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Abstract. The theory of Schur and Schubert polynomials are revisited in this paper from the
point of view of generalized Thom polynomials. When we apply a general method to compute
Thom polynomials for this case we obtain a new definition for (double versions of) Schur and
Schubert polynomials: they will be solutions of interpolation problems.

1. Introduction

In this paper we approach the theory of Schur and Schubert polynomials from the the point of
view of generalized Thom polynomials. The starting point is that we realize Schur and Schubert
polynomials—of Chern classes—as first obstructions of certain fiber bundles (in the spirit of
Stiefel, Whitney and Steenrod who defined Chern classes as first obstructions). This realization
makes Schur and Schubert polynomials a special case of the generalized Thom polynomials.
Applying a general method to compute them as Thom polynomials we obtain new definitions
for these polynomials. Along the way we also redefine the double Schubert polynomials and the
Kempf-Laksov-Schur (or flagged Schur) polynomials which are also first obstructions. We show
how these results are related to the structure of the cohomology ring of the Grassmannian and
the flag manifold. The authors believe that this Thom polynomial technique may turn out to
be useful in the study of the cohomology ring structure of various moduli spaces, see section 6
for a discussion and [FRN03] where we obtained new results for the cohomology ring of the
moduli space of binary forms.

We will define Schur and Schubert polynomials as unique polynomials vanishing at certain
substitutions, ie. results of interpolation. This might seem somewhat implicit, however it
allows us to give closed formulas for the Kempf-Laksov-Schur polynomials (Theorem 5.1) and
to give a natural deduction of the recursion formula of Lascoux and Schützenberger [LS82] for
double Schubert polynomials (Theorem 4.2). Some of these results follow from each other via
sophisticated algebraic combinatorics (see e.g. [Mac91]), but we avoided such reasonings to put
the emphasis on the strength of Theorem 3.3 in building up the theory of Schur and Schubert
polynomials. Also, our interpolation approach to double Schubert polynomials turned out to
be very fruitful in finding closed formulas for quiver Thom polynomials (the problem studied
in [BF99]) in terms of double Schubert polynomials, a result we are presenting in a separate
paper with A. Buch.
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For geometrically defined fiber bundles—on which we mean fiber bundles associated to a
principal G-bundle where G is a Lie group—first obstructions are usually called Thom polyno-
mials (see [FR03] on this subject). The word polynomial is justified since the first obstruction
of the universal bundle is an element in H∗(BG) which is a polynomial ring, at least rationally.

Calculating Thom polynomials has a long history. It was René Thom who initiated their
study in the case of singularities of smooth maps. The major tool for calculating them was the
method of resolution (see [AVGL91] for an account of the method and results).

Works of V. Vassiliev [Vas88] and M. Kazarian [Kaz95], [Kaz97] clarified the connection of
Thom polynomials with the underlying symmetry groups. Their works also show that the so
called degeneracy loci formulas in algebraic geometry are also Thom polynomials for group
actions (see [Ful98] for many examples). In particular in [BF99] double Schubert polynomials
are described as degeneracy loci formulas for certain quiver representations. In [FR02] we
showed how to describe and calculate quiver type formulas as Thom polynomials for group
actions. In this paper however we use a more “economic” group action. In Remark 6.10 we
compare the two methods.

Based on works of A. Szűcs ([Szű79]) the second author introduced a different method (called
the method of restriction equations) to calculate Thom polynomials for singularities of smooth
maps ([Rim01]). In [FR03] we generalized the method to the case of Thom polynomials for
group actions. It turned out that though the idea is quite simple the method of restriction
equations is very powerful. We reproduced and improved earlier results in several directions
([FR03]). In all these applications we start from a representation of G with the property that
G has only finitely many orbits (at least up to a given codimension). Recently we realized that
our work is closely related to the approach of M. F. Atiyah and R. Bott [AB82] continued by
F. Kirwan [Kir84]. Their goal is to calculate the cohomology rings of certain moduli spaces.
Motivated by these results, in the final section of this paper we make an attempt to generalize
the definitions and methods to the case where continuous families of orbits occur—the case of
“moduli”. We also propose that via Thom polynomials we can calculate the cohomology rings
of some moduli spaces. This method is related to but different from the method of Kirwan
[Kir92].

The idea of the paper was born from a question of Tamás Hausel who drew our attention to
the problem of calculating cohomology rings of moduli spaces.

2. Thom polynomials for group actions

In this section we give a short introduction to the theory of Thom polynomials for group
actions. They were defined by M. Kazarian in [Kaz97]. The approach given here is somewhat
different since we concentrate on complex representations, see [FR03] for a detailed introduction
along these lines.

