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Abstract. We consider the cotangent bundle T ∗Fλ of a GLn partial flag variety, λ = (λ1,
. . . , λN ), |λ| =

∑
i λi = n, and the torus T = (C×)n+1 equivariant K-theory algebra

KT (T
∗Fλ). We introduce K-theoretic stable envelope maps Stabσ :

⊕
|λ|=nKT ((T

∗Fλ)
T )→⊕

|λ|=nKT (T
∗Fλ), where σ ∈ Sn. Using these maps we define a quantum loop algebra ac-

tion on
⊕

|λ|=nKT (T
∗Fλ). We describe the associated Bethe algebra Bq(KT (T

∗Fλ)) by

generators and relations in terms of a discrete Wronski map. We prove that the limiting
Bethe algebra B∞(KT (T

∗Fλ)), called the Gelfand-Zetlin algebra, coincides with the alge-
bra of multiplication operators of the algebra KT (T

∗Fλ). We conjecture that the Bethe
algebra Bq(KT (T

∗Fλ)) coincides with the algebra of quantum multiplication on KT (T
∗Fλ)

introduced by Givental and Lee [G, GL].
The stable envelope maps are defined with the help of Newton polygons of Laurent poly-

nomials representing elements of KT (T
∗Fλ) and with the help of the trigonometric weight

functions introduced in [TV1, TV3] to construct q-hypergeometric solutions of trigonometric
qKZ equations.

The paper has five appendices. In particular, in Appendix 5 we describe the Bethe algebra
of the XXZ model by generators and relations.
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1. Introduction

In [MO], Maulik and Okounkov study the classical and quantum equivariant cohomology
of Nakajima quiver varieties for a quiver Q. They construct a Hopf algebra YQ, the Yangian
of Q, acting on the cohomology of these varieties, and show that the associated Bethe
algebra Bq acting on the cohomology of these varieties coincides with the algebra of quantum
multiplication. The construction of the Yangian and the Yangian action is based on the
notion of the stable envelope maps introduced in [MO]. In this paper we construct the
analog of the stable envelope maps for the equivariant K-theory algebras of the cotangent
bundles of the GLn partial flag varieties.

Let T ∗Fλ be the cotangent bundle of a GLn partial flag variety Fλ, λ = (λ1, . . . , λN),
|λ| =

∑
i λi = n. We consider the torus T = (C×)n+1 equivariant K-theory algebra

KT (T
∗Fλ) and introduce K-theoretic stable envelope maps Stabσ :

⊕
|λ|=nKT ((T

∗Fλ)
T ) →⊕

|λ|=nKT (T
∗Fλ), where (T

∗Fλ)
T ⊂ T ∗Fλ is the torus fixed point set and σ is an element of

the symmetric group Sn. We describe the composition maps Stab−1
σ′ ◦ Stabσ in terms of the

standard glN trigonometric R-matrix. Using these maps we define a quantum loop algebra
action on

⊕
|λ|=nKT (T

∗Fλ). We describe the associated Bethe algebra Bq(KT (T
∗Fλ)) by

generators and relations in terms of a discrete Wronski map. We prove that the limiting
Bethe algebra B∞(KT (T

∗Fλ)), called the Gelfand-Zetlin algebra, coincides with the algebra
of multiplication operators of the algebra KT (T

∗Fλ). We conjecture that the Bethe algebra
Bq(KT (T

∗Fλ)) is isomorphic to the algebra of quantum multiplication on KT (T
∗Fλ) intro-

duced by Givental and Lee [G, GL]. That conjecture is the K-theoretic analog of the main
theorem in [MO] that describes the quantum multiplication.

In [MO], the stable envelope maps for equivariant cohomology of Nakajima varieties are
defined axiomatically and then the uniqueness and existence are proved. Our definition
of K-theoretic stable envelope maps for the cotangent bundles of partial flag varieties is
also axiomatic and then we also prove the uniqueness and existence. The difference with
axioms in [MO] is that we do not consider the supports of the stable envelope maps and
we replace the notion of the degree of a polynomial with the notion of the Newton polygon
of a Laurent polynomial. Another difference with [MO] is that we prove the existence by
giving an explicit formula for the stable envelope maps. The formula for the stable envelope
maps is given in terms of the trigonometric weight functions introduced in [TV1, TV3] to
construct q-hypergeometric solutions of the trigonometric qKZ equations. The arguments
of the weight functions in [TV1, TV3] are h, z1, . . . , zn, ti,j, where h is the parameter of
the quantum loop algebra, z1, . . . , zn are positions of sites in the associated XXZ model and
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ti,j are the integration variables in the q-hypergeometric integrals. Another interpretation
of the variables ti,j in [TV1, TV3] is that they are variables in the Bethe ansatz equations
associated with the XXZ model. In this paper, the arguments h, z1, . . . , zn are interpreted
as the equivariant parameters corresponding to the torus T and the arguments ti,j are
interpreted as the Chern roots of the associated bundles over Fλ. This correspondence
between the variable in the Bethe ansatz equations and the Chern roots is the indication of
a K-theoretic Landau-Ginzburg mirror correspondence.

The paper is organized as follows. In Section 2, we introduce our geometric objects: cotan-
gent bundles of partial flag varieties, the torus action, the equivariant K-theory algebras. In
Section 3, we formulate axioms defining certain classes κσ,I ∈ KT (T

∗Fλ) and formulate The-
orem 3.1 that such classes exist and are unique. The classes κσ,I are building blocks for the
K-theoretic stable envelope maps and are the main novelty objects of our paper. Theorem
3.1 is our first main result. In Section 3.2, we prove the uniqueness of the classes κσ,I . In
Section 4, we introduce the trigonometric weight functions and in Section 5 describe useful
combinatorial presentation of the weight functions as sums of ’elementary’ rational functions
assigned to certain ’filled tables’. In Section 6, we describe properties of the weight functions
and prove the existence of the classes κσ,I . In Section 7, using the classes κσ,I , we define the
stable envelope maps and describe the compositions Stab−1

σ′ ◦ Stabσ in terms of the standard
trigonometric R-matrix. In Section 8, we describe the inverse map to the stable envelope
map Stabid.

In Section 9, we consider the space (CN)⊗n ⊗ C(z1, . . . , zn, h) with an Sn-action. We
introduce the important subspace 1

D
V−⊂ (CN)⊗n⊗ C(z1, . . . , zn, h) invariant with respect

to the Sn-action. In Section 10, we define the quantum loop algebra and its commutative
Bethe subalgebra Bq depending on parameters q = (q1, . . . , qN). In Section 11, we describe
a quantum loop algebra action on 1

D
V−⊗ C(h).

In Section 12, we describe a quantum loop algebra action on
⊕

|λ|=nKT (T
∗Fλ) ⊗ C(h).

This is done through the isomorphism ν :
⊕

|λ|=nKT (T
∗Fλ) ⊗ C(h) → 1

D
V−⊗ C[z±1

1 , . . . ,

z±1
n ]⊗C(h) defined with the help of the map Stab−1

id . We describe the close relations between
our quantum loop algebra action on ⊕|λ|=nKT (T

∗Fλ)⊗C(h) and the quantum loop algebra
action studied by Ginzburg and Vasserot in [GV, Vas1, Vas2]. In Theorem 11.12, we identify
the action on KT (T

∗Fλ) of the Gelfand-Zetlin algebra B∞ and the action on KT (T
∗Fλ) of

its own elements by multiplication. This is our second main result.

In Section 13, we introduce the discrete Wronski map Wrqλ and define the associated
algebra Kq

λ by generators and relations. We describe a construction that identifies the Bethe
algebra Bq action on KT (T

∗Fλ) and the regular representation of the algebra Kq
λ. This

statement is formulated in Corollary 13.13.

In Section 13.4, we introduce a new commutative associative multiplication ∗q on KT (T
∗Fλ) ,

depending on the parameters q1, . . . , qN . In Section 13.5, we formulate Conjecture 13.15
that the new multiplication ∗q on KT (T

∗Fλ) coincides with the quantum multiplication
introduced by Givental and Lee in [G, GL]. By taking the h → 0 limit of this conjectural
statement, we formulate in Section 13.6 a conjectural description of the equivariant quantum
K-theory algebra of the partial flag variety Fλ by generators and relations.
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In Appendix 1, we show how the weight functions specialize to Grothendieck polynomials
introduced by Lascoux and Schutzenberger in [LS]. In Appendix 2, we give an interpolation
definition of the K-theory classes of Schubert varieties in the equivariant K-theory algebra
K(C×)n(Fλ) of a partial flag variety Fλ. This definition is the h → 0 limit of the definition
of the classes κσ,I ∈ KT (T

∗Fλ). In Appendix 3, we describe presentations and structure
constants of the K-theory algebras associated with the projective line. Some of them follows
from the conjecture in Section 13.5 and others are known. In Appendix 4, we give formulae
for multiplication of the classes κid,I . These formulae can be viewed as a beginning of
Schubert calculus on KT (T

∗Fλ).

In Appendix 5 we describe the Bethe algebra of the XXZ model by generators and re-
lations. In particular we show that the Bethe algebra of the XXZ model on (CN)⊗n is a
maximal commutative subalgebra of End

(
(CN)⊗n

)
.

2. Preliminaries from Geometry

2.1. Partial flag varieties. Fix natural numbers N,n. Let λ ∈ ZN
>0, |λ| = λ1 + . . . +

λN = n. Consider the partial flag variety Fλ parametrizing chains of subspaces

0 = F0 ⊂ F1 ⊂ . . . ⊂ FN = Cn

with dimFi/Fi−1 = λi, i = 1, . . . , N . Denote by T ∗Fλ the cotangent bundle of Fλ, and let
π : T ∗Fλ → Fλ be the projection of the bundle. Denote

Xn =
⨿
|λ|=n

T ∗Fλ .

Example. If n = 1, then λ = (0, . . . , 0, 1i, 0, . . . , 0), T
∗Fλ is a point and X1 is the union of

N points.

If n = 2 then λ = (0, . . . , 0, 1i, 0, . . . , 0, 1j, 0, . . . , 0) or λ = (0, . . . , 0, 2i, 0, . . . , 0). In the
first case T ∗Fλ is the cotangent bundle of projective line, in the second case T ∗Fλ is a point.
Thus X2 is the union of N points and N(N−1)/2 copies of the cotangent bundle of projective
line.

Let I = (I1, . . . , IN) be a partition of {1, . . . , n} into disjoint subsets I1, . . . , IN . Denote
Iλ the set of all partitions I with |Ij| = λj, j = 1, . . . , N .

Let ϵ1, . . . , ϵn be the standard basis of Cn. For any I ∈ Iλ, let xI ∈ Fλ be the point
corresponding to the coordinate flag F1 ⊂ . . . ⊂ FN , where Fi is the span of the standard
basis vectors ϵj ∈ Cn with j ∈ I1 ∪ . . . ∪ Ii. We embed Fλ in T ∗Fλ as the zero section and
consider the points xI as points of T ∗Fλ.

2.2. Schubert cells, conormal bundles. For any σ ∈ Sn, we consider the coordinate flag
in Cn,

V σ : 0 = V0 ⊂ V1 ⊂ . . . ⊂ Vn = Cn

where Vi is the span of ϵσ(1), . . . , ϵσ(i). For I ∈ Iλ we define the Schubert cell

Ωσ,I = {F ∈ Fλ | dim(Fp ∩ V σ
q ) = #{i ∈ I1 ∪ . . . ∪ Ip | σ−1(i) 6 q} ∀p 6 N, ∀q 6 n}.

The Schubert cell Ωσ,I is an affine space of dimension

ℓσ,I = #{(i, j) ∈ {1, . . . , n}2 | σ(i) ∈ Ia, σ(j) ∈ Ib, a < b, i > j}.
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For a fixed σ, the flag manifold is the disjoint union of the cells Ωσ,I . We have xI ∈ Ωσ,I , see
e.g. [FP, Sect.2.2].

For σ ∈ Sn, we define the geometric partial ordering on the set Iλ. For I, J ∈ Iλ, we say
that J 6g I if xJ lies in the closure of Ωσ,I .

We also define the combinatorial partial ordering. For I, J ∈ Iλ, let

σ−1
( k∪
ℓ=1

Iℓ
)
= {ak1 < . . . < akλ(k)}, σ−1

( k∪
ℓ=1

Jℓ
)
= {bk1 < . . . < bkλ(k)}

for k = 1, . . . , N − 1, where λ(k) = λ1 + . . . + λk . We say that J 6c I if bki 6 aki for k = 1,
. . . , N − 1, i = 1, . . . , λ(k).

Lemma 2.1. The geometric and combinatorial partial orderings are the same.

Proof. This is the so-called “Tableau Criterion” for the Bruhat (i.e. geometric) order, see
e.g. [BB, Theorem 2.6.3]. �

In what follows we will denote both partial orderings by 6σ.

The Schubert cell Ωσ,I is a smooth submanifold of Fλ, hence we can consider its conormal
space

CΩσ,I = {α ∈ π−1(Ωσ,I) | α(Tπ(α)Ωσ,I) = 0} ⊂ T ∗Fλ .

The conormal space CΩσ,I is the total space of a vector subbundle of T ∗Fλ over Ωσ,I . The
rank of this subbundle is dimFλ − dimΩσ,I . Hence, as a manifold CΩσ,I is an affine cell of
dimension dimFλ. In particular, the dimension is independent of σ, I. Define

(2.1) Slopeσ,I =
∪

J6σI

CΩσ,J .

2.3. Equivariant K-theory. The diagonal action of the torus (C×)n on Cn induces an
action on Fλ, and hence on the cotangent bundle T ∗Fλ .

Remark. One may use this action to give an equivalent (“unstable submanifold”) definition
of the spaces CΩσ,I of the last section. Namely x ∈ CΩσ,I if and only if

lim
z→0

(z−σ(1), z−σ(2), . . . , z−σ(n)) · x = xI ,

cf. [MO, Section 3.2.2].

We extend this (C×)n-action to the action of T = (C×)n ×C× so that the extra C× acts
on the fibers of T ∗Fλ → Fλ by multiplication.

We consider the equivariant K-theory algebras KT (T
∗Fλ) and

(2.2) KT (Xn) =
⊕

|λ|=n

KT (T
∗Fλ).

Our general reference for equivariant K-theory is [ChG, Ch.5].

Denote Sλ = Sλ1×. . .×SλN
the product of symmetric groups. Consider variables Γi = {γi,1,

. . . , γi,λi
}, i = 1, . . . , N . Let Γ = (Γ1 ; . . . ; ΓN). The group Sλ acts on the set Γ by permuting

the variables with the same first index. Let C[Γ±1] be the algebra of Laurent polynomials
in variables γi,j and C[Γ±1 ]Sλ the subalgebra of invariants with respect to the Sλ-action.
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Consider variables z = {z1, . . . , zn} and h. The group Sn acts on the set z by permutations.
Let C[z±1, h±1 ] be the algebra of Laurent polynomials in variables z, h and C[z±1, h±1 ]Sn

the subalgebra of invariants with respect to the Sn-action. We have

(2.3) KT (T
∗Fλ) = C[Γ±1 ]Sλ⊗ C[z±1, h±1 ]

/⟨
f(Γ) = f(z) for any f ∈ C[z±1]Sn

⟩
.

Here γi,j correspond to (virtual) line bundles also denoted by γi,j with

λi⊕
j=1

γi,j = Fi/Fi−1

while za and h correspond to the factors of T = (C×)n × C×.

The algebra KT (T
∗Fλ) is a module over KT (pt ;C) = C[z±1, h±1 ].

Example. If n = 1, then

KT (X1) =
N⊕
i=1

KT (T
∗F(0,...,0,1i,0,...,0))

is naturally isomorphic to CN⊗C[z±1
1 , h±1] with the basis vi = (0, . . . , 0, 1i, 0, . . . , 0) , i = 1,

. . . , N .

2.4. Fixed point sets. The set (T ∗Fλ)
T of fixed points of the torus T action is (xI)I∈Iλ .

We have
(Xn)

T = X1 × . . .×X1.

The algebra KT

(
(Xn)

T
)
is naturally isomorphic to (CN)⊗n⊗C[z±1, h±1 ] . This isomorphism

sends the identity element 1I ∈ KT (xI) to the vector

(2.4) vI = vi1 ⊗ . . .⊗ vin ,

where ij = k if j ∈ Ik . We denote by (CN)⊗n
λ the span of {vI | I ∈ Iλ}.

2.5. Equivariant localization. Consider the equivariant localization map

(2.5) Loc : KT (T
∗Fλ) → KT ((T

∗Fλ)
T ) =

⊕
I∈Iλ

KT (xI)

whose components are the restrictions to the fixed points xI . Namely, the I-component
LocI of this map is the substitution

(2.6) {γk,1, . . . ,γk,λk
} 7→ {za | a ∈ Ik} for all k = 1, . . . , N .

Equivariant localization theory (see e.g. [ChG, Ch.5], [RoKu, Appendix]) asserts that Loc is
an injection of algebras. Moreover, an element of the right-hand side is in the image of Loc
if the difference of the I-th and si,j(I)-th components is divisible by 1− zi/zj in C[z±1, h±1 ]
for all I ∈ Iλ and i, j ∈ {1, . . . , n}. Here si,j(I) is the partition obtained from I by switching
the numbers i and j.

Let C(z, h) be the algebra of rational functions in z1, . . . , zn, h. The map

(2.7) Loc : KT (Fλ)⊗ C(z, h)
∼=−−−→ ⊕I∈IλKT (xI)⊗ C(z, h)

is an isomorphism.
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2.6. K-theory fundamental class of Ωσ,I at xI. Define the following classes

(2.8) ehorσ,I,+ =
∏
k<l

∏
σ(a)∈Ik

∏
σ(b)∈Il
b<a

(1− zσ(a)/zσ(b)) , ehorσ,I,− =
∏
k<l

∏
σ(a)∈Ik

∏
σ(b)∈Il
b>a

(1− zσ(a)/zσ(b)) ,

(2.9) evertσ,I,+ =
∏
k<l

∏
σ(a)∈Ik

∏
σ(b)∈Il
b>a

(1−hzσ(b)/zσ(a)) , evertσ,I,− =
∏
k<l

∏
σ(a)∈Ik

∏
σ(b)∈Il
b<a

(1−hzσ(b)/zσ(a)) ,

in KT (xI) = C[z±1, h±1 ] . We also set eσ,I = ehorσ,I,− e
vert
σ,I,− .

Recall that if C× acts on a line C by α · x = αrx, then the C×-equivariant Euler class
of the line bundle C→ {0} is e(C→ {0}) = 1− zr ∈ KC×(point) = C[z±1]. Thus standard
knowledge on the tangent bundle of flag manifolds imply that

(2.10) e(TΩσ,I |xI
) = ehorσ,I,+ , e(ν(Ωσ,I ⊂ Fλ)|xI

) = ehorσ,I,− ,

where ν(A ⊂ B) means the normal bundle of a submanifold A in the ambient manifold B,
and ξ|x means the restriction of the bundle ξ over the point x in the base space. Therefore
we also have

e(CΩσ,I |xI
) = evertσ,I,+ , e((π−1(Ωσ,I)− CΩσ,I)|xI

) = evertσ,I,− ,

where CΩσ,I and π−1(Ωσ,I) are considered bundles over Ωσ,I . Now consider CΩσ,I as a(n
open) submanifold of T ∗Fλ . Then we obtain

(2.11) e(ν(CΩσ,I ⊂ T ∗Fλ)|xI
) = ehorσ,I,− e

vert
σ,I,− = eσ,I .

3. Axiomatic definition of the κσ,I classes

3.1. Main result. In this section we phrase a theorem that axiomatically defines some
special classes in KT (Fλ).

Define the polarization of σ ∈ Sn , I ∈ Iλ , to be

(3.1) Pσ,I =
∏
k<l

∏
σ(a)∈Ik

∏
σ(b)∈Il
b>a

(
−zσ(b)/zσ(a)

)
.

Observe that Pσ,I is an invertible element of KT (xI). It is the inverse of the “top” term of
ehorσ,I,−. In particular, the number of −zσ(b)/zσ(a) factors is the codimension of Ωσ,I in Fλ, see
(2.10). The quantity

(3.2) Pσ,I eσ,I =
∏
k<l

∏
σ(a)∈Ik

( ∏
σ(b)∈Il
b<a

(1− hzσ(b)/zσ(a))
∏

σ(b)∈Il
b>a

(1− zσ(b)/zσ(a))
)

will play a role below.

