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Abstract. We introduce new notions in elliptic Schubert calculus: the (twisted) Borisov-
Libgober classes of Schubert varieties in general homogeneous spaces G/P . While these classes
do not depend on any choice, they depend on a set of new variables. For the definition of our
classes we calculate multiplicities of some divisors in Schubert varieties, which were only known
for full flag varieties before. Our approach leads to a simple recursions for the elliptic classes.
Comparing this recursion with R-matrix recursions of the so-called elliptic weight functions of
Rimanyi-Tarasov-Varchenko we prove that weight functions represent elliptic classes of Schubert
varieties.

1. Introduction

Schubert calculus is usually considered in ordinary cohomology or in K-theory. Generalized
cohomology theories correspond to formal group laws. Under this correspondence ordinary coho-
mology and K-theory correspond to the one-dimensional algebraic groups C and C∗ respectively.
There is another one-dimensional complex algebraic group, the elliptic curve E = C∗ /qZ, (|q| < 1
fixed). The corresponding cohomology theory is called elliptic. In this paper we study the thus
obtained (equivariant) elliptic Schubert calculus.

A key step in any Schubert calculus is assigning a characteristic class to a Schubert variety.
Traditionally this characteristic class is the fundamental class notion of the given cohomology
theory. However, it is known that in elliptic cohomology the notion of fundamental class is
not well defined [BE90], or in other words, the notion depends on choices. There are important
works (e.g. [GR13, LZ15] and references therein) on elliptic fundamental classes based on making
some natural choices—the choice can be geometric (a resolution) or algebraic (a basis in a Hecke
algebra). In this paper we are suggesting a notion which does not depend on choices. Our class
is not the elliptic fundamental class (as just discussed, it does not exist); we regard our class as
an analogue of the cohomological Chern-Schwartz-MacPherson (CSM) class, and the K-theoretic
motivic Chern (MC) class. In fact, certain limits of our elliptic class recovers the CSM and the
MC classes.

The CSM and MC characteristic classes are one-parameter deformations of the fundamental
classes in their respective cohomology theories. The parameter is usually denoted by1 h. At
“h =∞” and h = 1 the CSM and MC classes specialize to the fundamental class of the theory.
Our elliptic class also depends on the extra h parameter. However, the elliptic analogue has a

1or by ~ in physics literature, also sometimes by y in K-theory—to match the classical notion of Hirzebruch
χy–genus
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pole at h = 1, which we regard as another incarnation of the fact that the notion of fundamental
class should not exist in elliptic cohomology.

Our project— definition of the h-deformed elliptic class of a Schubert variety—has been carried
out for full flag varieties G/B in [RW19]. Along the way, it was necessary to introduce further new
variables2 µi. The purpose of this paper is to carry out the same task for general homogeneous
spaces G/P . Compared to the case of G/B some unexpected difficulties need to be handled.
The setup of elliptic characteristic classes has a deeply geometric component which is missing
from the setup of both CSM classes (in H∗T ) and MC classes (in KT ). Namely, only special kinds
of singularities are allowed (the multiplicities of some divisors of the resolution are constrained)
and the pull-back of a Cartier divisor (involving the canonical divisor and the boundary divisor)
need to be understood. This piece of geometry was not known for general G/P before.

Hence, in the first part of the paper we study the divisors and their pullbacks on Schubert
varieties of G/P . In the second part, using these results, we define the elliptic classes of Schubert
varieties in G/P and discuss their defining recursions. In the third part, for G = GLn, we prove
that the thus obtained elliptic class can be represented by an explicit function called elliptic
weight function of [RTV19].