Given a complex representation ρ : G → GL(V ) and a principal G-bundle P → M we can
look for an obstruction of having a section of the V -bundle E = P ×G V associated to this
representation avoiding a certain orbit η (or more generally a G-invariant subset of V ). Of
course the zero section avoids any orbit different from the zero orbit but this is pathological:
we want obstructions for a generic section. In effect we want to avoid the closure of η. The
obstruction we will deal with is the cohomology class represented by η̄(s) ⊂ M for a generic
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section s. Thus this class is an obstruction for having a section in the complement V \ η̄. Let
us call this class the Thom polynomial Tp(η)(E).

In [FR03] we explain that Tp(η)(E) is equal to the first obstruction class (in the homotopy
theoretic sense) of the fiber bundle P ×G (V \ η̄). By naturality it is enough to look at the
universal V -bundle BV = EG ×G V (where B refers to the Borel construction), and the
value of the Thom polynomial here: let Tp(η) denote Tp(η)(BV ) ∈ H∗(BG) = H∗

G(pt). This
characteristic class Tp(η) can be thought of as theG-equivariant Poincaré dual of η̄ (see [FR03]).

One of the early examples is the case that Stiefel, Whitney and Steenrod studied (see e.g.
[Sti36]) to define Chern classes:

Example 2.1. Let V = Hom(Cn,Cn+k) and let G = GL(n+ k) act on V by composition. We
define a G-invariant subset of V :

Σ1(k) := {v ∈ V : dimC(ker v) = 1}.

Then Tp(Σ1(k)) is the first obstruction of the bundle with fiber V \ Σ̄1(k). This set can be
identified with the set of n-frames in Cn+k i.e. the complex Stiefel manifold St(n, n+ k).

So given a vector bundle E = P ×GL(n+k) C
n+k, the cohomology class Tp(Σ1(k)) is the first

obstruction for having n linearly independent sections of E. In other words if we have n sections
s1, . . . , sn in generic position then Tp(Σ1(k)) is the cohomology class represented by the subset
of the base where s1, . . . , sn are not linearly independent (notice that s1, . . . , sn defines a section
of Hom(Cn, E) = P ×GL(n+k) V ).

Theorem 2.2 (Stiefel, Whitney and Steenrod). Tp(Σ1(k)) = ck+1.

3. Calculation of Thom polynomials via the method of restriction equations

The G-equivariant Poincaré dual has similar properties as the ordinary Poincaré dual. Since
Tp(η) is the G-equivariant Poincaré dual of η̄ we get:

Proposition 3.1 ([FR03]). Suppose that θ and η are orbits of ρ and j∗θ : H∗
G(V ) → H∗

G(θ) is
induced by the inclusion θ ⊂ V .

Then

j∗θ Tp(η) =

{

e(νη) if θ = η

0 if η 6⊂ θ̄,

where νη is the normal bundle of η in V and e denotes the equivariant Euler class.

Remark 3.2. νη is a G-equivariant bundle so it has an equivariant Euler class in H∗
G(η). A

simple calculation shows (see e.g. [AB82, §1.] or [FR03]) that H∗
G(η)

∼= H∗
Gη
(pt) and e(νη) is

equal to the Euler class of the representation of Gη on a normal space of η. The Euler class
of a representation—using the description of H∗

Gη
(pt) as symmetric polynomials—is simply the

product of all weights.

In certain cases Tp(η) is the unique solution of these equations. In fact even less equations
are enough to determine Tp(η):

Theorem 3.3 ([FR03]). Let ρ : G → GL(V ) be a linear representation on a complex vector
space V with finitely many orbits. Suppose that for every orbit η we have e(νη) 6= 0. Then the
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restriction equations

j∗θ Tp(η) =

{

e(νη) if θ = η ‘principal equation’

0 if θ 6= η, codim θ ≤ codim η ‘homogeneous equations’

have a unique solution.

Remark 3.4. The condition e(νη) 6= 0 ( more exactly that e(νη) is not a zero divisor) first
appeared in [AB82, Prop.1.9] as a sufficient condition for equivariant perfectness. A slightly
weaker version of this theorem—j∗θ Tp(η) = 0 is required for all θ not in η—can be found in
works of Kirwan (see e.g. [Kir92, p.867]).

4. Schubert polynomials

Let the group G := ❅ (n)× ❅ (n)—where ❅ (n) = {upper triangular n by n matrices} and

❅ (n) = {lower triangular n by n matrices}—act on the vector space V := Hom(Cn,Cn) by
(Y,X) ·M := XMY −1. The orbits of this action are in a one-to-one correspondence with the
rook-arrangements on an n by n chessboard (c.f. Bruhat-form of matrices). A rook-arrangement
is a number of rooks placed on a chessboard with the property that no two are in one row or
column. Associated to such a rook-arrangement we consider the n × n matrix of 0’s and 1’s
encoding the positions of rooks. We will also encode such a rook-arrangement by a permutation
π ∈ Sm for some m ≥ n as follows (and as is in [FP89, p.9.]). Expand the matrix (to the right
and down) to an m×m matrix and add 1’s to rows which do not have any, starting from the
top down, putting a 1 in the left-most column outside the n× n matrix that does not yet have
a 1 in it. Then set π(i) = j if in the ith row the 1 is in the jth column. For example for the
rook-arrangement

(
0 1
0 0

)
the permutation π ∈ S3 is 2, 3, 1 or π = 2, 3, 1, 4, 5, 6 in S6. We don’t

have to pick the minimal m for which we can encode the arrangement. The choice will not
effect our reasoning or formulas.