For a Laurent polynomial f ∈ C[z±1] let N(f) ⊂ Rn be the Newton polygon of f , that is
the convex hull of the points m ∈ Zn ⊂ Rn such that the coefficient of

∏
zma
a in f is not 0.

For I ∈ Iλ, consider the linear map φI : Rn → R defined by

φI(ϵa) = k if a ∈ Ik.
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We will study the convex set (closed interval) φI(N(f)) ⊂ R for certain f ’s. For example
φ({1},{2})(N(1− z2/z1)) = [0, 1]. Observe that

(3.3) φI(N(Pσ,I eσ,I)) =
[
0 ,

∑
16k<l6N

λkλl (l − k)
]

is independent of σ and I; it only depends on λ. Define an element f ∈ KT (xI) to be I-small
if

(3.4) φI(N(f)) ⊂
[
0 ,

∑
16k<l6N

λkλl (l − k)− 1
]
.

Note that in our Newton polygon considerations h ∈ KT (xI) is considered a constant, not a
variable.

Theorem 3.1. Let n,N,λ be as above, and σ ∈ Sn . Then for any I ∈ Iλ , there exists a
unique element κσ,I ∈ KT (T

∗Fλ) satisfying the following conditions:

(I) κσ,I |xJ
is divisible by evertσ,J,− for all J ;

(II) κσ,I |xI
= Pσ,I eσ,I ;

(III) κσ,I |xJ
is J-small if J ̸= I.

Remark. From the proof of Theorem 3.1 it will turn out that the condition

(0) κσ,I |xJ
= 0 if J ̸6σ I

also holds. Condition (0) together with property (I) is a “localized” version of the statement

(I′) κσ,I is supported on Slopeσ,I .

Indeed, if a class is supported on Slopeσ,I then (0) and (I) follow, see Section 2.6. Condition
(I′) appeared in [MO] and [RTV].

First we prove uniqueness in Section 3.2 following the arguments of [MO] in which we
replace the property of smallness of the degrees of restrictions κσ,I |xJ

by the smallness of
their Newton polygons N(κσ,I |xJ

).
One novelty of our treatment is that our axioms (I)-(III) are all local properties of κσ,I

(unlike (I′)). That is, they are properties of fix point restrictions. Another key novelty of our
treatment is Section 6.3 where we will show existence by giving a formula for κσ,I . Moreover,
this formula for κσ,I is a version of the trigonometric weight functions that had appeared in
[TV1] – [TV3] in hypergeometric solutions of qKZ equations.

3.2. Proof of uniqueness in Theorem 3.1. Suppose κσ,I and κ′σ,I both satisfy the con-
ditions. Let ω be their difference.

Refine the partial order 6σ to a total order ≼ on Iλ.
Assume ω ̸= 0. Since the Loc map of Section 2.5 is injective there is at least one J ∈ Iλ

such that the restriction ω|xJ
̸= 0. Let J be the ≼-largest such element of Iλ.

We claim that ω|xJ
is

• J-small,
• divisible by evertσ,J,− ,

• divisible by ehorσ,J,− .
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The first two properties follow explicitly from conditions (I), (II), (III).
To prove the third property choose a pair a < b such that σ(a) ∈ Jk, σ(b) ∈ Jl and k < l.

Let U = sσ(a),σ(b)(J) ∈ Iλ. From the definition of 6σ it follows that J <σ U and hence
J ≺ U . The choice of J implies that ω|xU

= 0. Differences of components of the Loc
map satisfy divisibility conditions, see Section 2.5, hence we obtain that ω|xJ

is divisible by
1 − zσ(a)/zσ(b). This argument holds for all a, b with σ(a) ∈ Jk, σ(b) ∈ Jl, k < l hence we
proved the third claim.

A Laurent polynomial divisible by evertσ,J,− and ehorσ,J,− must be divisible by their product too.

Comparing (3.3) and (3.4) we see that a J-small class divisible by eσ,J = ehorσ,J,−e
vert
σ,J,− must

be 0. Hence ω|xJ
is 0. This is a contradiction, which proves that ω = 0.

4. Trigonometric weight functions

4.1. Definition. Let n,N ∈ Z>0 and let λ ∈ ZN
>0 be such that

∑N
k=1 λk = n. Set λ(k) = λ1+

. . .+ λk for k = 0, . . . , N and λ{1} = λ(1) + . . .+ λ(N−1) .

Recall that the set of partitions I = (I1, . . . , IN) of {1, . . . , n} with |Ik| = λk is denoted

by Iλ. For I ∈ Iλ we will use the notation
∪k

a=1 Ia = {i
(k)
1 < . . . < i

(k)

λ(k)}.

Consider variables t
(k)
a for k = 1, . . . , N , a = 1, . . . , λ(k), where t

(N)
a = za, a = 1, . . . , n.

Denote t(j) = (t
(j)
k )k6λ(j) and t = (t(1), . . . , t(N−1)).

For I ∈ Iλ, define the trigonometric weight function

(4.1) WI(t,z, h) = (1− h)λ{1}
Sym t(1) . . . Sym t(N−1) UI ,

where

(4.2) UI =
N−1∏
k=1

λ(k)∏
a=1

( λ(k)∏
c=1

i
(k+1)
c <i

(k)
a

(
1− ht(k+1)

c /t(k)a

) λ(k)∏
c=1

i
(k+1)
c >i

(k)
a

(
1− t(k+1)

c /t(k)a

) λ(k)∏
b=a+1

1− ht(k)b /t
(k)
a

1− t(k)b /t
(k)
a

)
,

and Sym t(k) is the symmetrization with respect to the variables t
(k)
1 , . . . , t

(k)

λ(k) ,

Sym t(k) f
(
t
(k)
1 , . . . , t

(k)

λ(k)

)
=

∑
σ∈S

λ(k)

f
(
t
(k)
σ(1), . . . , t

(k)

σ(λ(k))

)
.

The trigonometric weight functions are Laurent polynomials in the t,z, h variables since the

factors 1− t(k)b /t
(k)
a in the denominator cancel out in the symmetrization.

For σ ∈ Sn and I ∈ Iλ, define the trigonometric weight function

(4.3) Wσ,I(t,z, h) = Wσ−1(I)(t, zσ(1), . . . , zσ(n), h) ,

where σ−1(I) =
(
σ−1(I1), . . . , σ

−1(IN)
)
. Hence, WI = Wid,I .

Remark. The weight functions were described in [TV1] to solve the qKZ equations and
describe eigenvectors of the Hamiltonians of the XXZ-type integrable models. Namely, the
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(CN)⊗n
λ -valued solutions of the qKZ equations have the form

I(z) =

∫
Φ(t,z, h)

∑
I∈Iλ

Wid,I(t,z, h) vI dt

where Φ(t,z, h) is a suitable scalar (master) function. If t satisfies Bethe ansatz equations,
the vector

∑
I∈IλWid,I(t, z, h) vI becomes an eigenvector of the Hamiltonians of the XXZ-

type model. Convenient formulae for the weight functions were suggested in [TV3]. The
weight functions Wid,I , I ∈ Iλ , in this paper are Laurent polynomials. They differ from the
corresponding weight functions in [TV3], that are rational functions, by a common factor
independent of I .

4.2. Remarks. In this subsection we first give an alternative formula for the weight function,
and then define two modified versions. Strictly speaking none of these are necessary in the
rest of the paper, they just help the reader to get familiar with weight functions.

Consider variables u
(k)
a for k = 1, . . . , N , a = 1, . . . , λ(k). Define

U ′
I =

N−1∏
k=1

λ(k)∏
a,b=1

(
1− t(k)a /u

(k)
b

)−1 ×

×
N−1∏
k=1

λ(k)∏
a=1

( λ(k)∏
c=1

i
(k+1)
c <i

(k)
a

(1− hu(k+1)
c /u(k)a )

λ(k)∏
c=1

i
(k+1)
c >i

(k)
a

(1− u(k+1)
c /u(k)a )

λ(k)∏
b=a+1

1− hu(k)b /u
(k)
a

1− u(k)a /u
(k)
b

)
.

Replace in U ′ each variable u
(N)
a with za, a = 1, . . . , n. The obtained function U ′′ depends

on the variables t,z, h and u
(k)
a , k = 1, . . . , N − 1, a = 1, . . . , λ(k).

Theorem 4.1. We have

(4.4) WI(t, z, h) = (h− 1)λ
{1}

Res
(
U ′′
I ·

N−1∏
k=1

λ(k)∏
a=1

du(k)a /u(k)a

)
,

where Res is the iterated application of the Res
u
(k)
a =0

+Res
u
(k)
a =∞ operations for all k = 1,

. . . , N − 1, a = 1, . . . , λ(k) (in arbitrary order).

Proof. Consider the right-hand side of (4.4). Applying the Residue Theorem for each u
(k)
a ,

we obtain that this is equal to

(h− 1)λ
{1}

(−1)λ{1} ∑
σ1,...,σN−1

Res
u
(k)
a =t

(k)
σ(a)

(
U ′′
I ·

N−1∏
k=1

λ(k)∏
a=1

du(k)a /u(k)a

)
,

where σk is a map {1, . . . , λ(k)} → {1, . . . , λ(k)} for each k. First observe that the term
corresponding to σ1, . . . , σN−1 is zero unless each of the σk’s are permutations — this is

essentially due to the factors (1−u(k)a /u
(k)
b ) in the numerator of U ′

I . The term corresponding
to permutations σk are exactly the analogous terms in the definition of weight functions. �

The following modified version of weight functions are sometimes useful.
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Definition. For λ ∈ ZN
>0 define q(λ) to be the greatest q with λq > 0. Let M1WI be

obtained from WI by substituting t
(k)
i = zi for all k > q(λ) and all i .

Definition. Consider variables γk,a for k = 1, . . . , q(λ) − 1, a = 1, . . . , λk. Let M2WI be
obtained from M1WI by carrying out the substitution

(t
(k)
1 , . . . , t

(k)

λ(k)) 7→ (γ1,1, . . . , γ1,λ1 , γ2,1, . . . , γ2,λ2 , . . . , γk,1, . . . , γk,λk
)

for all k < q(λ).

Here are some examples of weight functions.

• For N = 2, n = 2, λ = (1, 1), we have

W({1},{2}) = (1− h)(1− z2/t(1)1 ), W({2},{1}) = (1− h)(1− hz1/t(1)1 ).

The residue formula (4.4) gives

W({1},{2}) = (h− 1)
(
Res

u
(1)
1 =0

+Res
u
(1)
1 =∞

)( 1− z2/u(1)1

1− t(1)1 /u
(1)
1

du
(1)
1

u
(1)
1

)
,

W({2},{1}) = (h− 1)
(
Res

u
(1)
1 =0

+Res
u
(1)
1 =∞

)(1− hz1/u(1)1

1− t(1)1 /u
(1)
1

du
(1)
1

u
(1)
1

)
.

• For N = 2, λ = (1, n− 1), we have

W({i},{1,...,n}−{i}) = (1− h)
i−1∏
j=1

(1− hzj/t(1)1 )
n∏

j=i+1

(1− zj/t(1)1 ) .

• Let λ = (0, . . . , 0, 1, 0, . . . , 0, 1, 0, . . . , 0) ∈ ZN
>0, where the nonzero coordinates are at

positions i and j, i < j. The set Iλ consists of two elements

I = ({}, . . . , {}, {1}, {}, . . . , {}, {2}, {}, . . . , {}),
J = ({}, . . . , {}, {2}, {}, . . . , {}, {1}, {}, . . . , {}).

We have

M1WI = (1− h)2N−i−j(1− hz2/z1)N−j(1− hz1/z2)N−j(1− z2/t(j−1)
1 ),

M1WJ = (1− h)2N−i−j(1− hz2/z1)N−j(1− hz1/z2)N−j(1− hz1/t(j−1)
1 ),

M2WI = (1− h)2N−i−j(1− hz2/z1)N−j(1− hz1/z2)N−j(1− z2/γi,1),
M2WJ = (1− h)2N−i−j(1− hz2/z1)N−j(1− hz1/z2)N−j(1− hz1/γi,1).

• We have

M2W({1},{2},{3}) = (1− h)3 (1− z2/γ1,1)(1− z3/γ1,1)×

× (1− z3/γ2,1)(1− hz1/γ2,1)(1− hγ2,1/γ1,1) ,

although W({1},{2},{3}) does not factor into analogous simple factors.
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5. Combinatorics of terms of the weight function

In this section we show a diagrammatic interpretation of the rich combinatorics encoded
in the weight function. Let I ∈ Iλ. Consider a table with n rows and N columns. Number
the rows from top to bottom and number the columns from left to right. Certain boxes of
this table will be distinguished, as follows. In the first column distinguish boxes in the i’th
row if i ∈ I1, in the second column distinguish boxes in the i’th row if i ∈ I1 ∪ I2, etc. This
way all the boxes in the last column will be distinguished since I1 ∪ . . . ∪ IN = {1, . . . , n} .

Now we will define fillings of the tables by putting various variables in the distinguished
boxes. First, put the variables z1, . . . , zn into the last column from top to bottom. Now

choose permutations σ1 ∈ Sλ(1) , σ2 ∈ Sλ(2) , . . ., σN−1 ∈ Sλ(N−1) . Put the variables t
(k)
σk(1)

, . . . ,

t
(k)

σk(λ(k))
in the k’th column from top to bottom.

Each such filled table will define a rational function as follows. Let u be a variable in the
filled table in one of the columns 1, . . . , N − 1. If v is a variable in the next column, but
above the position of u then consider the factor 1− hv/u (‘type-1 factor’). If v is a variable
in the next column, but below the position of u then consider the factor 1 − v/u (‘type-2
factor’). If v is a variable in the same column, but below the position of u then consider the
factor (1− hv/u)/(1− v/u) (‘type-3 factor’). The rule is illustrated in the following figure.

v

u

u

v

u

v

(1− hv/u) (1− v/u) (1− hv/u)
(1− v/u)

type-1 type-2 type-3

For each variable u in the table consider all these factors and multiply them together. This
is “the term associated with the filled table”.

One sees that WI is the sum of terms associated with the filled tables corresponding to all
choices σ1, . . . , σN−1. For example, W{2},{1},{3} is the sum of two terms associated with the
filled tables

t
(2)
1 z1

t
(1)
1 t

(2)
2 z2

z3

,
t
(2)
2 z1

t
(1)
1 t

(2)
1 z2

z3

.

The term corresponding to the first filled table is hence

(1− ht(2)1 /t
(1)
1 )(1− hz1/t(2)2 )︸ ︷︷ ︸
type−1

(1− z2/t(2)1 )(1− z3/t(2)1 )(1− z3/t(2)2 )︸ ︷︷ ︸
type−2

(1− ht(2)2 )

(1− t(2)1 )︸ ︷︷ ︸
type−3

,
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and the term corresponding to the second filled table is

(1− ht(2)2 /t
(1)
1 )(1− hz1/t(2)1 )︸ ︷︷ ︸
type−1

(1− z2/t(2)2 )(1− z3/t(2)2 )(1− z3/t(2)1 )︸ ︷︷ ︸
type−2

(1− ht(2)1 )

(1− t(2)2 )︸ ︷︷ ︸
type−3

.

Note that variables in consecutive columns but in the same row do not produce a factor.

In the next section we will substitute zi’s into the t
(k)
a variables according to some rules.

Thus we obtain terms corresponding to tables filled with only za variables (no t
(k)
a ’s). If in

such a substitution we have a filled table containing
za

za

, then the term corresponding

to that table is 0. This phenomenon is behind the substitution lemmas of the next section.

6. Properties of weight functions

6.1. Substitutions. Recall that for I ∈ Iλ we use the notation ∪k
a=1Ia = {i

(k)
1 < . . . < i

(k)

λ(k)}.
For a function f(t,z, h), we denote f(zI , z, h) the substitution under

t(k)a = z
i
(k)
a

for k = 1, . . . , N, a = 1, . . . , λ(k).

For a function f(Γ,z, h), we denote f(zI ,z, h) the substitution under

{γk,a | a = 1, . . . , λk} 7→ {za | a ∈ Ik},
cf. equivariant localization in Section 2.5.

Observe that the various substitutions are set up in such a way that

WI(zJ ,z, h) =M1WI(zJ ,z, h) =M2WI(zJ ,z, h).

Define

(6.1) E(t, h) =
N−1∏
k=1

λ(k)∏
a=1

λ(k)∏
b=1

(
1− ht(k)b /t

(k)
a

)
.

Lemma 6.1. For any σ ∈ Sn and I, J ∈ Iλ, the function Wσ,I(zJ ,z, h) is divisible by
E(zJ , h) in the algebra of Laurent polynomials C[z±1, h±1 ].

Proof. For notational simplicity we consider the case σ = id. As explained in Section 5,
WI(zJ ,z, h) is the sum of terms corresponding to certain tables filled with the variables
za . Consider such a term, and the corresponding filled table. Let us fix k 6 N − 1 and
a ̸= b ∈ J1 ∪ . . .∪ Jk. In the next paragraph we will specify some positions in the filled table
that are responsible for the appearance of the factors (1− hza/zb)(1− hzb/za) in this term.
These positions will be different for different triples (k, a, b) .

Suppose za is above zb in the k-th column. Then the type-3 factor (1 − hzb/za) is the
factor of this term, because both za and zb are in the k-th column. Also, za ∈ J1 ∪ . . . ∪
Jk+1 and, hence, za is in the (k + 1)-st column as well. If our term is nonzero, then the
position of za in the (k+1)-st column is weakly above the position of za in the k-th column.
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Hence the position of za in the (k + 1)-st column is strictly above the position of zb in the

k-th column, as in the picture

za
za

zb

. Then the zb variable in the k-th column and the za

variable in the (k + 1)-st column yield the type-1 factor (1− hza/zb) .
The function E(zJ , h) is a product of factors (1− hza/zb)(1− hzb/za) for certain triples

(k, a ̸= b) , and the factor (1 − h)λ
{1}

. The argument above shows that WI(zJ ,z, h) is

divisible by the desired product of factors (1− hza/zb)(1− hzb/za) . The factor (1− h)λ{1}

is explicit in the definition of the weight functions. �
Define

(6.2) W̃σ,I(t, z, h) =
Wσ,I(t,z, h)

E(t, h)
.

The function W̃σ,I is not a Laurent polynomial in the t variables any more, but Lemma 6.1
asserts that all its zJ -substitutions are Laurent polynomials in the z, h variables.

Lemma 6.2. We have W̃σ,I(zJ ,z, h) = 0 unless J 6σ I.

Proof. If the condition J 6σ I is not satisfied, then the table of every term in Wσ,I(zJ ,z, h) =
0 contains a part described in the last paragraph of Section 5. Hence every term is 0 , yielding

Wσ,I(zJ ,z, h) = 0 and W̃σ,I(zJ ,z, h) = 0. �
Lemma 6.3. For all I, J ∈ Iλ , the function W̃σ,I(zJ ,z, h) is divisible by evertσ,J,− .

Proof. This proof is a continuation of the proof of Lemma 6.1, so, in particular, we focus on
the special case σ = id. Let us chose a ∈ Jk and b ∈ Jl with k < l , a > b. Consider again
a term in WI(zJ , z, h) and its filled table. Our goal is to specify a pair of variables in the
table that produces the 1− hzb/za factor.

From the variables za and zb only za appears in the k-th column and both of them appear
in the l-th column. We will study two cases.

Assume first that in the l-th column za is below zb . Then, in the (l− 1)-st column za is
further below the position of zb in the l-th column (otherwise the term equals 0). This pair,
za in the (l− 1)-st column and zb in the l-th column is the desired pair — they produce the
type-1 factor 1−hzb/za . This factor was not indicated and specified in the proof of Lemma
6.1.

Assume now that in the l-th column za is above zb . Since a > b , their position is reversed
in the N-th column. Hence there must exist a number s such that in the s-th column za
is above zb, and in the (s + 1)-st column za is below zb. Since za in the s-th column is
below za in the s+1-th column (otherwise the term equals 0), we have that za in the s-th
column and zb in the (s+1)-st column is the desired pair — they produce the type-1 factor
1− hzb/za .