Let us describe some recent developments on the frontiers of geometry and representation
theory, which was a guidance of our work, and which may put our construction in context. In a
theory initiated by Okounkov and his coauthors [MO12, Oko17, AO16] a new characteristic class
is defined under the name of stable envelope (class) (see also works of Rimányi-Tarasov-Varchenko
[RTV15a, RTV15b, RTV19]). Stable envelopes have cohomological, K-theoretic, and elliptic
versions. Roughly speaking this class is defined as follows: an identification is set up between the
Bethe algebra of certain quantum integrable systems and the regular representations of certain
cohomology, K-theory, elliptic cohomology algebras. On the physics side of this identification
there are two natural bases: the spin (or coordinate-) basis and the Bethe (or eigen-) basis.
The identification matches the Bethe basis with the fundamental classes of torus fixed points on
the geometric side. The geometric classes matching the spin basis are given the name of stable
envelope classes. The essence of results in [RV18, FR18, FRW18, AMSS17, AMSS19] is that, in
Schubert calculus settings, the cohomological stable envelopes are the CSM classes of Schubert
cells, and the K-theoretic stable envelopes are the MC classes of Schubert cells. Hence, it is
natural to predict that there is an elliptic generalization of the CSM and MC class. Moreover, that
this notion in Schubert calculus matches the elliptic stable envelopes of [AO16, RTV19]. Exactly
this prediction is fulfilled by the results of [RW19] and the present paper. Let us emphasize, that
although we used the above mentioned works of Okounkov and others as guidance, our work does
not rely on them.

Acknowledgements. S.K. is supported by the NSF grant DMS 1802328, R.R. is supported by
a Simons foundation grant. A.W. is supported by the research project of the Polish National
Research Center 2016/23/G/ST1/04282 (Beethoven 2, German-Polish joint project).

2these extra variables are probably related with the “dynamical variables”, a.k.a. “Kähler variables” of math-
ematical physics literature
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2. Notation

Throughout the paper we will use the following notation.
• G is any semisimple connected, simply-connected complex linear group with Borel sub-

group B and maximal torus T. Its Lie algebra is denoted by t = Hom(C∗,T) ⊗ C. The
dual of the Lie algebra t∗ = Hom(T,C∗) ⊗ C contains the lattice of integral weights
t∗Z = Hom(T,C∗), which are identified with characters. We will also need the fractional
weights t∗Q = Hom(T,C∗)⊗ Q.
• P is a standard parabolic subgroup with the Levi subgroup L containing T, see [J03,

Part II,§1.8].
• WP is the Weyl group of P , i.e., the Weyl group of L; W = WG.
• W P denotes the smallest length coset representatives in W/WP .
• We denote the dualizing sheaf of a Cohen-Macaulay Scheme Y by ωY .
• XP

w ⊂ G/P is the Schubert variety BwP/P for w ∈ W P .
• E xt denotes the sheaf Ext.
• ρ ∈ t∗Z is the (standard) half sum of positive roots of G.
• ρL ∈ t∗Q is half the sum of positive roots of L.
• Cλ denotes the one dimensional representation of T as well as the trivial line bundle on
XP := G/P with the T-equivariant structure given by Cλ.
• For any character λ of P , L P (λ) denotes the line bundle over XP :

G×P C−λ → XP .

• Define ρ̄L by ρ̄L(α∨i ) = 1, if αi is a simple root of L
= 0, otherwise.

Observe that ρ − ρ̄L is a character of P and so is 2ρ − 2ρL. We often identify a character λ by
its derivative λ̇.

3. The canonical divisor

The dualizing sheaf is the key object of our consideration. If X is a Cohen-Macaulay scheme
then the dualizing complex is concentrated in the degree dimX (or degree − dimX depending
on convention). Hence, up to a shift by dimX, it coincides with the dualizing sheaf ωX defined
in [H77, §III.7]. Let j : V → X be the inclusion of an open subset whose complement is of
codimension at least 2. By [KN97, Lemma 2.7] or [Ko13, §5] the canonical sheaf is determined
by its restriction to V :
(1) ωX = j∗j

−1ωX .