Let Mπ denote the n×n rook-arrangement matrix encoded by the permutation π ∈ Sm≥n and
let Σπ be its orbit. Easy computation (matrix multiplication) shows that the tangent space to
Σπ at Mπ can be obtained as follows. Let Tπ be the set of boxes in the matrix which are either
directly below or right of any 1 in Mπ (including where the 1’s are). The set of the remaining
boxes will be denoted by Nπ. (Observe that Nπ does not depend on n only on π ∈ Sm.) Then
the mentioned tangent space is CTπ , so for a normal slice to its orbit at Mπ we can take CNπ .
This also gives us the codimension of the orbit Σπ:

codim Σπ = |Nπ| = |{(i, j)|there are 0’s directly above and to the left of (i, j) in Mπ}| =

= |{(i, j)|π(i) > j, π(l) 6= j for all l = 1, 2, . . . , i− 1}| =

= |{(i, j)|π(i) > j, π−1(j) > i}| = l(π),

where the length l(π) of π is the number of inversions in π, i.e. the number of i < j such that
π(i) > π(j).

According to the general theory now we need to determine the maximal compact symmetry
group of Mπ together with its representation on an invariant normal slice at Mπ to Σπ. This
is also an easy computation. For the sake of simplicity in our formulas, instead of considering
the actual maximal compact symmetry group we will map a group onto the maximal compact
symmetry group. Here diag(a, b, . . . ) means the diagonal matrix with a, b, . . . in the diagonal.
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Proposition 4.1. The homomorphism

Gπ := {diag(α1, α2, . . . , αm) : |αi| = 1} →
{(

diag(α1, α2, . . . , αn), diag(απ(1), απ(2), . . . , απ(n))
)}

maps Gπ
∼= U(1)m onto the maximal compact symmetry group of Mπ.

Fortunately the normal slice CNπ is invariant under the action of Gπ, so now we have the
two ingredients of the restriction equations:

• the map H∗(BG)

∼=
��

j∗π
// H∗(BGπ)

∼=
��

Z[y1, . . . , yn, x1, . . . , xn] Z[a1, . . . , am]

is given by yi 7→ ai, xi 7→ aπ(i).
• the Euler class of the representation of Gπ on CNπ is

(1) eπ =
∏

(i,j)∈Nπ

(
j∗π(xi)− j∗π(yj)

)
=

∏

(i,j)∈Nπ

(aπ(i) − aj).

Observe that this latter Euler class is never zero (since (i, j) ∈ Nπ implies π(i) > j), so according
to Theorem 3.3 the restriction equations are uniquely solvable, giving the Thom polynomial
Tp(π) := Tp(Σπ) associated to the orbit Σπ. If we consider a permutation π ∈ Sn in a larger
permutation group Sm (where the permutation acts by identity on the extra m − n elements)
then the equations do not change, so Tp does not change either. That is, the map Tp is really
defined on S∞ := ∪Si (here Si ⊂ Sj is meant if i < j).

These polynomials were studied in geometry (see the paper of Fulton [Ful92]) under the
name double Schubert polynomials. So our approach can be regarded as a new way to compute
double Schubert polynomials as solutions of (large) linear equation systems.

In enumerative geometry the standard procedure is to compute double Schubert polynomials
by recursion. In the rest of this section we will show that these recursion formulas occur
naturally in our approach.

Theorem 4.2. The recursion formulas of Lascoux and Schützenberger ([LS82]) hold for Tp(π)’s,
i.e.

(1) Tp(n, n− 1, . . . , 2, 1) =
∏

i+j<n(xi − yj);

(2) if for some i the inequality π(i) > π(i+1) holds and ρ = π·si, where si is the transposition
(i, i+ 1), then

Tp(ρ) = ∂i Tp(π) :=
Tp(π)− si(Tp(π))

xi − xi+1
,

where si(Tp(π)) is obtained from Tp(π) by interchanging xi and xi+1.

Proof. Let πn be the permutation n, n − 1, . . . , 2, 1, and let Ei,j be the matrix which is 1 at
the (i, j) position and 0 otherwise. Matrix multiplication shows that any matrix in the orbit
of Mπn

has zeros in the (i, j) entries if i + j < n. It means that for such (i, j)’s Ei,j does not
belong to the closure of Σπn

, so the homogeneous equation j∗orbit of Ei,j

(Tp(πn)) = 0 holds.