In both cases above we found positions in the filled table which are different from positions
already “used” in the proof of Lemma 6.1. Hence we proved that 1 − hzb/za divides not

only every non-zero term of Wσ,I(zJ ,z, h) , but also W̃σ,I(zJ , z, h) . �



16 R.RIMÁNYI, V.TARASOV, A.VARCHENKO

Lemma 6.4. For I ∈ Iλ , we have W̃σ,I(zI , z, h) = Pσ,I eσ,I .

Proof. In this case only one term of the symmetrization in (4.1) is nonzero, see Section 5.
This term equals the right-hand side of the formula of the lemma. �

Recall the notion of f(z, h) being J-small from Section 3.

Lemma 6.5. For all I, J ∈ Iλ, I ̸= J , the function W̃σ,I(zJ , z, h) is J-small.

Proof. By definition we have

Wσ,I(zJ , z, h) = (1− h)λ{1} ∑
π

(∏
(a,b)

(1− hza/zb)
∏
(c,d)

(1− zc/zd)
∏
(e,f)

1− hze/zf
1− ze/zf

)
,

where the products are for certain pairs (a, b), (c, d), and (e, f), and the summation is for
an (N − 1)-tuple of permutations π = (π1, . . . , πN−1) with πk ∈ Sλ(k) . The last product can
be rewritten as ∏

(e,f)

1− hze/zf
1− ze/zf

=
∏
(e,f)

zf − hze
zf − ze

.

Denote

AI,J,π =
∏
(e,f)

(zf − hze) , BI,J,π =
∏
(e,f)

(zf − ze) , CI,J,π =
∏
(a,b)

(1− hza/zb)
∏
(c,d)

(1− zc/zd) .

Observe that AI,J,π and BI,J,π do not depend on I and for different π’s the products BI,J,π

only differ possibly by a sign. Denote AJ,π = AI,J,π and BJ = BI,J,id. Then

(6.3) BJWσ,I(zJ ,z, h) = (1− h)λ{1} ∑
π

±CI,J,πAJ,π.

If I were equal to J , then only one term of the summation is nonzero and

(6.4) BJWσ,J(zJ , z, h) = (1− h)λ{1}
CJ,J,idAJ,id.

That equation leads to the statement of Lemma 6.4. For I ̸= J , we reason as follows.

Let U1 = [m1,M1] and U2 = [m2,M2] be closed intervals with m1,m2,M1,M2 ∈ Z. For
the purpose of this proof let U1 ≪ U2 mean that U1 ⊂ [m2,M2 − 1]. Also for Laurent
polynomials f, g , let f ≪J g mean φJ(N(f))≪ φJ(N(g)).

We claim that CI,J,π ≪J CJ,J,id for all π. Indeed, let

V = {(k, a, b) | k = 1, . . . , N − 1 , a ∈ J1 ∪ . . . ∪ Jk , b ∈ J1 ∪ . . . ∪ Jk+1} ,

V1 = {(k, a, b) | k = 1, . . . , N − 1 , a ∈ J1 ∪ . . . ∪ Jk , b ∈ J1 ∪ . . . ∪ Jk+1 , a = b} ,
Then

(6.5) CJ,J,id =
∏

(k,a,b)∈V−V1

(1− hk,a,b zb/za) ,

where the factors hk,a,b equal either 1 or h depending on the subscript (k, a, b) . In other
words, all factors of the product (6.5) are either 1− zb/za or 1− hzb/za . We also have

(6.6) CI,J,π =
∏

(k,a,b)∈V−V2

(1− hk,a,b zb/za)
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with the same meaning of hk,a,b. Here V2 ⊂ V , V1 ̸= V2, and |V1| = |V2|. Therefore CI,J,π

either contains either a factor (1− za/za) = 0 or a factor (1− hza/za) = 1− h .1
If f, g are Laurent polynomials, then φJ(N(fg)) = φJ(N(f)) + φJ(N(g)), where + is

the Minkowski sum. Thus φJ(N(CI,J,π)) is the Minkowski sum of the intervals labeled by
(k, a, b) ∈ V − V2, with the vertices of the corresponding interval at 0 and φJ(N(zb/za)).

First notice that V2 − V2 ∩ V1 is not empty if J ̸= I and hence there are elements (k, a, b)
which are present in the product (6.5) but not in the product (6.6). We claim that there is
an element (k, a, b) ∈ V2−V2∩V1 with φJ(b) > φJ(a). Indeed, choose k with I1∪ . . .∪Ik+1 =
J1 ∪ . . . ∪ Jk+1, I1 ∪ . . . ∪ Ik ̸= J1 ∪ . . . ∪ Jk, and any b ∈ I1 ∪ . . . ∪ Ik − J1 ∪ . . . ∪ Jk; then
there is an a with (k, a, b) ∈ V2 − V2 ∩ V1. The appearance of a factor (1 − (h)zb/za) with
φJ(b) > φJ(a) in (6.5) but not in (6.6) proves that CI,J,π ≪J CJ,J,id.

Consider the Laurent polynomials AJ,π in equations (6.3) and (6.4). Clearly the Newton
polygon of AJ,π does not depend on π. Therefore

(1− h)λ{1} ∑
π

±CI,J,πAJ,π ≪J (1− h)λ{1}
CJ,J,idAJ,id .

Consequently, we have
Wσ,I(zJ ,z, h) ≪J Wσ,J(zJ ,z, h).

The Laurent polynomials on both sides of this relation are divisible by the same Laurent
polynomial E(zJ , h), see Lemma 6.3. Hence the same relation holds for the quotients,

W̃σ,I(zJ ,z, h)≪J W̃σ,J(zJ , z, h).

By Lemma 6.4 this means that W̃σ,I(zJ ,z, h) is J-small. �
6.2. Orthogonality. The number of inversions in an ordered sequence j1, . . . , jn is the num-

ber of pairs (a, b) with a < b, ja > jb. Let I ∈ Iλ where Ik = {i(k)1 < . . . < i
(k)
λk
} as before.

Let p(I) denote the number of inversions in the ordered sequence

IN , IN−1, . . . , I1 = i
(N)
1 , . . . , i

(N)
λN
, i

(N−1)
1 , . . . , i

(N−1)
λN−1

, . . . , i
(1)
1 , . . . , i

(1)
λ1
.

We saw in Section 2.2 that p(I) is the codimension of Ωid,I in Fλ.

Theorem 6.6. Let σ0 be the longest permutation in Sn. For J,K ∈ Iλ, we have

(6.7)
∑
I∈Iλ

hp(K)P (zI)
W̃id,J(zI ,z, h) W̃σ0,K(z

−1
I ,z

−1, h−1)

R(zI)Q(zI , h)
= δJ,K ,

where

(6.8) P (zI) = Pid,I Pσ0,I =
∏
k<l

∏
a∈Ik

∏
b∈Il

(−zb/za) ,

(6.9) R(zI) = P (zI) e
hor
id,I,+ e

hor
id,I,− =

∏
k<l

∏
a∈Ik

∏
b∈Il

(1− zb/za) ,

(6.10) Q(zI , h) = evertid,I,+ e
vert
id,I,− =

∏
k<l

∏
a∈Ik

∏
b∈Il

(1− hzb/za) ,

1A note to the experts: this observation is enough for the argument in cohomology, where J-smallness is
measured by the smallness of z-degree. In K-theory the argument of the next few sentences is needed.
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and W̃σ0,K(z
−1
I , z

−1, h−1) is the function obtained from W̃σ0,K(zI ,z, h) by the substitution
{z1, . . . , zn, h} 7→ {z−1

1 , . . . , z−1
n , h−1} ,

The proof is given in Section 7.5.

6.3. Proof of existence in Theorem 3.1. We show the existence of κσ,I by giving an
explicit formula for it.

Theorem 6.7. For any σ ∈ Sn and I ∈ Iλ, there exists a unique element [W̃σ,I ] ∈ KT (T
∗Fλ)

such that for any J ∈ Iλ we have LocJ [W̃σ,I ] = W̃σ,I(zJ , z, h). Moreover, the classes

(6.11) κσ,I = [W̃σ,I ] ∈ KT (T
∗Fλ)

satisfy conditions (I–III) of Theorem 3.1.

Proof. According to Lemma 6.1, W̃σ,I(zJ , z, h) is a Laurent polynomial for all J , and hence

(W̃σ,I(zJ ,z, h))J∈Iλ is an element of the right hand side of (2.5). We claim that it is in

the image of Loc. Consider W̃σ,I(zJ ,z, h) and W̃σ,I(zsi,j(J), z, h). The zi = zj substitution
makes these two Laurent polynomials equal. Hence their difference is divisible by 1− zi/zj.
Therefore the element [W̃σ,I ] ∈ KT (T

∗Fλ) with LocJ [W̃σ,I ] = W̃σ,I(zJ ,z, h) exists.

Properties (I) – (III) are all about restrictions of [W̃σ,I ] to fixed points xJ . Hence they are

computed by various t = zJ substitutions in W̃σ,I . Therefore, Lemmas 6.2, 6.3, 6.4 prove
properties (I), (II), (III) respectively. �

Observe that a byproduct of our proof of Theorem 3.1 and Lemma 6.2 is that conditions
(I) – (III) imply κσ,I |xJ

= 0 if J ̸6σ I.

Like in the proof above, we observe that for any σ and I , there is a unique element
[Wσ,I ] ∈ KT (T

∗Fλ) with LocJ [Wσ,I ] = Wσ,I(zJ ,z, h) for all J .

Theorem 6.8. For a fixed σ ∈ Sn,

• The set {[Wσ,I ]}I∈Iλ is a basis of the C(z, h)-module KT (T
∗Fλ)⊗ C(z, h).

• The set {κσ,I}I∈Iλ is a basis of the C(z, h)-module KT (T
∗Fλ)⊗ C(z, h).

Proof. As we claimed in Section 2.5 the map (2.7) is an isomorphism. Hence the statements
follow from the triangularity properties

LocJ [Wσ,I ] =

{
0 if J ̸6σ I

̸= 0 if J = I,
LocJ [κσ,I ] =

{
0 if J ̸6σ I

̸= 0 if J = I,

see Lemmas 6.2, 6.4. �

6.4. Recursive properties. Let λ ∈ ZN
>0 , |λ| = n. Define an action of the symmetric

group Sn on the set Iλ. Let I = (I1, . . . , IN) ∈ Iλ, where Ij = {i1, . . . , iλj
} ⊂ {1, . . . , n} .

For σ ∈ Sn , recall σ(I) = (σ(I1), . . . , σ(IN)) .

Let

(6.12) β(x1, x2, y1, y2) = Symx1,x2
(1− hy1/x2)(1− y2/x1)

1− hx2/x1
1− x2/x1

.
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It is straightforward to see that

(6.13) β(x1, x2, y1, y2) = Symy1,y2 (1− hy1/x2)(1− y2/x1)
1− hy2/y1
1− y2/y1

.

Lemma 6.9. β(x1, x2, y1, y2) is symmetric in x1, x2 and in y1, y2. �

Let sa,b ∈ Sn denote the transposition of a and b.

Theorem 6.10. Let σ ∈ Sn be such that σ(a) ∈ Ik and σ(a+ 1) ∈ Il . Then
(6.14) Wσsa,a+1,I = Wσ,I

for k = l ,

(6.15) Wσsa,a+1,I = h
1− zσ(a)/zσ(a+1)

1− hzσ(a)/zσ(a+1)

Wσ,I +
1− h

1− hzσ(a)/zσ(a+1)

Wσ, sσ(a),σ(a+1)(I)

for k < l , and

(6.16) Wσsa,a+1,I =
1− zσ(a)/zσ(a+1)

1− hzσ(a)/zσ(a+1)

Wσ,I + (1− h)
zσ(a)/zσ(a+1)

1− hzσ(a)/zσ(a+1)

Wσ, sσ(a),σ(a+1)(I)

for k > l .

Proof. By formula (4.3), it suffices to prove the statement when σ is the identity permu-
tation. Next, formula (4.2) implies that it is enough to consider only the case n = 2. To
simplify the notation, we write WI =W id,I and s = s1,2 .

Let k = l, I = (∅, . . . ,∅, {1, 2},∅, . . . ,∅) , the set {1, 2} being at the k-th place. We

compute WI starting symmetrization in formula (4.1) from t
(k)
1 , t

(k)
2 , and using formula (6.12)

and Corollary 6.9 :

WI(t, z1, z2) = (1− h)2δk,1β(t(N−1)
1 , t

(N−1)
2 , z1, z2)

N−2∏
p=k

β(t
(p)
1 , t

(p)
2 , t

(p+1)
1 , t

(p+1)
2 ) .

Hence by Corollary 6.9, we have Ws,I(t, z1, z2) = WI(t, z2, z1) = WI(t, z1, z2) .

Let k < l , I = (∅, . . . ,∅, {1},∅, . . . ,∅, {2},∅, . . . ,∅) , the sets {1} and {2} being at
the k-th and l-th places, respectively, and s(I) = (∅, . . . ,∅, {2},∅, . . . ,∅, {1},∅, . . . ,∅) .
Formula (6.15) is equivalent to the equality

(6.17) hWI(t, z1, z2) +Ws(I)(t, z1, z2) = Symz1,z2 Ws(I)(t, z1, z2)
1− hz2/z1
1− z2/z1

.

We compute the left-hand side of (6.17) starting symmetrization in formula (4.1) from

t
(l)
1 , t

(l)
2 , and using formula (6.12) and Corollary 6.9 . The result of calculation is

(1− h)δk,1 (1 + h− ht(l)1 /t
(l−1)
1 − ht(l)1 /t

(l−1)
1 )×(6.18)

× β(t(N−1)
1 , t

(N−1)
2 , z1, z2)

N−2∏
p=l

β(t
(p)
1 , t

(p)
2 , t

(p+1)
1 , t

(p+1)
2 ) .

We compute the right-hand side of (6.17) starting symmetrization from z1, z2, and using
formula (6.12) and Corollary 6.9 , and get the same answer (6.18). Formula (6.15) is proved.

The proof of formula (6.16) is similar. �
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Theorem 6.10 implies recursions for weight functions. Set

sa,a+1(z) = (z1, . . . , za−1, za+1, za, za+2, . . . , zn) .

Corollary 6.11. Suppose a ∈ Ik and a+ 1 ∈ Il . Then

(6.19) WI

(
t, sa,a+1(z)

)
= WI(t, z)

for k = l ,

(6.20) Wsa,a+1(I)(t, z) =
1− hza/za+1

1− za/za+1

WI

(
t, sa,a+1(z)

)
+ (h− 1)

za/za+1

1− za/za+1

WI(t,z)

for k < l , and

(6.21) Wsa,a+1(I)(t,z) =
1− h−1za+1/za
1− za+1/za

WI

(
t, sa,a+1(z)

)
+ (h−1− 1)

za+1/za
1− za+1/za

WI(t, z)

for k > l .

Proof. We take σ = id in Theorem 6.10 and apply formula (4.3). Then formulae (6.19),
(6.20), (6.21) are respective counterparts of formulae (6.14), (6.16), (6.15). �

Remark. For a function f(x, y), define

(6.22) ∂x,y f(x, y) =
f(x, y)− f(y, x)

x− y
, πx,y f(x, y) = ∂x,y

(
xf(x, y)

)
.

We call ∂x,y and πx,y the rational and trigonometric divided difference operators, respec-
tively. Formulae (6.20) and (6.21) respectively read

Wsa,a+1(I) = πza,za+1WI − hza · ∂za,za+1WI ,(6.23)

Wsa+1,a(I) = πza+1,zaWI − h−1za+1 · ∂za+1,zaWI .

7. Stable envelope maps and R-matrices

7.1. Definition. For σ ∈ Sn, we define the stable envelope map

(7.1) Stabσ : KT

(
(Xn)

T
)
→ KT (Xn) , 1I 7→ κσ,I ,

where I ∈ Iλ and λ ∈ Zn
>0 , |λ| = n .

The maps Stabσ become isomorphisms after tensoring the K-theory algebras with C(z, h) ,
see Theorem 6.8. For σ′, σ ∈ Sn, we define the geometric R-matrix

(7.2) Rσ′,σ = Stab−1
σ′ ◦ Stabσ ∈ End(KT

(
(Xn)

T
)
)⊗ C(z, h) = End

(
(CN)⊗n

)
⊗ C(z, h).

7.2. Trigonometric R-matrix. Let h, z be parameters. Define the trigonometric R-matrix ,
an element R(z, h) ∈ End(CN⊗ CN)⊗ C(z, h), by the conditions:

• For i = 1, . . . , N ,

(7.3) R(z, h) : vi ⊗ vi 7→ vi ⊗ vi ,
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• For 1 6 i < j 6 N , on the two-dimensional subspace with ordered basis vi ⊗ vj,
vj ⊗ vi, the trigonometric R-matrix is given by the matrix

(7.4)


1− z
1− hz

1− h
1− hz

(1− h)z
1− hz

h(1− z)
1− hz

 .

The trigonometric R-matrix depends on two parameters z, h. We often omit in the notation
the dependence on h.

The 2× 2-matrix in (7.4), satisfies the following relation

(7.5)


1− z
1− hz

(1− h)z
1− hz

1− h
1− hz

h(1− z)
1− hz

 =

(
h−1 0
0 1

)
1− z−1

1− h−1z−1

1− h−1

1− h−1z−1

(1− h−1)z−1

1− h−1z−1

h−1(1− z−1)

1− h−1z−1

(
1 0
0 h

)
.

The trigonometric R-matrix satisfies the Yang-Baxter equation

(7.6) R(1,2)(z2/z1)R(1,3)(z3/z1)R(2,3)(z3/z2) = R(2,3)(z3/z2)R(1,3)(z3/z1)R(1,2)(z2/z1) .

This is an identity in End((CN)⊗3) and R(i,j)(zj/zi) is the R-matrix R(zj/zi) acting on the
i-th and j-th factors of (CN)⊗3.

The trigonometric R-matrix satisfies the inversion relation

(7.7) R(1,2)(z2/z1)R(2,1)(z1/z2) = 1 .

7.3. Geometric R-matrix for n = 2 . The group S2 has two elements: the identity id
and the transposition s . After the identification KT

(
(Xn)

T
)
⊗C(z, h) = (CN)⊗2 ⊗C(z, h),

we calculate the geometric R-matrix Rs,id as follows.
For λ = (0, . . . , 0, 2, 0, . . . , 0) with the coordinate 2 being at i-th position, both maps

Stab id and Stabs send the vector vi⊗ vi to 1 ∈ KT (T
∗Fλ) . Hence, Rs,id (vi⊗ vi) = vi⊗ vi .

For λ = (0, . . . , 0, 1, 0, . . . , 0, 1, 0 . . . , 0) with the nonzero coordinates 1 being at i-th
and j-th positions, i < j, the set Iλ consists of two elements: I = (∅, . . . ,∅, {1},∅, . . . ,
∅, {2},∅, . . . ,∅) and J = (∅, . . . ,∅, {2},∅, . . . ,∅, {1},∅, . . . ,∅) .

By formulae for M2WI and M2WJ from Section 4.2 and the equality

E(zI , h) = (1− h)2N−i−j(1− hz2/z1)N−j(1− hz1/z2)N−j ,

see (6.1), we have

Stab id(vi ⊗ vj) = 1− z2/γi,1 , Stab id(vj ⊗ vi) = 1− hz1/γi,1 .
Similarly,

Stabs(vi ⊗ vj) = 1− hz2/γi,1 , Stabs(vj ⊗ vi) = 1− z1/γi,1 .
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Thus,
Rs,id (vi ⊗ vj) =

1− z2/z1
1− hz2/z1

vi ⊗ vj +
(1− h)z2/z1
1− hz2/z1

vj ⊗ vi ,

Rs,id (vj ⊗ vi) =
1− h

1− hz2/z1
vi ⊗ vj +

h(1− z2/z1)
1− hz2/z1

vj ⊗ vi .

Therefore, Rs,id = R(z2/z1, h) .

7.4. Geometric R-matrices for arbitrary n . Since for any permutations σ, σ′, σ′′,

(7.8) Rσ′′,σ = Rσ′′,σ′Rσ′,σ ,

it is enough to describe the geometric R-matrices Rσsa,a+1,σ that correspond to permutations
σsa,a+1, σ ∈ Sn .