It is easy to see that the dualizing sheaf of the homogeneous space is given by
(2) ωXP = L P (−2ρ+ 2ρL) ,
see, e.g., [J03, Part II,§4.2]. Moreover, XP

w is a Cohen-Macaulay variety ([BK05, Corollary 3.4.4]).
Recall that, for any Cohen-Macaulay subvariety Y of a smooth variety X,
(3) ωY ' E xtcodimY

OX
(OY ,OX)⊗ ωX .
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In particular,

(4) ωXP
w

= E xtcodimXP
w

OXP

(
OXP

w
,OXP

)
⊗ ωXP .

We identify the fixed points of XP under the action of T with the set of shortest representatives
W P ⊂ W . For v, w ∈ (XP )T we write v → w if v < w and dimXP

v = dimXP
w −1. Let X̊P

v ⊂ XP
v

denote the Schubert cell. For w ∈ W P , let iw : {pt} → XP be the map sending the point to
the fixed point w. Then, as T-equivariant line bundles, i∗wL P (λ) = C−wλ, for any character
λ : P → C∗. Let

ξw := Cρ−wρ̄L ⊗ ωXP
w
⊗L P (ρ− ρ̄L).

Lemma 3.1. Restricted to X̊P
w , we have a B-equivariant isomorphism:

(ξw)|X̊P
w
' (OXP

w
)|X̊P

w
.

Proof. Since X̊P
w is smooth isomorphic to an affine space and both sheaves are trivial of rank one,

it is enough to show that i∗wξw is trivial as a T-module. This follows since by (2) and (4)

ξw = Cρ−wρ̄L ⊗
(
E xtcodimXP

w
OXP

(OXP
w
,OXP )⊗L P (−2ρ+ 2ρL)

)
⊗L P (ρ− ρ̄L)

= Cρ−wρ̄L ⊗E xtcodimXP
w

OXP
(OXP

w
,OXP )⊗L P (−ρ+ 2ρL − ρ̄L)

and

i∗w

(
E xtcodimXP

w
O
XP

(
OXP

w
,OXP

))
' det

(
Tw(XP )
Tw(XP

w )

)
' C−(ρ+wρ−2wρL) .

To prove the last equality we proceed as follows: Let R+ (resp. R−) be the set of positive
(resp. negative) roots of g, R−P the set of negative roots of the Levi subgroup of P . Then

Tw(XP
w ) = Tw(BwP/P ) = Tw(w(w−1Bw ∩B−)P/P ) =

⊕
β∈R+∩wR−

gβ ,

Tw(XP ) =
⊕

β∈w(R−\R−P )

gβ .

Thus,

(5) det
(
Tw(XP )
Tw(XP

w )

)
' C−w(2ρ−2ρL)−(ρ−wρ) = C−(ρ+wρ−2wρL)

by [Ku02, Cor. 1.3.22(3)]. The conclusion of the lemma follows since the weight of i∗wξw is equal
to

(ρ− wρ̄L)− (ρ+ wρ− 2wρL)− w(−ρ+ 2ρL − ρ̄L) = 0 .
�
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Let V P
w := X̊P

w ∪
⋃
v→w

X̊P
v . Then, V P

w is a smooth open subset of XP
w . The restriction ξw|V Pw is

an invertible B-equivariant OV Pw
-module. Hence, by Lemma 3.1,

ξw|
V Pw

' OXP
w

(
−
∑
v→w

mP
w,vX

P
v

)
|
V Pw

, for some mP
w,v ∈ Z.

Lemma 3.2. The coefficients mP
w,v of the restriction of ξw to V P

w are given by the formula:
mP
w,v := 1− 〈wρ̄L, β∨〉 ,

where β is the positive root such that v = sβw.
Here the bracket 〈−,−〉 denotes the pairing between weights and coweights.