This j∗ assigns different indeterminates to xk’s and yl’s (k, l = 1, . . . , n) except xi and yj are
both mapped to aj. This means that Tp(πn) must be divisible by (xi − yj), and so in effect it
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must be a constant times
∏

i+j<n(xi−yj). The constant is calculated to be 1 using the principal

equation j∗πn
(Tp(πn)) =

∏

i+j<n(an+1−i − aj).

Now we turn to the proof of (2). For this let us study the matrices Mπ and Mρ. On the
figure below we show the parts in which they differ:

π(i+ 1) · · · π(i) ρ(i) · · · ρ(i+ 1)

i
i+ 1

1
1

i
i+ 1

1
1

Mπ Mρ

Here the boxes correspond to Nπ and Nρ respectively. This shows that codim(Σρ) is one
less than codim(Σπ). Also we can keep track of how the corresponding Euler classes change:
eπ = eρ · (aπ(i) − aπ(i+1)) (c.f. formula (1)).

To prove the statement we need to prove the principal and the homogeneous equations
(corresponding to ρ) for ∂i Tp(π). The principal one is easily verified as follows

j∗ρ(∂i Tp(π)) =
j∗ρ(Tp(π))− j∗ρ(si Tp(π))

aρ(i) − aρ(i+1)

=
0− j∗π(Tp(π))

aπ(i+1) − aπ(i)
=

−e(π)

aπ(i+1) − aπ(i)
= e(ρ).

For the homogeneous ones let τ 6= ρ be a permutation with length not greater than that of ρ.
Then we have that codim(Στ ) ≤ codim(Σρ) = codim(Σπ)−1, so codim(Στsi) = codim(Στ )−1 ≤
codim(Σπ) and τsi 6= π. Then

j∗τ (∂i Tp(π)) =
j∗τ (Tp(π))− j∗τ (siTp(π))

aρ(i) − aρ(i+1)

=
0− j∗τsi(Tp(π))

aρ(i) − aρ(i+1)

=
0− 0

aρ(i) − aρ(i+1)

= 0.

This proves the theorem.

Remark 4.3. There were some awkward points in our reasonings—e.g. a matrix of size n× n
was encoded by a permutation in Sm greater than n (and m was not even fixed) or that we
did not describe the maximal compact symmetry group of Mπ explicitly but as an image of
a homomorphism. These could have been avoided by considering the ‘infinite’ case from the
very beginning: infinitely big triangular matrices act on the space of infinitely big matrices.
Then the orbits correspond exactly to elements in S∞. And the described homomorphism to
the symmetry group is an isomorphism. However doing that we would face other technical
obstacles, such as: the described symmetry group would not be compact and there would be
infinitely many equations for infinitely many indeterminates, etc. Although these problems can
be overcome they would make the reasoning even more technical.

Remark 4.4. To obtain the orbits Σπ we could have started with a smaller group action. If we
act (e.g.) from the left by unipotent triangular matrices—i.e. ones having 1 in the diagonal—
then the orbits are the same, and we expect the ‘single’ Schubert polynomials as solutions.
However carrying out the calculation one finds that in this case the Euler classes are 0, so
our method does not work: the solutions of the restriction equations are not unique. This
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phenomenon, i.e. ‘the addition of extra symmetries makes the method work’ was noticed by
M. Kazarian too in [Kaz00].

5. Schur polynomials

Let d ≤ n, and let the group G := GL(d)×❅ (n) act on the vector space V := Hom(Cd,Cn)
by (Y,X) · M := XMY −1. The action of GL(d) in the source geometrically means that two
linear maps are in one orbit if their image is the same. The action of the triangular matrices
(= the automorphism group of a complete flag) geometrically means that two linear subspaces
are equivalent if they have the same intersection structure with the complete flag. So the
orbits of this action are exactly the so called Schubert cells of the Grassmannian Grr(C

n)
for r ≤ d. Thom polynomials of these orbits were first calculated by Kempf and Laksov in
[KL74], and independently by Lascoux in [Las74]; we will use the name Kempf-Laksov-Schur
polynomials. Encoding a Schubert cell by a partition as usual we have that orbits are in a
1-to-1 correspondence with the set

{(r, λ′) | r = 0, . . . , d;λ′ ⊂ (n− r)r a partition}

It will be convenient to index the orbits not with such a pair (r, λ′) but with a single partition,
so we embed the above set in

{λ ⊂ nd}

by attaching a d− r by n− r rectangle above λ′, i.e.

λi(r, λ
′) =

{

n− r if i ≤ d− r

λ′
i−(d−r) if i > d− r.

We will also associate a ‘strict partition’ µ to λ by µi := λd+1−i + i. Then

1 ≤ µ1 < µ2 < . . . < µd ≤ n+ d.