Theorem 7.1. We have

Rσsa,a+1,σ = R(σ(a),σ(a+1))(zσ(a+1)/zσ(a)) ∈ End
(
(CN)⊗n

)
⊗ C(z, h) ,

where R(σ(a),σ(a+1)) is the trigonometric R-matrix (7.3), (7.4) acting in the σ(a)-th and
σ(a+ 1)-th tensor factors.

Proof. The geometric R-matrix is defined by formulae (7.2), (7.1), (6.11), (6.2). Now the
statement follows from Theorem 6.10 and formulae (7.3), (7.4). �
7.5. Proof of Theorem 6.6. For σ ∈ Sn, introduce a matrix

(7.9) Ŵσ(z, h) = (W̃σ,J(zI ,z, h))I,J∈Iλ

where the subscripts I, J label rows and columns, respectively. Consider the matrix

(7.10) R̂(z, h) = Ŵ−1
σ0

(z, h) Ŵid(z, h) .

This is the matrix of the restriction of the geometric R-matrix Rσ0,id , see (7.2), on the span
of {vI | I ∈ Iλ} . By Theorem 7.1 and formulae (7.8), (7.5), we have

(7.11) (R̂(z, h))t = MR̂(z−1, h−1)M̃ ,

where the superscript t denotes transposition and M, M̃ are diagonal matrices. The entries

of M are MI,I = h−p(I), and an explicit formula for the entries of M̃ will not be used.
Formulae (7.10), (7.11) yield(

Ŵid(z, h)
)t (

Ŵ−1
σ0

(z, h)
)t

= M Ŵ−1
σ0

(z−1, h−1) Ŵid(z
−1, h−1)M̃ .

Hence,

(7.12) Ŵσ0(z
−1, h−1)M−1

(
Ŵid(z, h)

)t
= Ŵid(z

−1, h−1)M̃
(
Ŵσ0(z, h)

)t
.

By Lemma 6.2, W̃id,J(zI ,z, h) = 0 if I >id J and W̃σ0,J(zI , z, h) = 0 if I <id J . That is,

the matrices
(
Ŵid(z, h)

)t
and Ŵσ0(z

−1, h−1) are lower triangular, and so is the left-hand

side of (7.12). Similarly, the matrices Ŵid(z
−1, h−1) and

(
Ŵσ0(z, h)

)t
are upper triangular,

and so is the right-hand side of (7.12). Therefore,

Ŵσ0(z
−1, h−1)M−1

(
Ŵid(z, h)

)t
= S ,
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where S is a diagonal matrix with entries

(7.13) SI,I = hp(I) W̃id,I(zI ,z, h) W̃σ0,I(z
−1
I ,z−1, h−1) =

R(zI)Q(zI , h)

P (zI)
.

Here the second equality follows from Lemma 6.4 and formula (3.2). Hence,

(7.14)
(
Ŵid(z, h)

)t
S−1 Ŵσ0(z

−1, h−1)M−1 = 1 ,

which is the matrix form of formula (6.7).

8. Inverse of the map Stab id

8.1. Sn-action on functions. Let P (i,j) be the permutation of the i-th and j-th factors of
(CN)⊗n. Let
(8.1) Ki : f(z1, . . . , zn) 7→ f(z1, . . . , zi−1, zi+1, zi, zi+2, . . . , zn)

be the operator interchanging the variables zi and zi+1 .

Define an action of the symmetric group Sn on (CN)⊗n-valued functions of z1, . . . , zn, h .
Let the i-th elementary transposition si ∈ Sn act by the formula

(8.2) s̃i = P (i,i+1)R(i,i+1)(zi/zi+1)Ki ,

where R is the trigonometric R-matrix (7.3), (7.4).

Lemma 8.1. The Sn-action (8.2) is well-defined, that is,

(s̃i)
2 = 1, s̃is̃i+1s̃i = s̃i+1s̃i s̃i+1 , s̃i s̃j = s̃j s̃i if |i− j| > 1 .

Moreover, s̃izis̃i = zi+1 and s̃izj = zj s̃i if j ̸= i, i + 1 , where z1, . . . , zn are considered as

the scalar operators on (CN)⊗n of multiplication by the respective variable.

Proof. The Sn-action is well-defined due to the inversion relation (7.7) and the Yang-Baxter
equation (7.6). The rest of the statement is clear. �
8.2. Vectors ξI . Recall the partial ordering 6σ on Iλ defined in Section 2.2. Set

Imin =
(
{1, . . . , λ1} , {λ1 + 1, . . . , λ1 + λ2} , . . . , {n− λN + 1, . . . , n}

)
∈ Iλ ,(8.3)

Imax =
(
{n− λ1 + 1, . . . , n} , {n− λ1 − λ2 + 1, . . . , n− λ1} , . . . , {1, . . . , λN}

)
∈ Iλ .

Clearly, Imin 6id I 6id I
max for any I ∈ Iλ .

Let
(8.4) D =

∏
16b<a6n

(1− hzb/za) .

Theorem 8.2. There exist unique elements {ξI ∈ (CN)⊗n⊗C[z±1, h±1, D−1 ] | I ∈ Iλ} such
that ξImin = vImin and
(8.5) ξsi(I) = s̃i ξI

for every I ∈ Iλ and i = 1, . . . , n− 1 . Moreover,

(8.6) ξI =
∑
J6idI

XI,J vJ ,
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where XI,J ∈ C[z±1, h±1, D−1 ] and

XI,I =
∏
k<l

∏
a∈Ik

∏
b∈Il
b<a

1− zb/za
1− hzb/za

.

In particular,

(8.7) XImax, Imax =
R(zImax)

Q(zImax , h)
.

Furthermore,

(8.8) XI,J = hp(J) W̃σ0,J(z
−1
I , z

−1, h−1)
P (zI)

Q(zI , h)
.

Here σ0 ∈ Sn is the longest permutation, and p(J) , P (zI) , R(zI) , Q(zI , h) are defined in
Section 6.2, see formulae (6.8)– (6.10).

Notice that
XI,I =

Pσ0,I e
hor
id,I,+

evertid,I,−
,

where ehorid,I,+ , evertid,I,− , and Pσ0,I are given by formulae (2.8), (2.9), and (3.1), respectively.

Proof. The properties ξImin = vImin and property (8.5) imply that ξσ(Imin) = σ̃ vImin for any
σ ∈ Sn , which proves uniqueness.

To show existence, define the elements ξI by the rule: ξI = σ̃ vImin provided I = σ(Imin) .
By Lemma 8.1 and the property σ̃ vImin = vImin for any σ ∈ Sn such that σ(Imin) = Imin,
these elements ξI are well-defined and satisfy (8.5), and ξImin = vImin .

Let σ be the shortest permutation such that σ(Imin) = I , and σ = si1 . . . sik be a
reduced presentation. Then the equality ξI = s̃i1 . . . s̃ikvImin and formulae (7.3), (7.4) for
the R-matrix R(z, h) yield formula (8.6) with some coefficients XI,J , as well as the explicit
formula for XI,I .

To get formula (8.8) for XI,J , we denote by YI,J the right-hand side of formula (8.8) and
will show that the elements

(8.9) ηI =
∑
J∈Iλ

YI,J vJ

satisfy the defining properties of the elements ξI . The property ηImin = vImin is immediate
from Lemmas 6.2, 6.4, that imply YImin,J = δImin,J .

Let ỸI,J = YI,J
/
R(zI) and η̃ =

∑
I∈IλỸIJ vJ . The properties ηsi(I) = s̃i ηI and η̃si(I) =

s̃i η̃I are equivalent, and we will check the second one. Define a matrix Ŷ = (ỸI,J)J,I∈Iλ ,

where the subscripts J, I label rows and columns, respectively, Consider Ŷ as a linear

operator on the space (CN)⊗n
λ with basis {vI | I ∈ Iλ} , see Section 2.4. Then Ŷ : vI 7→ η̃I .

The linear maps R(i,i+1) and P (i,i+1) preserve the space (CN)⊗n
λ . The relations η̃si(I) =

s̃i η̃I are equivalent to

(8.10) P (i,i+1)R(i,i+1)(zi/zi+1)Ki Ŷ KiP
(i,i+1) = Ŷ .
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Recall the matrices Ŵσ , S given by (7.9), (7.13), respectively, and M with entries MI,J =
h−p(I)δI,J . We have

Ŷ = M−1
(
Ŵσ0(z

−1, h−1)
)t
S−1 =

(
Ŵid(z, h)

)−1
,

the second equality following from formula (7.14). Thus formula (8.10) transforms to

P (i,i+1)R(i,i+1)(zi/zi+1)Ki

(
Ŵid(z, h)

)−1
KiP

(i,i+1) =
(
Ŵid(z, h)

)−1

and then to

(8.11) R(i,i+1)(zi+1/zi) = KiP
(i,i+1)

(
Ŵid(z, h)

)−1
P (i,i+1)Ki Ŵid(z, h) .

The right-hand side of (8.11) equals the geometric R-matrix Rsi,id , see (7.2). Thus for-
mula (8.11) follows from Theorem 7.1, which proves the desired relation η̃si(I) = s̃i η̃I . �

Example. Let N = n = 2 and λ = (1, 1) . Then ξ({1},{2})(z1, z2, h) = v({1},{2}) and

ξ({2},{1})(z1, z2, h) = (1− h) z1/z2
1− hz1/z2

v({1},{2}) +
1− z1/z2
1− hz1/z2

v({2},{1}) .

Corollary 8.3. The set of vectors ξI , I ∈ Iλ, is a C(z, h)-basis of the space (CN)⊗n
λ ⊗

C(z, h) . �

Let fI(z, h) , I ∈ Iλ , be a collection of scalar functions.

Lemma 8.4. The function
∑

I∈Iλ fI(z, h) ξI is invariant under the Sn-action (8.2) if and

only if fσ(I)(z, h) = fI(zσ(1), . . . , zσ(n), h) for any I ∈ Iλ and any σ ∈ Sn. �

8.3. Inverse of Stab id . Recall the stable envelope map

(8.12) Stab id : (CN)⊗n⊗ C(z, h) → KT (Xn)⊗ C(z, h) , vI 7→ κ id,I ,

where I ∈ Iλ and λ ∈ Zn
>0 , |λ| = n , cf. (7.1).

Define the homomorphism ν : KT (Xn)⊗ C(z, h) → (CN)⊗n⊗ C(z, h) of C(z, h)-modules
by the rule

(8.13) ν : [f(Γ,z, h)] 7→
∑
I∈Iλ

f(zI , z, h)

R(zI)
ξI

for any f ∈ C[Γ±1 ]Sλ⊗C(z, h) . Here f(zI ,z, h) is obtained from f(Γ,z, h) by the substi-

tution {γk,1, . . . ,γk,λk
} 7→ {za | a ∈ Ik} for all k = 1, . . . , N . This substitution was denoted

LocI , see (2.6).

Theorem 8.5. The maps Stab id and ν are the inverse isomorphisms.

Proof. The statement follows from the orthogonality relation (6.7) and the formulae (8.6),
(8.8) for vectors ξI . �

Theorem 8.5 is a K-theoretic analog of [RTV, Lemma 6.7].
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Remark. The group Sn acts on KT (Xn) ⊗ C(z, h) by permutations of z1, . . . , zn in the

second factor, si : [f ] 7→ [Kif ] for i = 1, . . . , n − 1 and f ∈ C[Γ±1 ]Sλ⊗ C(z, h) . Under

the isomorphism Stab id , this Sn-action is identified with the Sn-action (8.2) on (CN)⊗n⊗
C(z, h) . This corollary of Theorem 7.1 could be considered as a motivation for the Sn-action

(8.2).

9. Space 1
D
V−

9.1. Invariant functions. Define the operators ŝ1, . . . , ŝn−1 acting on functions of z1, . . . ,
zn, h as follows:

(9.1) ŝi =
1− hzi+1/zi
1− zi+1/zi

Ki +
h− 1

1− zi+1/zi
.

We consider z1, . . . , zn as operators of multiplication by the respective variable.

Lemma 9.1. The operators ŝ1, . . . , ŝn−1, z1, . . . , zn satisfy the relations

(ŝi+ 1)(ŝi− h) = 0 , ŝi ŝi+1 ŝi = ŝi+1 ŝi ŝi+1 , ŝi ŝj = ŝj ŝi if |i− j | > 1 ,(9.2)

ŝizi+1 ŝi = hzi , ŝizj = zj ŝi , if j ̸= i, i+ 1 .

Proof. The statement follows from formula (9.1) by direct verification. �
Remark. Set h = q−2, ti = q−1 ŝ−1

i . Then t1, . . . , tn−1 , z1, . . . , zn satisfy the relations

(ti− q)(ti + q−1) = 0 , ti ti+1 ti = ti+1 ti ti+1 , ti tj = tj ti if |i− j | > 1 ,(9.3)

tiziti = zi+1 , tizj = zj ti if j ̸= i, i+ 1 .

The algebra generated by t1, . . . , tn−1 , z1, . . . , zn subject to relations (9.3) is the affine Hecke
algebra of type An−1 .

Let fI(z, h) , I ∈ Iλ , be a collection of scalar functions and

(9.4) f(z, h) =
∑
I∈Iλ

fI(z, h) vI .

Recall the Sn-action (8.2) on (CN)⊗n-valued functions defined in Section 8.1.

Lemma 9.2. Given j, we have s̃jf = f if and only if for any I = (I1, . . . , IN) ∈ Iλ the
following three conditions are satisfied:
(i) fI = KjfI , if j , j + 1 ∈ Ia for some a;
(ii) fsj(I) = ŝ−1

j fI , if j ∈ Ia, j + 1 ∈ Ib, and a < b;
(iii) fsj(I) = ŝjfI , if j ∈ Ia, j + 1 ∈ Ib, and a > b .

Proof. Denote by f̃I the I-th coordinate of s̃jf . Then

(9.5) f̃I = KjfI

if j , j + 1 ∈ Ia for some a,

(9.6) f̃I = h
1− zj/zj+1

1− hzj/zj+1

Kjfsj(I) + (1− h) zj/zj+1

1− hzj/zj+1

KjfI
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if j ∈ Ia , j + 1 ∈ Ib , a < b, and

(9.7) f̃I =
1− zj/zj+1

1− hzj/zj+1

Kjfsj(I) +
1− h

1− hzj/zj+1

KjfI

if j ∈ Ia , j+1 ∈ Ib , a > b. If s̃jf = f , we have f̃I = fI for any I, and formulae (9.5) – (9.7)
are equivalent to conditions (i) – (iii), respectively. �

Remark. Lemma 9.2 could be considered as a motivation for the operators ŝ1, . . . , ŝn−1 .

For σ ∈ Sn , let σ = sj1 . . . sjl be a reduced presentation. Define σ̂ = ŝj1 . . . ŝjl . By
Lemma 9.1, the operator σ̂ does not depend on the choice of the reduced presentation.

Let zσ = (zσ(1), . . . , zσ(n)) . Denote by Smax
λ ⊂ Sn the isotropy subgroup of Imax, see (8.3).

For I ∈ Iλ , let σI ∈ Sn be the shortest permutation such that I = σI(I
max) .

Proposition 9.3. The function f(z, h), see (9.4), is invariant under the Sn-action (8.2) if
and only if fImax(z, h) = fImax(zσ, h) for any σ ∈ Smax

λ , and fI = σ̂I(fImax) for any I ∈ Iλ .
Moreover,

(9.8) f(z, h) =
∑
I∈Iλ

fImax(zσ0(I), h)
Q(zI , h)

R(zI)
ξI ,

where σ0 ∈ Sn is the longest permutation.

Proof. The first part of the proposition follows from Lemmas 9.1 and 9.2. To prove for-
mula (9.8), observe that the function in the right-hand side of (9.8) is invariant under the
Sn-action (8.2) by Lemma 8.4, and has the Imax-th coordinate fImax(z, h) in the basis
{vI | I ∈ Iλ} by Theorem 8.2. �

Example. By Theorem 6.10, the collection fI(z, h) = hp(I) W̃σ0,I(t
−1, z−1, h−1) , I ∈ Iλ ,

satisfies the assumption of Lemma 9.2. Hence,

(9.9) W̃•(t,z, h) =
∑
I∈Iλ

hp(I) W̃σ0,I(t
−1 ,z−1, h−1) vI

as a function of z, h is invariant under the Sn-action (8.2), and formula (9.8) yields

(9.10) W̃•(t, z, h) =
∑
I∈Iλ

W̃id,Imin(t−1, z−1
I , h

−1)
Q(zI , h)

R(zI)
ξI ,

since W̃σ0,Imax(t−1, z−1
σ0(I)

, h−1) = W̃id,Imin(t−1,z−1
I , h

−1) by formula (4.3). Notice also that

(9.11) ξI = W̃•(zI ,z, h)
P (zI)

Q(zI , h)
,

either by formulae (9.9) and (8.8), or by formulae (9.10), (6.8), (6.10), and Lemmas 6.2, 6.4.

See also a remark on the function W̃•(zI ,z, h) at the end of Section 11.2.
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9.2. Space 1
D
V−. Let 1

D
C[z±1, h±1 ] be the space of functions of the form 1

D
f , where f ∈

C[z±1, h±1 ] and D is given by formula (8.4). Set 1
D
V = (CN)⊗n⊗ 1

D
C[z±1, h±1 ] and 1

D
Vλ =

(CN)⊗n
λ ⊗ 1

D
C[z±1, h±1 ] .

Lemma 9.4. The operators ŝ1, . . . , ŝn−1 preserve the space 1
D
C[z±1, h±1 ] .

Proof. Let f ∈ C[z±1, h±1 ]. Then

D · ŝi
(

1
D
f
)
=

(1− hzi/zi+1)Ki f + (h− 1)f

1− zi+1/zi
∈ C[z±1, h±1 ]

since the numerator of the right-hand side vanishes if zi = zi+1. �
Define the operators š1, . . . , šn−1 as follows:

(9.12) ši =
1− hzi+1/zi
1− zi+1/zi

s̃i + (h− 1)
zi+1/zi

1− zi+1/zi
,

where s̃i is given by formula (8.2).

Lemma 9.5. The operators š1, . . . , šn−1, z1, . . . , zn satisfy the relations

(ši− 1)(ši + h) = 0 , ši ši+1 ši = ši+1 ši ši+1 , ši šj = šj ši if |i− j | > 1 ,(9.13)

šizi ši = hzi+1 , šizj = zj ši , if j ̸= i, i+ 1 .

Proof. The statement follows from Lemma 8.1 and formula (9.12) by direct verification. �
Lemma 9.6. The operators š1, . . . , šn−1 preserve the spaces 1

D
V and 1

D
Vλ .

Proof. Let g ∈ (CN)⊗n
λ ⊗ C[z±1, h±1 ] . Then by formulae (9.12), (8.2), (8.4),

D · ši
(

1
D
g
)
=

(1− hzi/zi+1)P
(i,i+1)R(i,i+1)(zi/zi+1)Ki g + (h− 1)(zi+1/zi) g

1− zi+1/zi
.

The numerator of the right-hand side belongs to (CN)⊗n
λ ⊗ C[z±1, h±1 ] by formulae (7.3),

(7.4), and vanishes if zi = zi+1. This proves the statement for 1
D
V−
λ .

Since 1
D
V−=

⊕
|λ|=n

1
D
V−
λ , the lemma follows. �

Lemma 9.7. Let f(z1, . . . , zn, h) be a (CN)⊗n-valued function. Then for any i = 1, . . . ,
n− 1 , s̃if = f if and only if šif = f .

Proof. The statement follows from formula (9.12). �
Remark. Lemmas 9.6, 9.7 could be considered as a motivation for the operators š1, . . . ,
šn−1 .

Denote by 1
D
V− ⊂ 1

D
V and 1

D
V−
λ ⊂ 1

D
Vλ the subspaces of invariants of the operators

š1, . . . , šn−1 . By Lemma 9.7, 1
D
V− ⊂ 1

D
V and 1

D
V−
λ ⊂ 1

D
Vλ are also the subspaces of

functions invariant under the Sn-action (8.2). All four spaces 1
D
V , 1

D
Vλ, 1

D
V−
λ , and

1
D
V−

are C[z±1, h±1 ]Sn-modules.
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For a function f(z, h), let f̌(z, h) = f(zn, . . . , z1, h) . Denote by Smin
λ ⊂ Sn the isotropy

subgroup of Imin, see (8.3). Let C[z±1, h±1 ]Sλ be the algebra of Laurent polynomials in z1,

. . . , zn , h such that f(z, h) = f(zσ, h) for any σ ∈ Smin
λ . Set Q̌(z, h) = Q(zImax , h) .

