know whether it is true or not for $n>3$.

Remark 3. If we consider only oriented n-manifolds and their codimension 1 im mersions in S^{n+1}, and the $n^{\text {th }}$ stable homotopy group of spheres has no 2-primary torsion, then the Euler characteristics of the i-tuple manifolds are all even, for any i. (Indeed, for any $i \chi\left(\Delta_{i}\right) \bmod 2$ defines a homomorphism from the stable homotopy group $\pi_{n+N}\left(S^{N}\right), N \gg n$ to Z_{2}.)

In particular the statement of the theorem is true for $n=5$ or $n=13$ for oriented manifolds.

Remark 4. If the dimension $n=4$, then more is true than it is stated in the theorem, namely all $\chi\left(\Delta_{i}\right)$'s are even, since the stable homotopy group $\pi_{5}^{s}\left(R P^{\infty}\right)$ vanishes (see [L]), and this group is isomorphic to the cobordism group of immersions of 4-manifolds into R^{5}.

References

[A] . Akhmetiev, An elementary proof of Freedman's theorem on immersions; (in Russian), to appear in Algebra and Analysis, St. Petersburg.
[B] T. Banchoff, Triple points and surgery of immersed surfaces, Proc. Amer. Math. Soc. 46 (1974).
[F] M. Freedman, Quadruple points of 3-manifolds in S^{4}, Comment. Math. Helvetici 53 (1978) 385-394.
[FT]R Fenn, P. Taylor, On the number of triple points of an immersed surface, (unpublished) preprint (1977).
[L] A. Liulevicius, A theorem in homological algebra and stable homotopy of projective spaces, Trans. Amer. Math. Soc., 109 (1963), 540-552.

Institute of Terrestrial Magnetism and Radio Wave Propagation, Academy of Sciences of Russia, Troitsk, Moscow Region 142092, Russia

Elte Dept. of Analysis, Budapest, Múzeum krt. 6-8., 1088, Hungary

ELTE Dept. of Analysis, Budapest, Múzeum krt. 6-8., 1088, Hungary