Let the orbit corresponding to λ be called Σλ. A representative of this is the n by d matrix
Mλ having 1 at (µi, i) (if µi ≤ n) and 0 everywhere else. We should not forget about the (µi, i)
entries when this does not fit into the n by d matrix. We imagine them outside Mλ. Observe
that they form a d− r by d− r identity matrix below Mλ as in Figure 1.

Computing the image of the Lie algebra of G in the tangent space of V at Mλ (i.e. carrying
out matrix multiplications) we find that the tangent space of Σλ at Mλ is CTλ where Tλ is the
set of boxes which are directly below or in the row of an entry 1 in Mλ. Denoting the set of
the remaining boxes by Nλ it is clear that CNλ is a normal slice to Σλ at Mλ. As a byproduct
we have that

codimΣλ = |Nλ| =
∑

|Nλ ∩ ith column| = λd + . . .+ λ2 + λ1 = |λ|.

Now we need to determine the maximal compact symmetry group of Mλ together with its
representation on an invariant normal slice at Mλ to Σλ. Easy computation (e.g. using the
symmetry group calculations for GL(n)×GL(n) as in [FR03] and restricting to G) shows that

Gλ :=
{(

diag(αµ1
, αµ2

, . . . , αµr
)⊕ A, diag(α1, α2, . . . , αn)

)
: |αi| = 1, A ∈ U(d− r)

}

∼= U(1)n × U(d− r)
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r d− r
︷ ︸︸ ︷ ︷ ︸︸ ︷

µ1 1
...
µ2 1
...

. . .
µi 1
...

1
. . .

1

Figure 1. The matrix Mλ

is the maximal compact symmetry group. It keeps CNλ invariant and its maximal torus acts
on CNλ with the representation

⊕

(i,j)∈Nλ

εi ⊗ εµj
,

where εk is the standard 1-dimensional representation of the kth U(1) and εµj
for j > r corre-

spond to the maximal torus of the U(d− r) part. From these we can compute

• the map H∗(BG)

∼=
��

j∗
λ

// H∗(BGλ)

∼=
��

Z[x1, . . . , xn, y1, . . . , yd]
Sd Z[a1, . . . , an, an+1, . . . , an+d−r]

Sd−r

is given by xi 7→ ai, yi 7→ aµi
.

• the Euler class of the representation of Gλ on C
Nλ is

eλ =
∏

(i,j)∈Nλ

(ai − aµj
).

Observe that this latter is never zero, so according to Theorem 3.3 the restriction equations
are uniquely solvable, giving the Thom polynomial Tp(λ) := Tp(Σλ) associated to the orbit
Σλ. As we mentioned earlier these polynomials were first calculated by Kempf and Laksov in
[KL74] and Lascoux [Las74], see also [CLL02]. In the rest of this section we prove their formula
for Tp(λ).

Theorem 5.1.

Tp(λ) = ∆λ(c
(d), c(d−1), . . . , c(1)),
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where c(j) = c
(j)
0 + c

(j)
1 t+ c

(j)
2 t2 + . . . is the Taylor expansion of

∏

i<µj
(1 + xit)

∏d

i=1(1 + yit)
,

and ∆λ is the determinant of
(
c
(d+1−i)
λi+j−i

)

d×d
.

Proof. First we show that the principal equation holds, i.e. the j∗λ image of ∆λ(c
(d), c(d−1), . . . , c(1))

is equal to the Euler class e(λ). We have

j∗λ
(
∆λ(c

(d), c(d−1), . . . , c(1))
)
= ∆λ

(
∏

Nd
(1 + ajt)

(1 + aµd
t)

,

∏

Nd−1
(1 + ajt)

(1 + aµd
t)(1 + aµd−1t)

, . . . ,

∏

N1
(1 + ajt)

∏d

j=1(1 + aµj
t)

)

,

where Ni = {j < µi, j 6= µl∀l}. (Let us remark that Nλ =
⋃

Ni × {i}.) In this latter
determinant carry out the following column transformations: add aµd

times the j − 1st column
to the jth one for j = d, d− 1, . . . , 2 (in this order). Then—keeping in mind that
∏

Ni
(1 + ajt)

∏d

j=i(1 + aµj
t)

∣
∣
∣
v
+ aµd

∏

Ni
(1 + ajt)

∏d

j=i(1 + aµj
t)

∣
∣
∣
v−1

=
(1 + aµd

t)
∏

Ni
(1 + ajt)

∏d

j=i(1 + aµj
t)

∣
∣
∣
v
=

∏

Ni
(1 + ajt)

∏d−1
j=i (1 + aµj

t)

∣
∣
∣
v
,

we get the matrix
(∏

Nd
(1+ajt)

(1+aµd t)

∣
∣
∣
λ1

0

∗

)

,

where the bottom right d− 1 by d− 1 matrix is exactly the one whose determinant is

∆λ\{λ1}(c
(d−1), . . . , c(1)).