Lemma 9.8. The homomorphism ϑλ : C[z±1, h±1 ]Sλ → 1
D
V−
λ ,

(9.14) ϑλ : f(z, h) 7→
∑
I∈Iλ

σ̂I

( f̌(z, h)
Q̌(z, h)

)
vI

is an isomorphism of C[z±1, h±1 ]Sn-modules.

Proof. Since Q̌(z, h) divides D in C[z±1, h±1 ] , the right-hand side of formula (9.14) belongs
to 1

D
Vλ by Lemma 9.4. Moreover, it is invariant under the Sn-action (8.2) by Proposition 9.3

and is preserved by the operators š1, . . . , šn−1 by Lemma 9.7. Hence, ϑλ(f) ∈ 1
D
V−
λ .

The map ϑλ is clearly injective. To prove surjectivity, let
∑

I∈Iλ gI(z, h) vI ∈
1
D
V−
λ . By

Proposition 9.3, gI = σ̂I(gImax) for any I ∈ Iλ, and gImax(z, h) = gImax(zσ, h) for any
σ ∈ Smax

λ . Therefore, the function gImax cannot have poles at the hyperplanes zi = hzj if

i, j ∈ Imax
a for some a . Hence, gImax = f̌/Q̌ for some f ∈ C[z±1, h±1 ]Sλ . �

Corollary 9.8 yields another formula for the map ϑλ :

(9.15) ϑλ : f(z, h) 7→
∑
I∈Iλ

f(zI , h)

R(zI)
ξI .

Corollary 9.9. The homomorphism ν : KT (Xn) → 1
D
V−⊗ C[z±1 ]

(9.16) ν : [f(Γ,z, h)] 7→
∑
I∈Iλ

f(zI , z, h)

R(zI)
ξI

for any f ∈ C[Γ±1 ]Sλ⊗ C[z±1, h±1 ] , is an isomorphism of C[z±1, h±1 ]-modules. �
Abusing notation, we use here the same letter for the homomorphism ν as in Section 8.3.

Corollary 9.10. The canonical embeddings

ι : 1
D
V−⊗ C(z, h) → (CN)⊗n⊗ C(z, h) , ιλ : 1

D
V−
λ ⊗ C(z, h) → (CN)⊗n

λ ⊗ C(z, h)

are isomorphisms of C(z, h)-modules. �

9.3. Subspace 1
D
Ṽ−
λ . Let 1

D̃
C[z, h] be the space of functions of the form 1

D̃
f , where f ∈

C[z, h] and D̃ =
∏

16i<j6n (zj − hzi) , cf. (8.4).

Lemma 9.11. The operators ŝ1, . . . , ŝn−1 preserve the space 1

D̃
C[z, h] .

Proof. Let f ∈ C[z, h] . Then

D̃ · ŝi
(
1

D̃
f
)
=

(zi+1 − hzi)Ki f + (h− 1)zif

zi − zi+1

∈ C[z, h]

since the numerator of the right-hand side vanishes if zi = zi+1. �
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Let C[z, h]Sλ be the algebra of polynomials in z1, . . . , zn , h such that f(z) = f(zσ) for

any σ ∈ Smin
λ . Recall λ(a) = λ1 + . . .+ λa , a = 1, . . . , N . For any f ∈ C[z, h]Sλ , set

(9.17) ϑ̃λ(f) = ϑλ

(
f(z, h)

N∏
a=1

∏
i∈Imin

a

zλ
(a)−n

i

)
.

Denote 1
D
Ṽ−
λ = 1

D
V−
λ ∩

(
(CN)⊗n

λ ⊗ 1

D̃
C[z, h]

)
.

Lemma 9.12. The homomorphism ϑ̃λ : C[z, h]Sλ → 1
D
Ṽ−
λ , is an isomorphism of C[z]Sn⊗

C[h]-modules.

Proof. Let f ∈ C[z, h]Sλ and g = f ·
∏N

a=1

∏
i∈Imin

a
zλ

(a)−n
i . Then ϑ̃λ(f) = ϑλ(g) ∈ 1

D
V−
λ by

Lemma 9.8. Also, ǧ/Q̌ ∈ 1

D̃
C[z, h] , so ϑ̃λ(f) ∈ (CN)⊗n

λ ⊗ 1

D̃
C[z, h] by Lemma 9.11. Thus

ϑ̃λ(f) ∈ 1
D
Ṽ−
λ , and the map ϑ̃λ is injective.

To prove surjectivity of ϑ̃λ, let g̃(z, h) =
1

D̃

∑
I∈Iλ gI(z, h) vI ∈

1
D
Ṽ−
λ . By Proposition 9.8,

gImax = D̃f̌/Q̌ for some f ∈ C[z±1, h±1 ]Sλ . Hence, the function

f̃(z, h) = f(z, h)
N∏
a=1

∏
i∈Imin

a

zn−λ(a)

i = ǧImax(z, h)
N∏
a=1

∏
i,j∈Imin

a
i<j

(zi − hzj)−1

is regular at zk = 0 for all k = 1, . . . , n , and at h = 0 . Therefore, f̃ ∈ C[z, h]Sλ and

g̃ = ϑ̃λ(f̃). �

9.4. Grading. Introduce the degrees of the variables z1, . . . , zn and h by the rule

(9.18) deg z1 = . . . = deg zn = 1 , deg h = 0 .

This defines the grading on the space C[z±1 ] ⊗ C(h) . This grading induces gradings on
tensor products of C[z±1 ] ⊗ C(h) with other vector spaces and subspaces of those tensor

products. In particular, 1
D
V− and 1

D
V−
λ are graded C[z±1, h±1 ]-modules, and 1

D
Ṽ−
λ is a

graded C[z, h]-module.

Lemma 9.13. The maps ϑλ : C[z±1, h±1 ]Sλ → 1
D
V−
λ and ϑ̃λ : C[z, h]Sλ → 1

D
Ṽ−
λ are

isomorphisms of graded spaces. �
For the variables γi,j , set deg γi,j = 1 for all i, j . This defines the grading on the algebra

KT (Xn) , see (2.2), (2.3), making it into a graded algebra.

Lemma 9.14. The map ν : KT (Xn) → 1
D
V−⊗C[z±1 ] is an isomorphism of graded spaces.

�

10. Quantum loop algebra

10.1. Quantum loop algebra Uq(g̃lN). Let q, u be parameters. Let C(u, q) be the algebra
of rational functions of q, u . The Cherednik-Drinfeld-Jimbo R-matrix R(u, q) ∈ End(CN ⊗
CN)⊗ C(u, q) is defined by the conditions:
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• For i = 1, . . . , N ,

(10.1) R(u, q) : vi ⊗ vi 7→ (qu− q−1) vi ⊗ vi;
• For 1 6 i < j 6 N , on the two-dimensional subspace with ordered basis vi ⊗ vj,
vj ⊗ vi, the R-matrix R(u, q) is given by the matrix

(10.2)

(
u− 1 u(q − q−1)
q − q−1 u− 1

)
,

cf. (7.3), (7.4).

The quantum loop algebra Uq(g̃lN) is a unital associative algebra over C(q) with generators

L̂i,j,+0, L̂j,i,−0, 1 6 j 6 i 6 N , and L̂i,j,±s, i, j = 1, . . . , N , s ∈ Z>0, subject to relations

(10.3), (10.4), see [RS], [DF]. For convenience, set L̂i,j,+0 = L̂j,i,−0 = 0 for 1 6 i < j 6 N .

Introduce the generating series L̂i,j,±(u) = L̂i,j,±0+
∑∞

s=1 L̂i,j,±su
±s, and consider them as

entries of N×N matrices L̂±(u) = (L̂i,j,±(u))
N
i,j=1. The relations in Uq(g̃lN) have the form

L̂i,i,+0 L̂i,i,−0 = L̂i,i,−0 L̂i,i,+0 = 0 , i = 1, . . . , N ,(10.3)

R(1,2)(u/v, q) L̂(1)
α (u) L̂

(2)
β (v) = L̂

(2)
β (v) L̂(1)

α (u)R(1,2)(u/v, q) ,(10.4)

where (α, β) = (+,+), (+,−), (−,−) .

10.2. Algebra U(g̃lN). Let h = q−2. Let C(h) be the algebra of rational functions of h .

The algebra U(g̃lN) is the unital associative algebra over C(h) generated by the following

elements of Uq(g̃lN) :

(10.5) L̃i,j,s = L̂1,1,+0 . . . L̂i−1,i−1,+0 L̂i,j,s L̂1,1,+0 . . . L̂j,j,+0

and

(10.6) L̃−1
i,i,+0 =

(
L̂1,1,−0 . . . L̂i,i,−0

)2
for all possible i, j, s. Notice that L̃i,j,+0 = L̃j,i,−0 = 0 for 1 6 i < j 6 N . Consider the
generating series

L̃i,j,±(u) = L̃i,j,±0 +
∞∑
s=1

L̃i,j,±su
±s

and the matrices L̃±(u) =
(
L̃i,j,±(u)

)N
i,j=1

. The relations in U(g̃lN) have the form

L̃i,i,+0 L̃
−1
i,i,+0 = L̃−1

i,i,+0 L̃i,i,+0 = 1 , i = 1, . . . , N ,(10.7)

L̃1,1,−0 = 1, L̃i,i,+0 = L̃i+1,i+1,−0 , i = 1, . . . , N− 1 ,(10.8)

R(1,2)(v/u, h) L̃(1)
α (u) L̃

(2)
β (v) = L̃

(2)
β (v) L̃(1)

α (u)R(1,2)(v/u, h) ,(10.9)

where (α, β) = (+,+), (+,−), (−,−) , and R(z, h) is defined by (7.3), (7.4).

Denote by U(h) ⊂ U(g̃lN) the subalgebra generated over C(h) by the elements

(10.10) L̃1,1,+0 , . . . , L̃N,N,+0 , L̃
−1
1,1,+0 , . . . , L̃

−1
N,N,+0 .
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The subalgebra U(h) is commutative. The elements L̃N,N,+0 and L̃−1
N,N,+0 are central.

The algebra U(g̃lN) is a Hopf algebra with the coproduct ∆ : U(g̃lN)→ U(g̃lN)⊗ U(g̃lN)

given by

(10.11) ∆ : L̃i,j,±(u) 7→
N∑
k=1

L̃k,j,±(u)⊗ L̃i,k,±(u) , i, j = 1, . . . , N .

The algebra U(g̃lN) is graded by the rule: deg L̃i,j,±s = ±s for all i, j = 1, . . . , N and
s ∈ Z>0 , and deg h = 0.

10.3. Quantum minors. For p = 1, . . . , N , i = {1 6 i1 < . . . < ip 6 N}, j = {1 6 j1 <
. . . < jp 6 N}, define quantum minors

Mi,j,±(u) =
∑
σ∈Sp

(−1)σ L̃i1,jσ(1),±(u) L̃i2,jσ(2),±(uh) . . . L̃ip,jσ(p),±(uh
p−1) .

Lemma 10.1. For any permutation π ∈ Sp , we have

Mi,j,±(u) = (−1)π
∑
σ∈Sp

(−1)σ L̃iπ(1),jσ(1),±(u) L̃iπ(2),jσ(2),±(uh) . . . L̃iπ(p),jσ(p),±(uh
p−1) .

Proof. The statement follows from commutation relations (10.9), see, for example, [MTV1,
formulae (4.9), (4.10)] �
Remark. Though [MTV1] deals with the case of the Yangian Y (glN) , the proofs given
there rely upon general properties of R-matrices and can be easily tuned for the case of the

algebra U(g̃lN) under consideration.

We also have

(10.12) ∆ : Mi,j,±(u) 7→
∑

k={16k1<...<kp6N}

Mi,k,±(u)⊗Mk,j,±(u) ,

see, for example, [NT1, Proposition 1.11] or [MTV1, Lemma 4.3].

Introduce the series A1,±(u), . . . , AN,±(u), E1,±(u), . . . , EN−1,±(u), F1,±(u), . . . , FN−1,±(u)
as follows: given p , take i = {1, . . . , p} , j = {1, . . . , p− 1, p+ 1} , and set

Ap,±(u) = Mi,i,±(u) L̃
−1
1,1,±0 . . . L̃

−1
p,p,±0 = 1 +

∞∑
s=1

B∞
p,±s u

±s ,(10.13)

Ep,±(u) = (1− h)−1Mj,i,±(u)
(
Mi,i,±(u)

)−1
,(10.14)

Fp,±(u) = (1− h)−1
(
Mi,i,±(u)

)−1
Mi,j,±(u) .(10.15)

The coefficients of these series together with U(h) generate the algebra U(g̃lN) . In what

follows we will describe the action of U(g̃lN) by using the series Ap,±(u), Ep,±(u), Fp,±(u) .

By formula (10.12), the series AN,±(u) are group-like:

(10.16) ∆ : AN,±(u) 7→ AN,±(u)⊗ AN,±(u) .
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Let B∞ ⊂ U(g̃lN) be the unital subalgebra generated by U(h) and the elements B∞
p,±s

for p = 1, . . . , N , s ∈ Z>0 , see (10.13) . The subalgebra B∞ is called the Gelfand-Zetlin

subalgebra of U(g̃lN) . For any B∞-module V we denote by B∞(V ) the image of B∞ in

End(V ) and call B∞(V ) the Gelfand-Zetlin algebra of V .

Theorem 10.2 ([KS]). The subalgebra B∞ is commutative. The elements B∞
N,±s , s ∈ Z>0 ,

are central. �
10.4. Bethe algebra Bq. For q = (q1, . . . , qN) ∈ (C×)N and p = 1, . . . , N , define

(10.17) Bq
p,±(u) =

∑
i={16i1<...<ip6N}

qi1 . . . qipMi,i,±(u)

p∏
r=1

L̃−1
ir,ir,−0 =

∞∑
s=0

Bq
p,±s u

±s .

In particular,
Bq

p,+0 = ep(q̃1, . . . , q̃N) , Bq
p,−0 = ep(q1, . . . , qN) ,

where ep is the p -th elementary symmetric function, and q̃i,± = qi L̃i,i,+0L̃
−1
i,i,−0 .

Let Bq ⊂ U(g̃lN) be the unital subalgebra generated by U(h) and the elements Bq
p,±s ,

p = 1, . . . , N , s ∈ Z>0 . It is easy to see that the subalgebra Bq does not change if all q1,
. . . , qN are multiplied simultaneously by the same number. The algebra Bq is called the

Bethe subalgebra of U(g̃lN). For any Bq-module V we denote by Bq(V ) the image of Bq in

End(V ) and call Bq(V ) the Bethe algebra of V .

Theorem 10.3 ([KS]). The subalgebra Bq is commutative. �
The elements Bq

p,±s depend polynomially on q1, . . . , qN . Suppose q1 = 1 and qi+1/qi → 0

for all i = 1, . . . , N − 1. In this limit,

(10.18) Bq
p,+(u) = q1 . . . qp

(
Ap,+(u) L̃p,p,+0 + o(1)

)
, Bq

p,−(u) = q1 . . . qp
(
Ap,−(u) + o(1)

)
.

10.5. Difference operators. Let τ be the multiplicative shift operator acting on functions
of u as follows: τf(u) = f(hu) . For r = (r1, . . . , rN) ∈ (C×)N and i, j = 1, . . . , N , set

Xi,j,± = δi,j − ri L̃i,j,±(u)τ . Define the difference operators

D± =
∑
σ∈SN

(−1)σX1,σ(1),±X2,σ(2),± . . . XN,σ(N),± .

Then

(10.19) D± = 1 +
N∑
p=1

∑
i={16i1<...<ip6N}

ri1 . . . ripMi,i,±(u) (−τ)p ,

cf. formula (10.17)

10.6. More subalgebras of U(g̃lN). Let U±, B∞
± , B

q
± be the subalgebras of U(g̃lN) gen-

erated by U(h) and the following elements, respectively:

U±: L̃i,j,±s for i, j = 1, . . . , N , s ∈ Z>0 ;

B∞
± : B∞

p,±s for p = 1, . . . , N , s ∈ Z>0 ;

Bq
±: Bq

p,±s for p = 1, . . . , N , s ∈ Z>0 ;
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Let Z± be the subalgebras of U(g̃lN) generated over C(h) by L̃N,N,+0 , L̃
−1
N,N,+0 and the

respective elements B∞
N,±s , s ∈ Z>0. Let Z ⊂ U(g̃lN) be the subalgebra generated by Z+

and Z− . Recall that Z lies in the center of U(g̃lN).

Denote by U(g̃lN)
h the commutant of U(h) in U(g̃lN) . Recall that B∞, Bq ⊂ U(g̃lN)

h.

11. Space 1
D
V−⊗ C(h) as a module over U(g̃lN)

11.1. Action of U(g̃lN). Recall the R-matrix R(u) defined in Section 7.2. Set

(11.1) L(u) = R(0,n)(zn/u) . . .R(0,1)(z1/u)
n∏

i=1

1− hzi/u
1− zi/u

,

where the factors of (CN)⊗(n+1) = CN⊗ (CN)⊗n are labeled by 0, 1, . . . , n from left to right.

We think of L(u) as an N×N -matrix with End
(
(CN)⊗n

)
-valued entries Li,j(u), depending

on u, z1, . . . , zn, h.

Expand Li,j(u) into Laurent series at u = 0 and u =∞ :

(11.2) Li,j(u) = Li,j,+0 +
∞∑
s=1

Li,j,s u
s , Li,j(u) = Li,j,−0 +

∞∑
s=1

Li,j,−s u
−s .

Then Li,j,+s ∈ End
(
(CN)⊗n

)
⊗C[z−1, h] and Li,j,−s ∈ End

(
(CN)⊗n

)
⊗C[z, h] for s ∈ Z>0 ,

and the degree in h of each Li,j,s is at most n .

Proposition 11.1. The assignment ϕ : L̃i,j,s 7→ Li,j,s for all i, j, s, defines a homomor-

phism of graded algebras U(g̃lN)→ End
(
(CN)⊗n

)
⊗ C[z±1 ]⊗ C(h) .

Proof. The claim follows from formulae (7.3), (7.4) and the Yang-Baxter equation (7.6). �
Notice that ϕ(U+) ⊂ End

(
(CN)⊗n

)
⊗C[z−1 ]⊗C(h) and ϕ(U−) ⊂ End

(
(CN)⊗n

)
⊗C[z]⊗

C(h) .
We will indicate for a while the dependence of the homomorphism ϕ on n by denoting

it ϕn . Notice that ϕn is the composition of a tensor power of ϕ1 with the iteration of the
coproduct (10.11) :

(11.3) ϕn = ϕ⊗n
1 ◦∆(n) .

This observation will be explored in several proofs in this section.

Lemma 11.2. All operators ϕ(B∞
N,s) are scalar, and

1 +
∞∑
s=1

ϕ(B∞
N,s)u

s =
n∏

i=1

1− h−1u/zi
1− u/zi

,(11.4)

1 +
∞∑
s=1

ϕ(B∞
N,−s)u

−s =
n∏

i=1

1− hzi/u
1− zi/u

,(11.5)

where the products in the right-hand sides are expanded at u = 0 and u =∞, respectively.
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Proof. We will prove formula (11.5). The proof of formula (11.4) is similar.

Let n = 1. Let v1, . . . , vN be the standard basis of CN . To show that

ϕ
(
AN,−(u)

)
vi =

1− hz1/u
1− z1/u

vi ,

we compute the quantum minor in AN,−(u) using Lemma 10.1 and taking the permutation
π such that π(1) = i .

Formula (11.5) for general n follows from formulae (11.3) and (10.16), and the result for
n = 1. �

Corollary 11.3. We have ϕ(Z+) = C[z−1 ]Sn⊗ C(h) and ϕ(Z−) = C[z]Sn⊗ C(h) .

Proof. The images ϕ(Z∓) contain the power sums of z1, . . . , zn or z−1
1 , . . . , z−1

n , respectively.
For instance, formula (11.5) yields

log
(
1 +

∞∑
s=1

ϕ(B∞
p,−s)u

−s
)
=

∞∑
s=1

hs− 1

s
(zs1 + . . .+ zsn)u

−s .