Proof. Take v ∈ W P with v → w. Then,

i∗v
(
E xtcodimXp

w
OXP

(
OXP

w
,OXP

))
' det

(
Tv(XP )
Tv(XP

w )

)

' det
(
Tv(XP )
Tv(XP

v )

)
⊗ det

(
Tv(XP

w )
Tv(XP

v )

)∗
' C−(ρ+vρ−2vρL)+β, where v = sβw,(6)

by (5). Thus, by (4), (2) and (6),

i∗vξ
w = Cρ−wρ̄L ⊗i∗v

(
E xtcodimXP

w
OXP

(
OXP

w
,OXP

)
⊗ ωXP

)
⊗ i∗vL P (ρ− ρ̄L)

= Cρ−wρ̄L ⊗i∗v
(
E xtcodimXP

w
OXP

(
OXP

w
,OXP

)
⊗L P (−2ρ+ 2ρL)

)
⊗ i∗vL P (ρ− ρ̄L)

' Cρ−wρ̄L ⊗C−(ρ+vρ−2vρL)+β ⊗Cv(2ρ−2ρL)⊗C−v(ρ−ρ̄L)

' Cβ(1−〈wρ̄L,β∨〉),(7)
as the following calculation shows.

ρ− wρ̄L−(ρ+ vρ− 2vρL) + β + v(2ρ− 2ρL)− v(ρ− ρ̄L) = vρ̄L + β − wρ̄L

= sβwρ̄
L + β − wρ̄L

= −〈wρ̄L, β∨〉β + β

= β(1− 〈wρ̄L, β∨〉).
Also,

i∗v

(
OXP

w

(
−
∑
u→w

mP
w,uX

P
u

))
= det

(
Tv(XP

w )
Tv(XP

v )

)⊗−mPw,v
= C

⊗−mPw,v
−β

= CmPw,vβ.(8)
Equating (7) and (8), we obtain the lemma. �
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Theorem 3.3. 3 For any w ∈ W , we have a B-equivariant isomorphism:

ξw ' OXP
w

(
−
∑
v→w

mP
w,vX

P
v

)
,

where mP
w,v is as in Lemma 3.2. Thus, the dualizing sheaf ωXP

w
of XP

w is T-equivariantly isomor-
phic to

C−ρ+wρ̄L ⊗ OXP
w

(
−
∑
v→w

mP
w,vX

P
v

)
⊗L P (ρ̄L − ρ).

Moreover, the multiplicity mP
w,v is a positive integer.

Proof. We first prove the positivity of mP
w,v : We have v < w, β > 0 and sβw = v. Hence,

v−1 < w−1 and w−1sβ = v−1. By [Ku02, Lemma 1.3.13] the root w−1β is negative. Hence,
mP
w,v = 1− 〈wρ̄L, β∨〉 = 1− 〈ρ̄L, w−1β∨〉 ≥ 1 .

Let j : V P
w ↪→ XP

w be the inclusion. Consider the following commutative diagram with exact
rows, where D := ∑

v→w
mP
w,vX

P
v is the divisor with mP

w,v as in Lemma 3.2.

0 // OXP
w

(−D)

��

// OXP
w

//

'
��

OD
//

��

0

0 // j∗j
−1(OXP

w
(−D)) // j∗j

−1(OXP
w

) // j∗j
−1OD.

The middle vertical arrow is an isomorphism since XP
w is normal and XP

w \V P
w is of codim ≥ 2 in

XP
w . Moreover, the right vertical map is injective since the closure of D̄ ∩ V P

w coincides with D̄,
where D̄ denotes the support of D. Hence, the left vertical map
(9) OXp

w
(−D)→ j∗j

−1(OXP
w

(−D))
is an isomorphism.

On the other hand, since ξw is a Cohen-Macaulay OXP
w

-module, by (1), we have

ξw
φ1' j∗j

−1(ξw) φ2' j∗j
−1OXP

w
(−D) φ3' OXP

w
(−D),

where the isomorphism φ2 follows from Lemma 3.2 and φ3 is an isomorphism by (9). This proves
the theorem. �

The following corollary will be used in (14) in order to establish the condition of Assump-
tion 5.1(1) which makes it possible to define the elliptic class of the pair (XP

w ,
∑
v→w

mP
w,vX

P
v ).