The top left entry is exactly the resultant of the enumerator and the denominator, so it is
∏

Nd
(aj − aµd

). So either going on with similar column transformations or by induction we get

d∏

i=1

∏

j∈Ni

(aj − aµi
),

which is e(λ), what we wanted to prove.

Now we prove the homogeneous equations, that is if codimΣλ = |λ| ≥ codimΣη′ = |λ′|,
λ 6= λ′ then applying j∗λ′ to the formula in the theorem yields 0. Let the strict partition
assigned to λ and λ′ be µ and µ′ respectively. We will use the following index sets

T0 := {µ′
l|µ

′
l < µ1} S0 := {j < µ1} \ T0

T1 := {µ′
l|µ1 ≤ µ′

l < µ2} S1 := {µ1 ≤ j < µ2} \ T1
...

...
Td := {µ′

l|µd ≤ µ′
l} Sd := {µd ≤ j} \ Td

Applying j∗λ′ to the formula in the theorem we get

∆λ

(S0T0S1T1 · · ·Sd−1Td−1

T0T1 · · ·Td

,
S0T0S1T1 · · ·Sd−2Td−2

T0T1 · · ·Td

, . . . ,
S0T0

T0T1 · · ·Td

)

=

∆λ

(S0S1 · · ·Sd−1

Td

,
S0S1 · · ·Sd−2

Td−1Td

, . . . ,
S0

T1T2 · · ·Td

)

,
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where for simplicity instead of
∏

j∈J(1 + ajt) we only wrote J in the formulas.

Now we are going to apply column operations as earlier: adding ai times the v−1st column to
the vth one. First do it with the greatest index element of Td and v = d, d−1, . . . , 2. Then with
the next ai in Td and v = n, n−1, . . . , 3, and so on. Keeping our eyes on how the entries change
(see in the first part of the proof) wee see that in the first row there will be no denominators

after the |Td|
th element. The degree of the enumerator will be

∑d−1
i=0 |Si| = λ1 − 1 + |Td|. After

the |Td|
th element we have to take the (at least) λ1+ |Td|

th coefficient. So, we see that after the
|Td|

th element we actually get 0.
Now forget the first |Td| column, and consider only the rest. Here the ai’s from Td already

disappeared. Now do the same column operations as before, but now with the elements of
|Td−1|. As above we get that after the |Td| + |Td−1|

th element (in the original matrix) in the

second row we get polynomials with degree
∑d−2

i=0 |Si| = λ2 − 2 + |Td| + |Td−1|. After the
|Td| + |Td−1|

th element we have to take at least the λ2 − 1 + |Td| + |Td−1|
th coefficients, which

are thus all zero.
Carrying out this procedure with all rows, we arrive at a matrix which is zero in the ith

row after the
∑d

j=d−i+1 |Tj |
th element. In other words, a (reflected) Young diagram is covered

from a matrix (i.e. 0’s stand there), and we would like to conclude that the determinant of the
matrix is 0. We can certainly conclude so—in the case (and only in the case) when this Young
diagram covers at least one box of the diagonal. That is, the determinant is 0 unless |Td| > 0
and |Td| + |Td−1| > 1, . . . . But if these all hold then the definitions of the index sets Ti gives
that either λ = λ′ or |λ′| > |λ|, which we wanted to prove.

Remark 5.2. The ordinary Schur polynomials can be obtained from our double Schur poly-
nomials by substituting 0 for all xi. This can be seen either from the definition (only unipotent

triangular matrices act in the target space) or from the concrete form of these polynomials. In-
terestingly enough the ordinary Schur polynomials can not be obtained directly by our method
(c.f. Remark 4.4) only via the double ones.

6. Cohomology of moduli spaces

The computation of the cohomology ring of various quotients spaces is a hot area in numerous
branches of geometry and topology, see e.g. [Kir84]. In this section we show how the theory
of Thom polynomials for group actions can be applied to this problem; and we also show how
this approach works in the case of the Grassmannians.

6.1. Obstructions as relations. Suppose that X is a G-space. Then we have a map j∗X :
H∗

G(pt) → H∗
G(X) induced by the G-equivariant map X → pt. In [FR03] we called the kernel

OX of this map the obstruction ideal of X since the elements of OX are the G-characteristic
classes which are obstructions for having a section of an X-bundle associated to a principal G-
bundle. Let us mention that obstruction ideals were first defined and computed (for Hom(V,W ),
S2V , Λ2V representations) by P. Pragacz, see [Pra88]. If in addition the map j∗X is surjective,
then the generators of H∗

G(pt) are generators for the ring H∗
G(X), too and the elements of OX

are the relations for H∗
G(X). If the G-action is free, then H∗

G(X) ∼= H∗(X/G) i.e. we calculate
the ordinary cohomology ring of the space X/G. (In this case X itself is a principal G-bundle
and elements of OX are the vanishing G-characteristic classes of X .)
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6.2. Using Thom polynomials. If there is a geometric realization of the map X → pt i.e.
a G-equivariant embedding iX : X → V into a contractible G-space V—in other words X
is an invariant subset of a representation of G—then we can use Thom polynomial methods
to generate OX : It is easy to see that Thom polynomials of orbits outside of X are in OX .
However we have to extend the definition for the case where continuous families of orbits occur.