�

Denote y = z1 . . . zn . Notice that y ∈ ϕ(Z−) and y−1∈ ϕ(Z+) . Corollary 11.3 implies

(11.6) ϕ(Z) = ϕ(Z+)⊗ C[y ] = ϕ(Z−)⊗ C[y−1 ] .

Corollary 11.4. We have

ϕ
(
U(g̃lN)

)
= ϕ(U+)⊗ C[y ] = ϕ(U+)⊗ ϕ(Z−) ,(11.7)

= ϕ(U−)⊗ C[y−1 ] = ϕ(U−)⊗ ϕ(Z+) ,

ϕ(B∞) = ϕ(B∞
+ )⊗ C[y ] = ϕ(B∞

+ )⊗ ϕ(Z−) ,(11.8)

= ϕ(B∞
− )⊗ C[y−1 ] = ϕ(B∞

− )⊗ ϕ(Z+) ,

ϕ(Bq) = ϕ(Bq
+)⊗ C[y ] = ϕ(Bq

+)⊗ ϕ(Z−) ,(11.9)

= ϕ(Bq
−)⊗ C[y−1 ] = ϕ(Bq

−)⊗ ϕ(Z+) .

Proof. The product T+(u) = L(u)
∏n

i=1(1− u/zi) is a polynomial in u . By Corollary 11.3,

the coefficients of T+(u) belong to ϕ(U+) and together with ϕ(Z+) generate ϕ(U+) . Sim-

ilarly, T−(u) = L(u)
∏n

i=1(1 − zi/u) is a polynomial in u−1 and the coefficients of T−(u)

together with ϕ(Z−) generate ϕ(U−). Since (−u)nT−(u) = yT+(u) and taking into ac-

count (11.6) , the first equalities in relation (11.7) follow. The second equalities in (11.7)

hold because y ∈ ϕ(Z−) and y−1∈ ϕ(Z+) .

Relations (11.8) and (11.9) follow by the same reasoning from the definition of the sub-

algebras involved. �
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The homomorphism ϕ : U(g̃lN) → End
(
(CN)⊗n

)
⊗ C[z±1 ] ⊗ C(h) defines an action of

the algebra U(g̃lN) on (CN)⊗n-valued functions of z1, . . . , zn and h . In what follows when

acting by X ∈ U(g̃lN) on a (CN)⊗n-valued function f(z, h) , we will write Xf instead of
ϕ(X)f . Clearly, for any i = 1, . . . , N and I ∈ Iλ we have

(11.10) L̃i,i,+0 vI = hλ1+...+λivI , L̃i,i,−0 vI = hλ1+...+λi−1vI .

Therefore, for any X ∈ U(g̃lN)
h the operator ϕ(X) preserves the subspaces (CN)⊗n

λ . We
denote by

(11.11) ϕλ : U(g̃lN)
h→ End

(
(CN)⊗n

λ

)
⊗ C[z±1 ]⊗ C(h)

the corresponding homomorphism.

Lemma 11.5. The U(g̃lN)-action commutes with the Sn-action defined by (8.2), that is,

s̃iϕ(X) = ϕ(X) s̃i for any i = 1, . . . , n− 1 and X ∈ U(g̃lN) .

Proof. The statement follows from the Yang-Baxter equation (7.6). �

Corollary 11.6. The U(g̃lN)-action commutes with the operators š1, . . . , šn−1 given by
(9.12) . �

Corollary 11.7. The homomorphism ϕ : U(g̃lN) → End
(
(CN)⊗n

)
⊗ C[z±1 ] ⊗ C(h) makes

the spaces 1
D
V−⊗ C(h) and 1

D
V−⊗ C[z±1 ]⊗ C(h) into graded U(g̃lN)-modules. �

11.2. Action of B∞ on the vectors ξI . By formulae (11.10), for any i = 1, . . . , N and
I ∈ Iλ we have

(11.12) L̃i,i,+0 ξI = hλ1+...+λi ξI , L̃i,i,−0 ξI = hλ1+...+λi−1 ξI .

Theorem 11.8. We have

(11.13) Ap,+(u) ξI = ξI

p∏
a=1

∏
i∈Ia

1− h−1u/zi
1− u/zi

, Ap,−(u) ξI = ξI

p∏
a=1

∏
i∈Ia

1− hzi/u
1− zi/u

Ep,+(u) ξI = −
∑
i∈Ip+1

ξI i ′

1− u/zi

∏
j∈Ip+1

j ̸=i

1− hzj/zi
1− zj/zi

,(11.14)

Ep,−(u) ξI =
∑
i∈Ip+1

ξI i ′
zi/u

1− zi/u
∏

j∈Ip+1

j ̸=i

1− hzj/zi
1− zj/zi

,(11.15)

Fp,+(u) ξI = −
∑
i∈Ip

ξI ′i
u/zi

1− u/zi

∏
j∈Ip
j ̸=i

1− hzi/zj
1− zi/zj

,(11.16)

Fp,−(u) ξI =
∑
i∈Ip

ξI ′i

1− zi/u
∏
j∈Ip
j ̸=i

1− hzi/zj
1− zi/zj

,(11.17)
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where the sequences I i ′ and I ′i are defined as follows: I i ′a = I ′i
a = Ia for a ̸= p, p + 1, and

I i ′p = Ip ∪ {i} , I i ′p+1= Ip+1 − {i} , I ′i
p = Ip − {i} , I ′i

p+1= Ip+1 ∪ {i} .

Proof. First observe that by formula (8.5) and Lemma 11.5, it suffices to prove formu-
lae (11.13) – (11.17) only for I = Imin. In this case, formula (11.13) for n > 1 follows from
the coproduct formula (10.12) and the n = 1 case of (11.13). The proof of (11.13) for n = 1
is straightforward by using Lemma 10.1.

The proofs of formulae (11.14) – (11.17) are similar to each other. As an example, we
prove formula (11.17). To verify (11.17) for I = Imin, observe that by formulae (8.6),
(10.12), (10.15), (11.13), we have Fp,−(u) ξImin =

∑
i∈Imin

p
ci ξImin,′i . The smallest element of

Imin
p equals imin = λ1 + . . . + λp−1 + 1. The coefficient cimin

can be calculated due to the
triangularity property (8.6), and does have the required form. The coefficient ci for other
i ∈ Imin

p can be obtained from cimin
by permuting zi and zimin

because Imin is invariant
under the transposition of i and imin . Thus all the coefficients ci are as required, which
proves formula (11.17). �
Remark. Notice that the right-hand sides of formulae (11.14) and (11.15) coincide as ra-
tional functions. This function is expanded at u = 0 in (11.14) and at u = ∞ in (11.15).
Similarly, the right-hand sides of (11.16) and (11.17) are the same rational function that is
expanded at u = 0 in (11.16) and at u =∞ in (11.17).

Remark. The (CN)⊗n-valued function W̃•(t, z, h) in formula (9.9) is known as the off-shell
Bethe vector. The values of that function at t = zI , I ∈ Iλ , give the eigenvectors ξI of
the Bethe algebra B∞, see formula (9.11).

11.3. Isomorphism ψλ : C[z±1]Sλ⊗ C(h)→ ϕλ(B∞) . Let C[z±1]Sλ be the algebra of
Laurent polynomials such that f(z) = f(zσ) for any σ ∈ Smin

λ . For g ∈ C[z±1]Sλ⊗ C(h) ,
define ψλ(g) ∈ End

(
(CN)⊗n

λ

)
⊗ C(z, h) by the rule

(11.18) ψλ(g) : ξI 7→ g(zI , h) ξI , I ∈ Iλ ,
see Lemma 8.3. The map

(11.19) ψλ : C[z±1]Sλ⊗ C(h) → End
(
(CN)⊗n

λ

)
⊗ C(z, h) .

is clearly a monomorphism of graded algebras.

Lemma 11.9. For any f ∈ C[z±1]Sn⊗ C(h) , we have ψλ(f) = id⊗ f . �
Theorem 11.10. We have ψλ

(
C[z±1]Sλ⊗ C(h)

)
= ϕλ(B∞) .

Proof. By formulae (11.13), ϕλ(B∞) is generated over C(h) by the images of the power
sums zs1 + . . . + zs

λ(p) , where λ(p) = λ1 + . . . + λp , for all p = 1, . . . , N and s ∈ Z , cf. the
proof of Corollary 11.3. �
Corollary 11.11. We have ψλ

(
C[z±1]Sλ⊗ C(h)

)
⊂ End

(
(CN)⊗n

λ

)
⊗ C[z±1 ]⊗ C(h) . �

For any g ∈ C[z±1, h±1 ]Sλ , the operator ψλ(g) preserves the space 1
D
V−
λ , see Lemma 9.8

and formula (9.15). The restriction of ψλ(g) to 1
D
V−
λ can be also presented as follows:

(11.20) ψλ(g) = ϑλ ◦m(g) ◦ ϑ−1
λ ,
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where m(g) is the operator of multiplication by g on C[z±1, h±1 ]Sλ , see (9.14).

Let A be a commutative algebra. The algebra A considered as an A-module with any
element of A acting by multiplication on itself is called the regular representation of A.
Theorem 11.12. The C[z±1]Sn⊗ C(h)-module isomorphism

(11.21) ϑλ : C[z±1]Sλ⊗ C(h) → 1
D
V−
λ ⊗ C(h)

and the C[z±1]Sn⊗ C(h)-algebra isomorphism ψλ : C[z±1]Sλ⊗ C(h) → ϕλ(B∞) identify the

ϕλ(B∞)-module 1
D
V−
λ ⊗ C(h) with the regular representation of C[z±1]Sλ⊗ C(h) .

The isomorphism ϑλ in (11.21) is the natural extension of the isomorphism (9.14) denoted
by the same letter.

12. Space KT (Xn)⊗ C(h) as a module over U(g̃lN)

12.1. Action of U(g̃lN) on KT (Xn)⊗ C(h) . Recall

KT (T
∗Fλ) = C[Γ±1 ]Sλ⊗ C[z±1, h±1 ]

/⟨
f(Γ) = f(z) , f ∈ C[z±1]Sn

⟩
and

KT (Xn) =
⊕

|λ|=n

KT (T
∗Fλ) .

Define the graded algebra monomorphism

µλ : KT (T
∗Fλ)⊗ C(h) → End

(
(CN)⊗n

λ

)
⊗ C[z±1 ]⊗ C(h)

by the rule
µλ

(
[f(Γ, z, h)]) : ξI 7→ f(zI ,z, h) ξI , I ∈ Iλ ,

for any f ∈ C[Γ±1 ]Sλ⊗ C[z±1 ]⊗ C(h) , cf. (11.18). Let

µ : KT (Xn)⊗ C(h) → End
(
(CN)⊗n

)
⊗ C[z±1 ]⊗ C(h)

be the direct sum of the monomorphisms µλ .

Lemma 12.1. For any f ∈ C[z±1]Sn⊗ C(h) , we have µ
(
[1⊗ f ]

)
= id⊗ f . �

Theorem 12.2. We have the induced isomorphisms of graded algebras

µλ : KT (T
∗Fλ)⊗ C(h) → ϕλ(B∞)⊗ C[z±1 ] ,

µ : KT (Xn)⊗ C(h) → ϕ(B∞)⊗ C[z±1 ] ,

where the homomorphisms ϕ and ϕλ are defined by Lemma 11.1 and formula (11.11).

Proof. The statement follows from Theorem 11.10. �
Consider the graded C[z±1 ]⊗ C(h)-module isomorphism

(12.1) ν : KT (Xn)⊗ C(h) → 1
D
V−⊗ C[z±1 ]⊗ C(h) ,

that is the natural extension of the isomorphism (9.16) denoted by the same letter.

Theorem 12.3. The C[z±1 ] ⊗ C(h)-module isomorphism ν : KT (Xn) ⊗ C(h) → 1
D
V−⊗

C[z±1 ]⊗C(h) and the C[z±1 ]⊗C(h)-algebra isomorphism µ :KT (Xn) → ϕ(B∞)⊗C[z±1 ]

identify the ϕ(B∞) ⊗ C[z±1 ]-module 1
D
V−⊗ C[z±1 ] ⊗ C(h) with the regular representation

of KT (Xn)⊗ C(h) . �
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Recall that the space 1
D
V−⊗ C[z±1 ] ⊗ C(h) is a U(g̃lN)-module, see Corollary 11.7.

Thus the isomorphism (12.1) makes KT (Xn)⊗ C(h) into a U(g̃lN)-module. We denote the

U(g̃lN)-module structure on KT (Xn)⊗ C(h) by ρ .

Let Kλ = KT (T
∗Fλ)⊗ C(h) . For any i = 1, . . . , N and f ∈ Kλ ,

(12.2) L̃i,i,+0 f = hλ1+...+λi f , L̃i,i,−0 f = hλ1+...+λi−1f ,

see (11.12). Thus Kλ are eigenspaces for the action of the subalgebra U(h) ⊂ U(g̃lN) .

The operators ρ
(
Ap,±(u)

)
, p = 1, . . . , N , preserve the subspaces Kλ and act as follows:

ρ
(
Ap,+(u)

)
: [f(Γ,z, h)] 7→

[
f(Γ,z, h)

p∏
a=1

λa∏
i=1

1− h−1u/γa,i
1− u/γa,i

]
,(12.3)

ρ
(
Ap,−(u)

)
: [f(Γ,z, h)] 7→

[
f(Γ,z, h)

p∏
a=1

λa∏
i=1

1− hγa,i/u
1− γa,i/u

]
,

for any f ∈ C[Γ±1 ]Sλ⊗ C[z±1 ]⊗ C(h), see (11.13) and (9.16).

For p = 1, . . . , n− 1, let αp = (0, . . . , 0, 1,−1, 0, . . . , 0), with p− 1 first zeros.

Theorem 12.4. We have
ρ
(
Ep,±(u)

)
: Kλ−αp 7→ Kλ ,

ρ
(
Ep,+(u)

)
: [f ] 7→

[
−

λp∑
i=1

f(Γ ′i, z, h)

1− u/γp,i

λp∏
j=1
j ̸=i

1

1− γp,i/γp,j

λp+1∏
k=1

(1− hγp+1,k/γp,i)

]
,

ρ
(
Ep,−(u)

)
: [f ] 7→

[ λp∑
i=1

f(Γ ′i,z, h)
γp,i/u

1− γp,i/u

λp∏
j=1
j ̸=i

1

1− γp,i/γp,j

λp+1∏
k=1

(1− hγp+1,k/γp,i)

]
,

ρ
(
Fp,±(u)

)
: Kλ+αp 7→ Kλ ,

ρ
(
Fp,+(u)

)
: [f ] 7→

[
−

λp+1∑
i=1

f(Γi ′, z, h)
u/γp+1,i

1− u/γp+1,i

×

×
λp+1∏
j=1
j ̸=i

1

1− γp+1,j/γp+1,i

λp∏
k=1

(1− hγp+1,i/γp,k)

]
,

ρ
(
Fp,−(u)

)
: [f ] 7→

[ λp+1∑
i=1

f(Γi ′, z, h)

1− γp+1,i/u

λp+1∏
j=1
j ̸=i

1

1− γp+1,j/γp+1,i

λp∏
k=1

(1− hγp+1,i/γp,k)

]
,
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where
Γ ′i = (Γ1 ; . . . ; Γp−1 ; Γp − {γp,i}; Γp+1 ∪ {γp,i}; Γp+2 ; . . . ; ΓN) ,

Γi ′ = (Γ1 ; . . . ; Γp−1 ; Γp ∪ {γp+1,i}; Γp+1 − {γp+1,i}; Γp+2 ; . . . ; ΓN) .

Proof. The statement follows from Corollary 9.9 and Theorem 11.8. �

Remark. Notice that the expressions for ρ
(
Ep,±(u)

)
coincide as rational functions, and

the same is true for ρ
(
Fp,±(u)

)
. These functions are expanded at u = 0 for ρ

(
Ep,+(u)

)
,

ρ
(
Fp,+(u)

)
, and at u =∞ for ρ

(
Ep,−(u)

)
, ρ

(
Fp,−(u)

)
.

Remark. The U(g̃lN)-action ρ on KT (Xn) defined via the isomorphism (12.1), that is,

with the help of the map Stab id introduced in Section 7 is related to the Uq(g̃lN)-action

introduced in [GV, Vas1, Vas2] in terms of the convolution operators acting on KT (Xn).

More precisely, let

Qλ(Γ, h) =
∏

16a<b6n

λa∏
i=1

λb∏
j=1

(1− hγb,j/γa,i) .

Denote by K̃λ the ideal in Kλ generated by [Qλ ] . Since [Qλ ] is not a zero divisor, the

map χλ : Kλ→ K̃λ , [f ] 7→ [Qλf ] is an isomorphism of vector spaces.

Let K̃ =
⊕

|λ|=n K̃λ, and let χ : KT (Xn) → K̃ be the direct sum of isomorphisms χλ .

It is straightforward to verify that K̃ is a U(g̃lN)-submodule of KT (Xn) . This defines a

new U(g̃lN)-action ρ+ on KT (Xn) by the rule: ρ+(X) = χ−1ρ(X)χ for any X ∈ U(g̃lN) .

The U(g̃lN)-actions ρ and ρ+ on KT (Xn) are conjecturally not isomorphic, but become

isomorphic as actions on KT (Xn)⊗ C(z, h) since [Qλ] is invertible in Kλ ⊗ C(z, h).
Now the U(g̃lN)-action ρ+ essentially coincides with the Uq(g̃lN)-action introduced in

[GV, Vas1, Vas2] in terms of the convolution operators acting on KT (Xn), cf. formulae in
Theorem 12.4 and in [Vas2, page 287].

12.2. Topological interpretation of the actions in Theorem 12.4. Consider the vec-
tors µ′ = (λ1, . . . , λp− 1, 1, λp+1, . . . , , λN) (if λp > 0), and µ′′= (λ1, . . . , λp, 1, λp+1− 1, . . . ,
λN) (if λp+1 > 0). There are natural forgetful maps

(12.4) Fλ−αp

π′
1←− Fµ′

π′
2−→ Fλ , Fλ+αp

π′′
1←− Fµ′′

π′′
2−→ Fλ .

The rank λp − 1, 1, λp+1 bundles over Fµ′ with fibers Fp/Fp−1, Fp+1/Fp, Fp+2/Fp+1 will be
respectively denoted by A′, B′, C ′. The rank λp, 1, λp+1 − 1 bundles over Fµ′′ with fibers
Fp/Fp−1, Fp+1/Fp, Fp+2/Fp+1 will be respectively denoted by A′′, B′′, C ′′.

For a (C×)n-equivariant bundle ξ, let e(ξ) be its equivariant K-theoretic Euler class. We
can make the extra C× (whose Chern root is h) act on any bundle by fiberwise multiplication.
The equivariant Euler class with this extra action will be denoted by eh(ξ).

Recall that an equivariant proper map f : X → Y induces the pullback f ∗ : KT (Y ) →
KT (X) and push-forward (also known as Gysin) f∗ : KT (X)→ KT (Y ) maps.
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Theorem 12.5. The operators ρ
(
Ep,±(u)

)
, ρ

(
Fp,±(u)

)
, are equal to the following topological

operations

ρ
(
Ep,+(u)

)
: x 7→ (−1)λpπ′

2∗

(
π

′∗
1 (x) ·

1

1− u/[B′]

eh
(
Hom(C ′, B′)

)
[ΛtopA′]

[B′]λp−1

)
,

ρ
(
Ep,−(u)

)
: x 7→ (−1)λp−1π′

2∗

(
π

′∗
1 (x) ·

[B′]/u

1− [B′]/u

eh(Hom
(
C ′, B′)

)
[ΛtopA′]

[B′]λp−1

)
,

ρ
(
Fp,+(u)

)
: x 7→ (−1)λp+1π′′

2∗

(
π

′′∗
1 (x) · u/[B′′]

1− u/[B′′]

eh
(
Hom(B′′, A′′)

)
[B′′]λp+1−1

[ΛtopC ′′]

)
,

ρ
(
Fp,−(u)

)
: x 7→ (−1)λp+1−1π′′

2∗

(
π

′′∗
1 (x) · 1

1− [B′′]/u

eh(Hom
(
B′′, A′′)

)
[B′′]λp+1−1

[ΛtopC ′′]

)
,

Proof. If we write down equivariant localization formulae for the given topological operations
we obtain the formulae of Theorem 12.4. �

13. Bethe algebra Bq and discrete Wronskian

13.1. Wronski map. Throughout this section we use the following grading of functions in
the variables γi,j , zi , and h : deg γi,j = deg zi = 1 for all i = 1, . . . , N , j = 1, . . . , λi , and
deg h = 0 , cf. Section 9.4.