Corollary 3.4. Let KXP
w

denote a divisor corresponding to the dualizing sheaf ωXP
w

. Then,

KXP
w

+
∑
v→w

mP
w,vX

P
v

is a T-equivariant Cartier divisor representing C−ρ+wρ̄L ⊗L P (ρ̄L − ρ). �

3The proof is parallel to that of [Ku17, §10]
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Further on we need to analyze the pull-back of the divizor KXP
w

+ ∑
v→w

mP
w,vX

P
v to a preferred

resolution.

4. Chevalley formula

Let w = sj1 . . . sj` be a reduced decomposition of w ∈ W (W being the Weyl group of G
and sj are simple reflections) and let Zw be the corresponding Bott-Samelson-Demazure-Hansen
resolution

fw : Zw → XB
w ⊂ G/B ,

—which is often called standard resolution, or Bott-Samelson resolution, or for short BSDH
resolution, see, e.g., [BK05, §2.2.1].

Proposition 4.1. For any integral weight λ ∈ t∗Z (not necessarily dominant), we have

f ∗w(L B(λ)) ' OZw

(∑̀
i=1
〈λ, γ∨i 〉∂iZw

)
,

where γi := sj`sj`−1 . . . sji+1αji, αj is the simple root corresponding to the simple reflection sj and

∂iZw := Zsj1sj2 ...ŝji ···sj`
.

Proof. Consider the diagram

Zw

πw

��

//

fw

((
XB
w[`] ×G/Pαj` G/B

//

��

G/B

��
Zw[`]

fw[`]

// XB
w[`]

// G/Pαj` ,

where Zw[`] corresponds to the word sj1 . . . sj`−1 and XB
w[`] := XB

sj1 ...sj`−1
. By [Kem76, §2, Lemma

3],

f ∗w(L B(λ)) ' π∗w(f ∗w[`](L B(sj`λ)))⊗ OZw

(
〈λ, α∨j`〉Zw[`]

)
= OZw

(
`−1∑
i=1
〈sj`λ, sj`−1 . . . sji+1α

∨
ji
〉(∂iZw)

)
+ OZw

(
〈λ, α∨j`〉(∂`Zw)

)
, by induction on l(w)

= OZw

(∑̀
i=1
〈λ, sj`sj`−1 . . . sji+1α

∨
ji
〉(∂iZw)

)
.

This proves the proposition. �

As a corollary of the above proposition and Corollary 3.4, we get the following.
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Corollary 4.2.

f̄ ∗w

(
ωXP

w
⊗ OXP

w

(∑
v→w

mP
w,vX

P
v

))
' ωZw ⊗ OZw

(∑̀
i=1

mP
w,i(∂iZw)

)
⊗ Cwρ̄L ,

where πP : XB
w → XP

w is the projection, f̄w := πP ◦ fw and
mP
w,i : = 1− 〈wρ̄L, β∨i 〉, and βi := sj1 . . . sji−1αji

= 1 + 〈ρ̄L, γ∨i 〉 ≥ 1.

Proof. By Corollary 3.4,

(10) ωXP
w
⊗ OXP

w

(∑
v→w

mP
w,vX

P
v

)
' C−ρ+wρ̄L ⊗L P (ρ̄L − ρ).

Further, by [BK05, Proposition 2.2.2],

(11) ωZw ' OZw

(
−
∑̀
i=1

∂iZw

)
⊗ f ∗w(L B(−ρ))⊗ C−ρ.