6.3. Thom polynomials for moduli.

Definition 6.1. A G-invariant stratification Ξ of V is called a Vassiliev stratification if for
every S ∈ Ξ the projection p : S → S/G = M is a fiber bundle over the manifold M .

If M has positive dimension we call it moduli space. Suppose now that p : S → S/G = M
is a complex algebraic map and the manifold M admits a complex algebraic cell stratification
C = {Ci} (i.e. the cells Ci are complex submanifolds and their closures are complex algebraic
varieties). Since in this case the G-invariant subsets p−1(C̄i) ⊂ V are also complex algebraic
varieties they have Thom polynomials ([FR03]) and we can define a homomorphism:

Definition 6.2. The Thom polynomial map TpM : H∗(M) → H∗+d
G (pt) is defined by

TpM([Ci]) := Tp
(
p−1(Ci)

)
,

where [Ci] denotes the cohomology class defined by the cell Ci in the cellular cohomology of the
cell decomposition C.

Remark 6.3. In general M doesn’t have a complex cell decomposition. Then take any cell
decomposition C = {Ci} which is a stratification of M at the same time. Extend this strati-
fication into a strict Vassiliev stratification Ξ of V (i.e. we additionally assume that for every
S ∈ Ξ the manifold S/G is contractible). Then we have a map from the group of cellular

cochains C∗(C) to E0,∗+d
1 of the Kazarian spectral sequence of Ξ (i.e. the cohomology spectral

sequence of the induced filtration, see [Kaz97]). If this map is a cochain map (see Example

6.5 for a counterexample) then it induces a map H∗(M) → E0,∗+d
2 . Composing with the edge

homomorphism we can define TpM .

Examples 6.4. In the following cases the Thom polynomial map can be defined:

(i) Let V = Hom(Cn,Cn) as in Section 4 but restrict the action to the subgroup ❅ (n). The
orbit of a map ϕ ∈ V is determined by the image of the standard flag. So a natural
stratification of V is V =

⋃
Sλ where Sλ = {ϕ ∈ V : dimϕ(Ci) = λi}. The moduli space

Sλ/❅ (n) is a partial flag manifold Flλ(C
n). In particular the moduli space corresponding

to the open stratum is the full flag manifold Fl(Cn).
We can see that the orbits of ❅ (n)×❅ (n) correspond to the Schubert cells of Flλ(C

n)
so not only they give a complex algebraic cell stratification but we can calculate their
Thom polynomials by restricting the ❅ (n)× ❅ (n) Thom polynomials to H∗

❅ (n)
(pt). In

other words we substitute yi = 0 into the ❅ (n)× ❅ (n) Thom polynomials.
This method can be generalized: Whenever we can enlarge the the symmetry group

such that the moduli space becomes the union of finitely many orbits of the larger group
we have a chance to calculate TpM . In an ideal situation the orbit decomposition defines
a complex algebraic cell stratification of M .
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(ii) Let V = Hom(Cd,Cn) as in Section 5 but restrict the action to the subgroup GL(d).
The orbit of a map ϕ ∈ V is determined by the image Im(ϕ). So a natural stratifi-
cation of V is V =

⋃
Σi where Σi = {ϕ ∈ V : dim ker(ϕ) = i}. The moduli space

Σi/GL(d) ∼= Grd−i(C
n). Again the Schubert cells give a complex algebraic cell stratifica-

tion and the Thom polynomial maps can be calculated by restricting the GL(d)× ❅ (n)
Thom polynomials calculated in Section 4.

(iii) Generalizing case (i) let V = V (Q) be a quiver representation of An-type (see [FR02])
and forget the action on the last vertex space Cdn . Then the moduli spaces are partial
flag manifolds as in (i) but the moduli space corresponding to the open stratum is also
a partial flag manifold. Now if we enlarge the symmetry group by letting ❅ (dn) act on
the last vertex space Cdn then we get a situation analogous to case (i). (Notice that if
we forget the action on the last vertex space of a representation finite quiver different
from An then the moduli spaces are not compact and don’t admit complex algebraic cell
stratifications.)