Let q1, . . . , qN be distinct nonzero complex numbers. Set

(13.1) W q(u) = det

(
q i−j
i

λi∏
k=1

(1− hi−jγi,k/u)

)N

i,j=1

.

The function W q(u) is essentially a discrete Wronskian (multiplicative Casorati determinant)
of functions

(13.2) gi(u) = q
− log u/ log h
i

λi∏
k=1

(
1− hi−1γi,k/u) . i = 1, . . . , N ,

namely,

W q(u) = det
(
gi(uh

j−1)
)N
i,j=1

N∏
i=1

q
i−1+log u/ log h
i .

Let C[Γ]Sλ be the algebra of polynomials in the variables γi,j invariant under the per-
mutations of the variables with the same first subscript. Define the elements eq0(Γ, h), . . . ,

eqN(Γ, h) ∈ C[Γ]Sλ⊗ C[h±1 ] via the coefficients of W q(u) :

W q(u) =
N∑
p=0

(−1)p eqp(Γ)u−p
∏

16i<j6N

(1− qj/qi) .

In particular,
eq0(Γ, h) = 1 , eqN(Γ, h) = γ1,1 . . . γN,λN

.

Define the Wronski map

(13.3) Wrqλ : C[z]Sn → C[Γ]Sλ⊗ C[h±1 ]
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to be the algebra homomorphism such that

ep(z) 7→ eqp(Γ, h) , p = 1, . . . , N ,

where ep(z) is the p-th elementary symmetric polynomial of z1, . . . , zn . The map Wrqλ
makes the space C[Γ]Sλ⊗ C[h±1 ] into the graded C[z]Sn-module.

Lemma 13.1. The map Wrqλ is injective.

Proof. Observe that eqp(Γ, 1) = ep(γ1,1, . . . , γN,λN
) for all p = 0, . . . , N . The statement

follows. �

The Wronski map (13.3) induces the monomorphism C[z]Sn⊗C(h)→ C[Γ]Sλ⊗C(h) that
will be also denoted Wrqλ .

13.2. Polynomial isomorphisms. Recall the multiplicative shift operator τ acting on
functions of u : τf(u) = f(hu). Let

(13.4) D = 1 +
N∑
p=1

bqp(u) (−τ)p .

be the N-th order linear difference operator annihilating the functions g1(u/h), . . . , gN(u/h) .
Its coefficients bq1(u), . . . , b

q
N(u) are described below, see formula (13.6). We set bq0(u) = 1.

Let x be a complex variable. Set

(13.5) Ŵ q(u, x) = det

(
q i−j
i

λi∏
k=1

(1− hi−jγi,k/u)

)N

i,j=0

,

where q0 = x−1 and λ0 = 0. Then

(13.6)
Ŵ q(u, x)

W q(u)
= 1 +

N∑
p=1

bqp(u) (−x)p ,

and the coefficients bqp(u) have the following expansion at u =∞ :

(13.7) bqp(u) = ep(q1, . . . , qN) +
∞∑
s=1

bqp,−su
−s ,

where ep(q1, . . . , qN) is the p-th elementary symmetric polynomial. Notice that

(13.8) bqN(u) = q1 . . . qN
W q(u/h)

W q(u)
.

Proposition 13.2. The elements bqp,−s , p = 1, . . . , N , s ∈ Z>0 , together with C(h)
generate the algebra C[Γ]Sλ⊗ C(h) .

Proof. Recall the functions g1, . . . , gN , see (13.2), and the difference operator (13.4). The
equation Dgi(u/h) = 0 yields

(13.9)
N∑
p=0

(−qi)−p bqp(u)

λi∏
k=1

(1− hi−pγi,k/u) = 0 .
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Let ej(Γi) be the j -th elementary symmetric polynomial of γi,1, . . . , γi,λi
. Collecting the

coefficient of u−j in (13.9), we get that ej(Γi) = Cj , where Cj is expressed via the elements
bqk,s for k 6 j , integer powers of h , and em(Γi) for m < j . The proposition follows. �

Recall the subalgebras Bq
− and Z− defined in Section 10.6, and the homomorphism ϕλ

given by (11.11). Corollary 11.3 yields

ϕλ(Z−) = C[z]Sn⊗ C(h) ⊂ End
(
(CN)⊗n

λ

)
⊗ C[z]⊗ C(h) .

Theorem 13.3. The assignment bqp,−s 7→ ϕλ(B
q
p,−s) , p = 1, . . . , N , s ∈ Z>0 , defines an

isomorphism

(13.10) ψq
λ : C[Γ]Sλ⊗ C(h) → ϕλ(Bq

−)

of graded C[z]Sn⊗ C(h)-algebras. Here the algebra C[z]Sn⊗ C(h) acts on C[Γ]Sλ⊗ C(h)
via the Wronski map Wrqλ.

Proof. The proof of Theorem 13.3 is similar to the analogous proofs of [MTV2, Theorem 6.3]
and [MTV3, Theorem 5.2, item (i)]. The proof is based on the Bethe ansatz technique. The
details will be published elsewhere. �

Recall the spaces 1
D
Vλ , 1

D
Ṽ−
λ defined in Sections 9.2, 9.3, and the isomorphism ϑ̃λ , see

Lemma 9.12. Keeping the same notation, we will think of ϑ̃λ as the isomorphism C[Γ]Sλ⊗
C(h)→ 1

D
Ṽ−
λ ⊗C(h) , where we identified C[Γ]Sλ with C[z]Sλ by the rule f(Γ) 7→ f(zImin)

for any f ∈ C[Γ]Sλ , and replaced C[h±1 ] by C(h) .
Define the homomorphism

ϑ̃q
λ : C[Γ]Sλ⊗ C(h) → 1

D
Vλ ⊗ C(h) ,(13.11)

f 7→
∑
I∈Iλ

1

R(zI)

N∏
a=1

∏
i∈Ia

zλ
(a)−n

i ψq
λ(f) ξI ,

cf. (9.15) and (9.17). The map ϑ̃q
λ is graded.

Lemma 13.4. We have ϑ̃q
λ

(
C[Γ]Sλ⊗ C(h)

)
⊂ 1

D
Ṽ−
λ ⊗ C(h) .

Proof. Let f ∈ C[Γ]Sλ⊗ C(h) . Then ϑ̃q
λ(f) = ψq

λ(f) ϑ̃λ(1) . By Theorem 13.3 and Lemma

11.5, ψq
λ(f) ∈ End

(
(CN)⊗n

λ

)
⊗C[z]⊗C(h) , and ψq

λ(f) commutes with the Sn-action (8.2).

Since ϑ̃λ(1) ∈ 1
D
Ṽ−
λ , the statement follows. �

Theorem 13.5. The map ϑ̃q
λ : C[Γ]Sλ⊗C(h)→ 1

D
Ṽ−
λ ⊗C(h) is an isomorphism of graded

C[z]Sn⊗ C(h)-modules, where C[z]Sn⊗ C(h) acts on C[Γ]Sλ⊗ C(h) via the Wronski map

Wrqλ.

Proof. Notice that the graded components of the spaces C[z]Sn⊗ C(h) , C[Γ]Sλ ⊗ C(h) ,
1
D
Ṽ−
λ ⊗ C(h) are finite-dimensional C(h)-modules.

By Theorem 13.3, the map ϑ̃q
λ is a homomorphism of graded C[z]Sn⊗C(h)-modules. Its

kernel is an ideal in C[Γ]Sλ⊗ C(h) that has zero intersection with Wrqλ
(
C[z]Sn⊗ C(h)

)
,
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hence, it is the zero ideal. Thus the composition (ϑ̃λ)
−1 ϑ̃q

λ : C[Γ]Sλ ⊗ C(h) → C[Γ]Sλ ⊗
C(h) is an injective graded C(h)-endomorphism, that sends 1 to 1, since ϑ̃q

λ(1) = ϑ̃λ(1) .

Therefore, both (ϑ̃λ)
−1 ϑ̃q

λ and ϑ̃q
λ are bijections. �

Corollary 13.6. The C[z]Sn⊗ C(h)-module isomorphism ϑ̃q
λ : C[Γ]Sλ⊗ C(h) → 1

D
Ṽ−
λ ⊗

C(h) and the C[z]Sn⊗ C(h)-algebra isomorphism ψq
λ : C[Γ]Sλ⊗ C(h) → ϕλ(Bq

−) identify

the ϕλ(Bq
−)-module 1

D
Ṽ−
λ ⊗ C(h) with the regular representation of C[Γ]Sλ⊗ C(h) . Here

C[z]Sn⊗ C(h) acts on C[Γ]Sλ⊗ C(h) via the Wronski map Wrqλ. �
13.3. K-theoretic isomorphisms. Let ∆(q1, . . . , qN) =

∏
16i<j6N (1− qj/qi) . Define the

algebra

(13.12) Kq
λ = C[Γ±1]Sλ⊗ C[z±1, h±1 ]

/⟨
W q(u) = ∆(q1, . . . , qN)

n∏
a=1

(1− za/u)
⟩
.

Let y = z1 . . . zn . Since in the algebra Kq
λ ,

y =
∆(q1h

λ1, . . . , qNh
λN )

∆(q1, . . . , qN)

N∏
i=1

λi∏
j=1

γi,j ,

we have

(13.13) Kq
λ ⊗ C(h) = C[Γ]Sλ⊗ C[z, y−1 ]⊗ C(h)

/⟨
W q(u) = ∆(q1, . . . , qN)

n∏
a=1

(1− za/u)
⟩
.

Example. Let N = n = 2 and λ = (1, 1) . Then

W q(u) = det

(
1− γ1,1/u q−1

1 (1− h−1γ1,1/u)

q2(1− hγ2,1/u) 1− γ2,1/u

)
,

and the relations in Kq
λ are

(13.14) γ1,1
q1− h−1q2
q1− q2

+ γ2,1
q1− hq2
q1− q2

= z1 + z2 , γ1,1 γ2,1 = z1z2 .

It is easy to see that the algebra Kq
λ does not change if all q1, . . . , qN are multiplied

simultaneously by the same number. Notice that in the limit qi+1/qi → 0 for all i = 1, . . . ,
N − 1, the relations in Kq

λ turn into the relations in KT (T
∗Fλ), see (2.3).

Theorem 13.7. The isomorphism (13.10) induces the isomorphism

(13.15) µq
λ : Kq

λ ⊗ C(h) → ϕλ(Bq)⊗ C[z±1 ]

of graded C[z±1 ]⊗ C(h)-algebras.

Proof. The statement follows from formulae (13.13) and (11.9). �
Expand the coefficients bq1(u), . . . , b

q
N(u) of the difference operator D , see (13.4), at u = 0:

(13.16) bqp(u) =
(
ep(q1h

λ1, . . . , qNh
λN ) +

∞∑
s=1

bqp,su
s
)
(−u)−n

N∏
i=1

λi∏
j=1

γi,j ,

where ep(q1h
λ1 , . . . , qNh

λN ) is the p-th elementary symmetric polynomial.
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Corollary 13.8. We have µq
λ

(
[bqp,±s ]

)
= ϕλ(B

q
p,±s) for all p = 1, . . . , N , s ∈ Z>0 . �

Lemma 13.9. The elements [bqp,±s ] , p = 1, . . . , N , s ∈ Z>0 , together with C(h) generate
the algebra Kq

λ ⊗ C(h) .

Proof. By formula (13.8), [bqN(u)] = q1 . . . qNh
n
[∏n

a=1 (1− h−1u/za)
/
(1− u/za)

]
. Hence,

the ideal generated by the elements bqN,−s for all s ∈ Z>0 and C(h) contains all symmetric

polynomials in z−1
1 , . . . , z−1

n , in particular, z−1
1 . . . z−1

n . Therefore, the statement follows from
equality (13.13) and Proposition 13.2. �

Lemma 13.9 implies that statement of Corollary 13.8 can serve as a definition of the
isomorphism µq

λ .

Theorem 13.10. The map

(13.17) ν q
λ : Kq

λ ⊗ C(h) → 1
D
Vλ ⊗ C(h) , f 7→

∑
I∈Iλ

1

R(zI)
µq
λ(f) ξI ,

cf. (13.11), is an isomorphism of graded C[z±1]Sn⊗ C(h)-modules.

Proof. Let r =
[∏N

a=1

∏
i∈Ia z

n−λ(a)

i

]
∈ Kq

λ . The isomorphism ϑ̃q
λ : C[Γ]Sλ ⊗ C(h) →

1
D
Ṽ−
λ ⊗ C(h) , see Theorem 13.5, induces the isomorphism ν̃ q

λ : Kq
λ ⊗ C(h) → 1

D
Vλ ⊗ C(h)

such that ν q
λ(f) = ν̃ q

λ(fr) . Since the element r is invertible, the statement follows. �
Corollary 13.11. The C[z±1 ]⊗ C(h)-module isomorphism ν q

λ : Kq
λ ⊗ C(h) → 1

D
V−
λ ⊗

C[z±1 ] ⊗ C(h) and the C[z±1 ]⊗ C(h)-algebra isomorphism µq
λ : Kq

λ ⊗ C(h) → ϕλ(Bq) ⊗
C[z±1 ] identify the ϕλ(Bq) ⊗ C[z±1 ]-module 1

D
V−
λ ⊗ C[z±1 ] ⊗ C(h) with the regular repre-

sentation of Kq
λ ⊗ C(h) .

Proof. The statement follows from Theorems 13.7 and 13.10. �
Recall KT (Xn) =

⊕
|λ|=nKT (T

∗Fλ) , see (2.2). Let

νλ : KT (T
∗Fλ)⊗ C(h) → 1

D
V−
λ ⊗ C[z±1 ]⊗ C(h)

be the graded C[z±1 ]⊗C(h)-module isomorphism obtained by the restriction of the isomor-
phism (12.1). By Theorems 12.3 and 13.10, the composition βλ = (ν q

λ)
−1νλ ,

(13.18) βλ : KT (T
∗Fλ)⊗ C(h) → Kq

λ ⊗ C(h)

is a graded C[z±1 ]⊗ C(h)-module isomorphism. Notice βλ(1) = 1 since ν q
λ(1) = νλ(1) .

Recall the U(g̃lN)-action ρ on KT (Xn) ⊗ C(h), see formulae (12.3) and Theorem 12.4.
Let

ρλ : U(g̃lN)
h → End

(
KT (T

∗Fλ)
)
⊗ C(h)

be the induced C(h)-algebra homomorphism. Recall the generators bqp,±s of the algebra K
q
λ ,

see (13.7), (13.16).

Lemma 13.12. The assignment [bqp,±s ] 7→ ρλ(B
q
p,±s) , p = 1, . . . , N , s ∈ Z>0 , defines a

graded C[z±1]Sn⊗ C(h)-algebra isomorphism αλ : Kq
λ ⊗ C(h) → ρλ(Bq) .
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Proof. By the definition of ρλ , we have ρλ(X) = (νλ)
−1 ρλ(X) νλ for any X ∈ U(g̃lN)

h .

Thus Corollary 13.8 and Lemma 13.9 imply that

(13.19) αλ(f) = (νλ)
−1µq

λ(f) νλ

for any f ∈ Kq
λ , and Lemma 13.12 follows from Theorems 12.3 and 13.7. �

Corollary 13.13. The C[z±1 ]⊗ C(h)-module isomorphism β−1
λ : Kq

λ⊗C(h)→ KT (T
∗Fλ)⊗

C(h) and the C[z±1 ]⊗ C(h)-algebra isomorphism αλ : Kq
λ ⊗ C(h) → ρλ(Bq) ⊗ C[z±1 ]

identify the ρλ(Bq) ⊗ C[z±1 ]-module KT (T
∗Fλ) ⊗ C(h) with the regular representation of

Kq
λ ⊗ C(h) . �

13.4. New multiplication on KT (T
∗Fλ) ⊗ C(h) . Define a new commutative associative

multiplication ∗q on KT (T
∗Fλ) ⊗ C(h) , depending on the parameters q1, . . . , qN , by the

rule:
(13.20) βλ(f ∗qg) = βλ(f) βλ(g)

for any f, g ∈ KT (T
∗Fλ)⊗ C(h) .

Lemma 13.14. For any f ∈ KT (T
∗Fλ)⊗ C(h) , the operator f∗q coincides with the oper-

ator αλ

(
βλ(f)

)
∈ ρλ(Bq) . The map

KT (T
∗Fλ)⊗ C(h) → ρλ(Bq) , f 7→ f∗q ,

is an isomorphism of graded C[z±1 ]⊗ C(h)-modules.

Proof. Using the equality ν q
λ = βλ νλ , formula (13.19), and Corollary 13.11, we have

αλ

(
βλ(f)

)
g = (νλ)

−1
(
µq
λ

(
βλ(f)

)
νλ(g)

)
= (νλ)

−1
(
µq
λ

(
βλ(f)

)
ν q
λ

(
βλ(g)

))
= (νλ)

−1
(
ν q
λ

(
βλ(f)βλ(g)

))
= (βλ)

−1
(
βλ(f)βλ(g)

)
= f ∗q g .

Since both αλ and βλ are graded C[z±1 ] ⊗ C(h)-module isomorphisms, the statement
follows. �
13.5. Conjecture on the quantum equivariant K-theory. The quantum deformation
of the equivariant K-theory algebra was introduced by Givental and Lee, motivated, in
particular, by a study of the relationship between Gromov-Witten theory and integrable
systems, see [G, GL]. The quantum multiplication on KT (T

∗Fλ) depends on new parameters
q2/q1, . . . , qN/qN−1 and tends to the ordinary multiplication on KT (T

∗Fλ) as all of these
ratios tend to zero.

Conjecture 13.15. The multiplication (13.20) on KT (T
∗Fλ) ⊗ C(h) coincides with the

quantum multiplication.

This conjecture is the K-theoretic analog of the main theorem in [MO] that describes the
quantum multiplication in the equivariant cohomology of Nakajima varieties. The case of the
quantum multiplication in the equivariant cohomologies of the varieties T ∗Fλ was considered
also in [GRTV, RTV, TV4].

Lemmas 13.12 and 13.14 mean that modulo Conjecture 13.15, the quantum equivariant
K-theory algebra QKT (T

∗Fλ) ⊗ C(h) is isomorphic to the Bethe algebra ρλ(Bq) and is
isomorphic to the algebra Kq

λ ⊗ C(h) .
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13.6. Limit h→ 0. Let MQ(u) be the N×N matrix with entries MQ
i,j = 0 for |i− j | > 1,

MQ
i,i(u) =

λi∏
k=1

(1− γi,k/u) , i = 1, . . . , N ,

MQ
i+1,i(u) = Qi+1/Qi , MQ

i,i+1(u) = (−u)−λiγi,1 . . . γi,λi
, i = 1, . . . , N − 1 ,

depending on parameters Q1, . . . , QN . Set W̃
Q(u) = detMQ(u) .

Lemma 13.16. Let λi > 0 and qi = Qih
λ1+...+λi−1 for all i = 1, . . . , N . Then

W q(u) → W̃Q(u)
as h→ 0.

Proof. The proof is similar to that of [GRTV, Theorem 7.3] . �

Therefore, in the limit h→ 0 such that qih
−λ1−...−λi−1 are fixed for all i = 1, . . . , N , the

algebra Kq
λ turns into the algebra

K̃Q
λ = C[Γ±1]Sλ⊗ C[z±1 ]

/⟨
W̃Q(u) =

n∏
a=1

(1− za/u)
⟩
.

For example, if N = n = 2 and λ = (1, 1), then

W̃Q(u) = det

(
1− γ1,1/u −γ1,1/u
Q2/Q1 1− γ2,1/u

)
and the relations in K̃Q

λ are

γ1,1 (1−Q2/Q1) + γ2,1 = z1 + z2 , γ1,1 γ2,1 = z1z2 ,

cf. (13.14)

Conjecture 13.17. The quantum equivariant K-theory algebra QK(C×)n(Fλ) is isomorphic

to the algebra K̃Q
λ .