Example 6.5. This example shows how bad the situation can be even in a very simple case.
Let G = GL(1) acting on V = C2 by ρ(α) =

(
α

α−1

)
. There are three exceptional orbits: the

zero orbit, ηx = {(x, y) : x 6= 0, y = 0} and ηy = {(x, y) : y 6= 0, x = 0}. And there are the
orbits ηc = {(x, y) : xy = c} for c 6= 0. So a Vassiliev stratification can be 0, ηx, ηy, S = ∪ηc. The
moduli space S/G ∼= C× has a cell stratification C0 = C \ [0,∞), C1 = (0,∞). Though C1 is a
cocycle in the cellular cochain complex and [C1] generates H

1(M) ∼= Z but δ1p
−1(C1) = ηx−ηy

in the Vassiliev complex (E0,∗
1 , δ1). So it cannot have a Thom polynomial. (It is easy to construct

a transversal section s of the trivial C2-bundle over the two-torus T 2 such that [s−1(C1)] is not
zero in H1(T 2). On the other hand for a trivial bundle any Thom polynomial has to be zero.)
It might be tempting to ask what is the Thom polynomial of a circle around 0 in M , but it
represents 0 ∈ H1(M) so its Thom polynomial has to be zero by trivial reasons.

6.4. Surjectivity. As we mentioned at the beginning of the section, surjectivity of the map
j∗X : H∗

G(pt) → H∗
G(X) is an essential step in calculating H∗

G(X). Using the Thom polynomial
map we can prove surjectivity for the zero codimensional moduli space in cases of Examples
6.4:

Proposition 6.6. Suppose that for an open and G-invariant X ⊂ V the G-action on X is free
and M = X/G admits a complex algebraic cell stratification. Then the map j∗X : H∗

G(pt) →
H∗

G(X) ∼= H∗(M) is surjective.

Proof. E = X ×G V has a tautological section which is transversal since X is an open sub-
set of V (notice that transversality will fail for higher codimensional moduli). It shows that
TpM(α)(E) = j∗X(TpM(α)) = α, i. e. TpM is a left inverse to j∗X .

Remark 6.7. The proof of Proposition 6.6 also shows that in the Grassmannian Grn(C
n+k) the

Poincaré dual [σλ] of the Schubert variety σλ is equal to ∆λ(c1, . . . , cn) where ci are the Chern
classes of the universal Cn-bundle over Grn(C

n+k), so we gave an independent proof of the
classical Schubert calculus. Similarly the single Schubert polynomials Schubertπ(x1, . . . , xn)—
when we substitute yi = 0 into the double Schubert polynomials—expresses the Poincaré duals
of the Schubert varieties σπ of the flag manifold Fl(Cn) in terms of xi = c1(Li) where Li is the
ith tautological line bundle over the flag manifold.
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6.5. Cohomology of the Grassmannian. According to Section 5 we can calculate the Thom
polynomial maps for Example 6.4.(ii):

TpMr
(σλ′) = ∆λ(r,λ′)|{xi=0}.

As we mentioned, all Thom polynomials coming from the higher codimensional moduli are
relations for H∗(M0). In fact, Thom polynomials of M1 already generate the ideal of relations
O(M0):

Theorem 6.8. For any 0 < d ≤ n

H∗(M0) ∼= ImTpM0
/ ImTpM1

.

Proof. There are well known descriptions of the ideal I for which H∗(M0) = C[c1, . . . , cd]/I,
see e.g. [FP89, p.27.]. One such is I = ⊕λ6⊂(n−d)dZ∆λ(1/c). Another is I = (∆(n−d+i)(1/c)|i =
1, . . . , d) (ideal generators). What we have to prove is that I is also equal to J := (∆λ(1/c)|λ ⊂
(n−d+1)d, λ1 = n−d+1). According to the first description of I clearly J ⊂ I. To prove the
converse (either apply a Lagrange expansion corresponding to appropriate columns or) observe
that ∆n−d+i,1j = ∆n−d+i−1∆1j+1 −∆n−d+i−1,1j+1 which, by induction, gives that ∆n−d+i,1j(1/c)
is in J for all i ≥ 1 and j ≥ 0. [Observe that this way we can obtain an even more economical
ideal generator system for I, namely ∆(n−d+1,1i)(1/c), i = 0, . . . , d− 1.]

Remark 6.9. In [Kir92, Prop.1.] Kirwan establishes a method for finding generators of the
relation ideal Ker j∗X of a moduli space X/G. So it would be tempting to use the Kirwan-basis
method here to prove Theorem 6.8 instead of using that we know a generator system for the
Grassmannian. But the calculations turned out to be quite complicated.

Remark 6.10. In [BF99] there is a different description of the double Schubert polynomials.
They use the quiver representation G(Q) = X

n
i=1GL(i)× X

1
i=nGL(i) acting on

V (Q) =

n−1⊕

i=1

Hom(Ci,Ci+1)⊕ Hom(Cn,Cn)⊕

1⊕

i=n−1

Hom(Ci+1,Ci).

Looking at the map V = Hom(Cn,Cn) → V (Q) we can see that the the two methods should
give the same result.

Remark 6.11. It would be interesting to find analogues of Theorem 6.8 for the flag manifold
(Example 6.4 (i)), for partial flags (Example 6.4(iii)), for analogues where GL(n) is replaced
by different complex simple groups and for real Grassmannians and flag manifolds.
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