This conjecture is the K-theoretic version of the observation in [GRTV, Theorem 7.13]
on how to obtain the presentation of the quantum equivariant cohomology QKGLn(Fλ)
in [AS, Formula (2.22)] from the presentation of the quantum equivariant cohomology
QKGLn×C×(T ∗Fλ) in [GRTV, Theorem 7.10].

14. Appendix 1. Weight functions specialize to Grothendieck polynomials

Let α = (α1, α2, . . . ) and β = (β1, β2, . . . ) be two sequences of variables. Double Grothen-
dieck polynomials Gw(α; β) were introduced by Lascoux and Schutzenberger in [LS] by the
following recursion.

• For the longest permutation σ0 ∈ Sn, define

(14.1) Gσ0 =
∏

i+j6n

(1− βi/αj) .
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• Let si be the i-th elementary transposition. If the length of σsi is larger than the
length of σ, then

(14.2) Gσ = παi,αi+1
(Gσsi),

where παi,αi+1
is the trigonometric difference operator, see (6.22).

Here is the list of double Grothendieck polynomials for σ ∈ S3:

G321 = (1− β1/α1) (1− β2/α1) (1− β1/α2) , G231 = (1− β1/α1) (1− β1/α2) ,

G312 = (1− β1/α1) (1− β2/α1) , G213 = 1− β1/α1,

G132 = 1− β1β2/(α1α2), G123 = 1 .

Note that the usual choice of variables is xi = 1− 1/αi and yi = 1−βi, see for example [LS].
In those variables the Gw’s are indeed polynomials.

Consider the substitution t
(k)
a = ua, h = 0 into the weight function WI , and denote it by

WI .
For

I = ({i(1)1 < . . . < i
(1)
λ1
}, {i(2)1 < . . . < i

(2)
λ2
}, . . . , {i(N)

1 < . . . < i
(N)
λN
})

in Iλ, define σI ∈ Sn to be the permutation that maps the ordered list n, n− 1, . . . , 1 to the
ordered list

i
(1)
λ1
, i

(1)
λ1−1, . . . , i

(1)
1 , i

(2)
λ2
, i

(2)
λ2−1, . . . , i

(2)
1 , . . . , i

(N)
λN
, i

(N)
λN−1, . . . , i

(N)
1 .

Observe that σI and σJ can belong to the same group Sn even if the their λ’s are different
as long as their corresponding n’s are the same. For example σ({1},{3},{2}) = σ({1},{2,3}) = 231.

Theorem 14.1. We have

WI = GσI
(z−1

n , z−1
n−1, . . . ;u

−1
1 , u−1

2 , . . .).

Proof. For I ∈ Iλ let

Ǐ = ({i(1)λ1
}, {i(1)λ1−1}, . . . , {i

(1)
1 }, {i

(2)
λ2
}, {i(2)λ2−1}, . . . , {i

(2)
1 }, . . . , {i

(N)
λN
}, {i(N)

λN−1}, . . . , {i
(N)
1 })

in I(1,1,...,1). We have σI = σǏ and WI = WǏ . The first claim is obvious. Although the
functions WI are WǏ are rather different (e.g. they depend on different sets of variables) it
can be seen from the definition of the weight functions that after the substitutions indicated
by W 7→ W they are equal. Hence it is enough to prove the theorem for λ = (1, 1, . . . ,
1) ∈ Zn

>0.
For this special case we will show that initial conditions and recursions for the two sides

of the statement agree. Indeed we have

W{1},{2},...,{n} =
n−1∏
j=1

n∏
i=j+1

(1− zi/uj),

and Gn,n−1,...,1(z
−1
n , z−1

n−1, . . . ;u
−1
1 , u−1

2 , . . .) is the same expression because of (14.1). Relations

(6.20), (6.23) for W read

Wsa,a+1(I) = πza,za+1WI

if Ia < Ia+1. After the variable change given in the theorem this is equivalent to the recursion
(14.2) for Grothendieck polynomials. �
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Corollary 14.2. The t
(k)
a = ua, h = 0 substitution into the formulae (4.1) and (4.4) give

equivariant localization and iterated residue expressions for the double Grothendieck polyno-
mial GσI

(z−1
n , z−1

n−1, . . . ;u
−1
1 , u−1

2 , . . .).

Iterated residue formulae for stable Grothendieck polynomials, as well as their applications
to stability and positivity results for quiver polynomials and Thom polynomials are explored
in [RSz, Al, AR].

It is well known in Schubert calculus, see for example [LS, Bu], that the class in K(C×)n(Fλ)
of the structure sheaf of a Schubert variety is represented by a double Grothendieck poly-
nomial. In our Grothendieck polynomial and index conventions the class of the Schubert
variety Ωid,I is represented by the polynomial GσI

(z−1
n , z−1

n−1, . . . ; γ
−1
1,1 , γ

−1
1,2 , . . .) ·P−1

id,I . Denote
this class by OI and hence from Theorem 14.1 we obtain the following.

Corollary 14.3. We have

OI = [Ωid,I ] = [GσI
(z−1

n , z−1
n−1, . . . ; γ

−1
1,1 , γ

−1
1,2 , . . .)] · P−1

id,I = [WI(Γ, z, 0)] · P−1
id,I ∈ K(C×)n(Fλ).

15. Appendix 2. Interpolation definition of K-theory classes of Schubert
varieties

In this appendix we give a new axiomatic definition of the classes OIPid,I , that is, the
classes of Grothendieck polynomials. Note that the polarization Pid,I is a monomial, an
invertible element of C[z±1].

Let f1 and f2 be Laurent polynomials is the z-variables, with φI(N(f1)) = [0,m1],
φI(N(f2)) = [0,m2]. We write f1 ≺I f2 if m1 < m2, cf. the proof of Lemma 6.5. For
the purpose of this section define f to be I-small, if

f ≺I

∏
k<l

∏
a∈Ik

∏
b∈Il
b>a

(1− zb/za).

Theorem 15.1. The classes OIPid,I , that is, the images of the Grothendieck polynomials in
KT (Fλ), are uniquely determined by the properties

(1) OI |xI
· Pid,I =

∏
k<l

∏
a∈Ik

∏
b∈Il
b>a

(1− zb/za),

(2) OI |xJ
· Pid,I is J-small if J ̸= I.

Proof. The uniqueness proof is the obvious modification of the uniqueness proof in Sec-
tion 3.2. To prove existence we need to show that OIPid,I satisfies the two properties.
According to Corollary 14.3 we have OIPid,I = [WI(Γ, z, 0)]. Property (1) follows from ei-
ther topology (the variety Ωid,I is smooth at the point xI) or from the h = 0 substitution in
Lemma 6.4. We are going to prove property (2). Let J ̸= I. We proved in Lemma 6.5 that

WI(zJ , z, h) ≺J WJ(zJ , z, h) =
∏
k<l

∏
a∈Ik

(
∏
b∈Il
b>a

(1− zb/za)
∏
b∈Il
b<a

(1− hzb/za)).
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We also saw in Lemma 6.3 that WI(zJ ,z, h) is divisible by
∏

k<l

∏
a∈Ik

∏
b∈Il
b<a

(1 − hzb/za).

Hence for the quotient we have

WI(zJ ,z, h)/
∏
k<l

∏
a∈Ik

∏
b∈Il
b<a

(1− hzb/za) ≺J

∏
k<l

∏
a∈Ik

∏
b∈Il
b>a

(1− zb/za).

Observe that the right hand side does not depend on h, so the same ≺J inequality also holds
after plugging in h = 0 in the left hand side. The h = 0 substitution of the left hand side is
[WI(Γ, z, 0)]|xJ

, hence property (2) is proved. �

16. Appendix 3. Presentations and structure constants of algebras
associated with the projective line

In Section 13.5 we described the conjectured presentation of the equivariant quantum K-
theory algebra of partial flag manifolds. In this section we describe in detail this algebra
for the special case of the projective line P1. The basic algebra K(P1) can be decorated in
three independent ways, namely by considering the equivariant version (with z = (z1, z2)
parameters), the quantum version (with q = (q1, q2) parameters), and the cotangent bundle
version (with h parameter). We describe all eight possible algebras, shown in the diagram
below and obtained by considering or not considering any of the three decorations. In all
eight cases we give the presentation, as well as the structure constants in terms of a natural
choice of bases. The descriptions of the four algebras on the front face of the cube are known,
and the descriptions of the four algebras on the back face are conjectural.

In the diagram, the symbol ♣ means the limit q1 = Q1h
−1, q2 = Q2, h→ 0.

QKC×(T ∗P1)

q2/q1→0
nnn

n

wwnnn
n

♣

��

QKT (T
∗P1)z=1oo

q2/q1→0
nnn

n

wwnnn
n

♣

��

KC×(T ∗P1)

h=0

��

KT (T
∗P1)z=1oo

h=0

��

QK(P1)

Q2/Q1→0
nnnn

n

wwnnnn
n

QK(C×)2(P1)z=1oo

Q2/Q1→0
ooo

o

wwooo
o

K(P1) K(C×)2(P1)z=1oo

• For K(P1) we have the presentation: C[γ±1, δ±1]/⟨relations⟩, where the ideal of rela-
tions is generated by the coefficients of u-powers in

(1− γ/u)(1− δ/u)− (1− 1/u)2.

With the choice of basis κ0 = 1, κ1 = 1− 1/γ, the multiplication is

κ0κ0 = κ0, κ0κ1 = κ1, κ1κ1 = 0.

• For K(C×)2(P1) we have the presentation C[γ±1, δ±1, z±1
1 , z±1

2 ]/⟨relations⟩, where the
ideal of relations is generated by the coefficients of u-powers in

(1− γ/u)(1− δ/u)− (1− z1/u)(1− z2/u).
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With the choice of basis κ0 = 1, κ1 = 1− z2/γ, the multiplication is

κ0κ0 = κ0, κ0κ1 = κ1, κ1κ1 =

(
1− z2

z1

)
κ1.

• For QK(P1) we have the presentation: C[γ±1, δ±1, Q±1
1 , Q±1

2 ]/⟨relations⟩, where the
ideal of relations is generated by the coefficients of u-powers in

det

(
1− γ/u −γ/u
Q2/Q1 1− δ/u

)
− (1− 1/u)2.

With the choice of basis κ0 = 1, κ1 = 1− 1/γ the multiplication is

κ0κ0 = κ0, κ0κ1 = κ1, κ1κ1 =
Q2

Q1

κ0.

• For QK(C×)2(P1) we have the presentation C[γ±1, δ±1, z±1
1 , z±1

2 , Q±1
1 , Q±1

2 ]/⟨relations⟩,
where the ideal of relations is generated by the coefficients of u-powers in

det

(
1− γ/u −γ/u
Q2/Q1 1− δ/u

)
− (1− z1/u)(1− z2/u).

With the choice of basis κ0 = 1, κ1 = 1− z2/γ the multiplication is

κ0κ0 = κ0, κ0κ1 = κ1, κ1κ1 =
Q2z2
Q1z1

κ0 +

(
1− z2

z1

)
κ1.

• For KC×(T ∗P1) we have the presentation C[γ±1, δ±1, h±1]/⟨relations⟩, where the ideal
of relations is generated by the coefficients of u-powers in

(1− γ/u)(1− δ/u)− (1− 1/u)2.

With the choice of basis κ0 = 1− h/γ, κ1 = 1− 1/γ the multiplication is

κ0κ0 = (1− h)κ0 + h(1− h)κ1, κ0κ1 = (1− h)κ1, κ1κ1 = 0.

• For KT (T
∗P1) we have the presentation C[γ±1, δ±1, z±1

1 , z±1
2 , h±1]/⟨relations⟩, where

the ideal of relations is generated by the coefficients of u-powers in

(1− γ/u)(1− δ/u)− (1− z1/u)(1− z2/u).

With the choice of basis κ0 = 1− hz1/γ, κ1 = 1− z2/γ the multiplication is

κ0κ0 =(1− hz1/z2)κ0 + h(1− h)z1/z2κ1,

κ0κ1 =(1− h)κ1,

κ1κ1 =(1− z2/z1)κ1.

• ForQKC×(T ∗P1) we have the presentationC[γ±1, δ±1, q±1
1 , q±1

2 , h±1]/⟨relations⟩, where
the ideal of relations is generated by the coefficients of u-powers in

det

(
1− γ/u 1/q1(1− γ/(uh))

q2(1− hδ/u) (1− δ/u)

)
− (1− q2/q1)(1− 1/u)2
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With the choice of basis κ0 = 1 − h/γ, κ1 = 1 − 1/γ the multiplication is (define
q = q2/q1)

κ0κ0 =
1− h
1− qh

κ0 +
(1− h)h
1− qh

κ1

κ0κ1 =
q(1− h)
1− qh

κ0 +
1− h
1− qh

κ1

κ1κ1 =
(1− h)q
h(1− qh)

κ0 +
q(1− h)
(1− qh)

κ1.

• ForQKT (T
∗P1) we have the presentation C[γ±1, δ±1, z±1

1 , z±1
2 , q±1

1 , q±1
2 , h±1]/⟨relations⟩,

where the ideal of relations is generated by the coefficients of u-powers in

det

(
1− γ/u 1/q1(1− γ/(uh))

q2(1− hδ/u) (1− δ/u)

)
− (1− q2/q1)(1− z1/u)(1− z2/u)

With the choice of basis κ0 = 1− hz1/γ, κ1 = 1− z2/γ the multiplication is (define
q = q2/q1)

κ0κ0 =
1− qh(1− z1/z2)− z1h/z2

1− qh
κ0 +

(1− h)hz1/z2
1− qh

κ1

κ0κ1 =
q(1− h)
1− qh

κ0 +
1− h
1− qh

κ1

κ1κ1 =
(1− h)qz2/z1
h(1− qh)

κ0 +
1− z2/z1 + q(z2/z1 − h)

1− qh
κ1.

17. Appendix 4. Equivariant K-theoretic Schubert calculus on the
cotangent bundle of partial flag manifolds

In this section we present a result on the structure constants of the algebra KT (T
∗Fλ)⊗

C(z, h) with respect to the basis {κI := κid,I}I∈Iλ . In view of Theorem 14.1 of Appendix 1,
this result is a natural “h-deformation” of the multiplication rules for double Grothendieck
polynomials.

Let N, n, Iλ, σ0 be as before.

Theorem 17.1. The following multiplication rules hold in KT (T
∗Fλ)⊗C(z, h). For A,B ∈

Iλ, we have κAκB =
∑

J∈Iλ c
J
A,BκJ , where

cJA,B =
∑
I∈Iλ

W̃A(zI ,z, h)W̃B(zI ,z, h)W̃σ0,J(z
−1
I ,z−1, h−1)

R(zI)Q(zI)
hp(J)P (zI).

Proof. Consider the zI-substitution into κAκB =
∑

J∈Iλ c
J
A,BκJ . We obtain

W̃A(zI , z, h)W̃B(zI ,z, h) =
∑
J

cJA,BW̃J(zI , z, h).

Choose a K ∈ Iλ, and multiply both sides by

W̃σ0,K(z
−1
I ,z−1, h−1)

R(zI)Q(zI)
hp(K)P (zI).
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We obtain

W̃A(zI ,z, h)W̃B(zI , z, h)W̃σ0,K(z
−1
I ,z−1, h−1)

R(zI)Q(zI)
hp(K)P (zI) =

=
∑
J

cJA,B

W̃J(zI ,z, h)W̃σ0,K(z
−1
I ,z−1, h−1)

R(zI)Q(zI)
hp(K)P (zI).

Add this equation for all I ∈ Iλ, then rearrangement gives∑
I

W̃A(zI , z, h)W̃B(zI , z, h)W̃σ0,K(z
−1
I , z−1, h−1)

R(zI)Q(zI)
hp(K)P (zI) =

=
∑
J

cJA,B

∑
I

W̃J(zI , z, h)W̃σ0,K(z
−1
I ,z−1, h−1)

R(zI)Q(zI)
hp(K)P (zI).

According to the orthogonality Theorem 6.6 the last sum
∑

I(...) is δJ,K . Hence the right-
hand side is equal to cKA,B. This proves the theorem. �

Example. For λ = (1, 1) one recovers the multiplication table for KT (T
∗P1) in the basis

κ1 = κ{1},{2} and κ0 = κ{2},{1} of Section 16. Here are some sample products for λ = (2, 2):

κ{1,2},{3,4}κ{1,4},{2,3} = (1− h)(1− z3/z1)(1− z4/z1)(1− hz3/z2)κ{1,2},{3,4},
κ{1,3},{2,4}κ{1,4},{2,3} =(

(1− h)2(1− z4/z2)(z2/z1 + h(1− z2/z1 − z3/z1 + z2/z3 − z22/(z1z3)))
)
κ{1,2},{3,4} +

(1− h)(1− z2/z1)(1− z4/z1)(1− hz2/z3)κ{1,3},{2,4}.

The h = 0 substitution in these formulae gives the multiplication of the equivariant K-theory
classes of structure sheaves of Schubert varieties (up to the polarization) in the Grassmannian
of 2-planes in C4.

18. Appendix 5. Bethe algebra of the XXZ model

Let U′(g̃lN) be the subalgebra of U(g̃lN) generated over C[h±1 ] by elements (10.5),

(10.6). Given a complex number c ̸= 0, 1, set Uc(g̃lN) = U′(g̃lN)/⟨h = c⟩. Let Bq
c be the

subalgebra of Uc(g̃lN) generated by the images of elements (10.10) and the elements Bq
p,±s ,

see (10.17), under the canonical projection U′(g̃lN)→ Uc(g̃lN) .

By Proposition 11.1, there is a C[h±1 ]-algebra homomorphism

ϕ : U′(g̃lN) → End
(
(CN)⊗n

)
⊗ C[z±1, h±1 ] .

Given b ∈ (C×)n and c ̸= 0, 1, the evaluation at z = b , h = c induces an algebra
homomorphism

ϕb,c : Uc(g̃lN)→ End
(
(CN)⊗n

)
The homomorphism ϕb,c makes (CN)⊗n into a Uc(g̃lN)-module denoted (CN)⊗n(b, c) and
called the tensor product of vector representations with evaluation parameters b . The
algebra Bq

b,c = ϕb,c(Bq
c ) is called the Bethe algebra of the associated XXZ model on (CN)⊗n .
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Remark. Usually the XXZ model on (CN)⊗n is defined by considering (CN)⊗n as a module

over the quantum loop algebra Uq(g̃lN) . Under this definition, the Bethe subalgebra of the
XXZ model, coincides with Bq

b,q−2 .

Recall the space 1
D
V−, see Section 9.2. Let b = (b1, . . . , bn) and c be such that bi ̸= cbj

for all i, j = 1, . . . , n . The evaluation at z = b , h = c defines a homomorphism of Uc(g̃lN)-
modules

ιb,c :
1
D
V−/⟨h = c⟩ → (CN)⊗n(b, c) .

Proposition 18.1. Let bi ̸= cbj for all i, j = 1, . . . , n . Then ιb,c is an epimorphism.

Proof. The proof is similar to the proof of [MTV3, Proposition 10.4]. The image of ιb,c is

not zero, while by [AK], the Uc(g̃lN)-module (CN)⊗n(b, c) is irreducible if bi ̸= cbj for all
i, j = 1, . . . , n , see also [NT2, Theorem 3.4]. �

The elements of Bq
b,c preserve each of the subspaces (CN)⊗n

λ . Let Bq
b,c,λ⊂ End

(
(CN)⊗n

λ

)
be the subalgebra induced by the action of Bq

b,c on (CN)⊗n
λ .

Given c and λ, let Kq
b,c,λ = Kq

λ/⟨z = b , h = c⟩ . The algebra Kq
b,c,λ is the algebra of

functions on the fiber of the Wronski map.

Corollary 18.2. Let b = (b1, . . . , bn) and c be such that bi ̸= cbj for all i, j = 1, . . . , n .
Then isomorphisms (13.15), (13.17), and the evaluation at z = b, h = c induce an algebra
isomorphism µq

b,c,λ : Kq
b,c,λ→ B

q
b,c,λ and an isomorphism of vector spaces ν q

b,c,λ : Kq
b,c,λ→

(CN)⊗n
λ . The isomorphisms µq

b,c,λ and ν q
b,c,λ identify the regular representation of Kq

b,c,λ

and the Bq
b,c,λ-module (CN)⊗n

λ . �

Corollary 18.3. The algebra Bq
b,c is a maximal commutative subalgebra of End

(
(CN)⊗n

)
.
�
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