From the equation (10), we obtain

f̄ ∗w

(
ωXP

w
⊗ OXP

w

(∑
v→w

mP
w,vX

P
v

))
' f̄ ∗w

(
L P (ρ̄L − ρ)

)
⊗ C−ρ+wρ̄L

' f ∗w(L B(−ρ))⊗ f ∗w
(
L B(ρ̄L)

)
⊗ C−ρ+wρ̄L

' OZw

(∑̀
i=1
〈ρ̄L, γ∨i 〉(∂iZw)

)
⊗ f ∗w(L B(−ρ))⊗ C−ρ+wρ̄L , by Proposition 4.1

= OZw

(∑̀
i=1

(
mP
w,i − 1

)
(∂iZw)

)
⊗ f ∗w(L B(−ρ))⊗ C−ρ+wρ̄L

= OZw

(∑̀
i=1

mP
w,i(∂iZw)

)
⊗ ωZw ⊗ Cwρ̄L , by (11).

This proves the corollary. �

Remark 4.3. In the case of P = B the Corollary 3.4 specializes to [RW19, Theorem 3.2]
or [BK05, Exercise 3.4.E.1]. In this case mB

w,v = 1 for any v → w. Moreover, in this case,∑`
i=1m

B
w,i (∂iZw) = ∂Zw since each mB

w,i = 0 by definition, where ∂Zw := ∑`
i=1 ∂iZw.

5. The Borisov-Libgober elliptic characteristic class

We will study the Borisov-Libgober elliptic characteristic class of certain pairs (X,∆). It is
defined in [BL00, BL03, BL05], and the version we consider is in [RW19]. Here we recall the
main definitions in a special case (torus-equivariant case with finitely many fixed points), which
is sufficient for the purpose of this paper.
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5.1. Smooth case. Fix an elliptic curve C /(Z+τ Z) and let q = e2πiτ , with im(τ) > 0. First,
let Z be a smooth variety and D a simple normal crossing divisor. Assume that a torus T acts
on Z leaving D stable. One can consider the elliptic class of (Z,D) either in the T-equivariant
K-theory, or in the T-equivariant elliptic cohomology

Ẽ̀ `(Z,D) ∈ KT(Z)(q, h), Ẽ̀ `
E(Z,D) ∈ EllT(Z)(h).

Here we use elliptic cohomology in its traditional sense: it is a generalized complex-oriented
cohomology theory, see [L88]. Because of a lack of a convenient definition of equivariant elliptic
cohomology we rather study the image of the elliptic class in Borel equivariant cohomology or
K-theory, see [MW19, §3]. In the sense of recent approaches to EllT, as in [AO16, Section 2],
[FRV18, Section 4], or [RTV19, Section 7], elements of our EllT are sections of certain line bundles
over the elliptic cohomology scheme considered in those works. The Euler class of a vector bundle
is a section of a Thom bundle, see [G14, §7].

Here is the definition of the elliptic class in the special case when |ZT| <∞. In this case they
are defined by their restrictions to T-fixed points. For a fixed point x we have

Ẽ̀ `(Z,D)|x =e(TxZ)
dimZ∏
k=1

ϑ(χk h1−ak)ϑ′(1)
ϑ(χk)ϑ(h1−ak) ,

Ẽ̀ `
E(Z,D)|x =eE(TxZ)

dimZ∏
k=1

ϑ(χk h1−ak)ϑ′(1)
ϑ(χk)ϑ(h1−ak) =

dimZ∏
k=1

ϑ(χk h1−ak)ϑ′(1)
ϑ(h1−ak) ,

where the products are taken with respect to the equivariant coordinates at x and
• χk ∈ KT({x}) = R(T) is the character of the k-th coordinate;
• e(TxZ) = ∏(1−χ−1

k ) and eE(TxZ) = ∏
ϑ(χk) are the equivariant Euler classes in K-theory

and elliptic cohomology;
• ak ∈ Q is the multiplicity of the divisor along the k-th coordinate; and
•

ϑ(x) = (x1/2 − x−1/2)
∏
n≥1

(1− qnx)(1− qn/x)

is (a version of) the theta function which is considered in [RTV19, RW19]. Here it is
treated as a formal series in x±1/2. The variable q is treated as a constant.

We have to assume that 1 does not appear among the multiplicities of D, otherwise we have 0
in the denominator.

It is worth getting rid of the dependence on which cohomology theory we are in, and work
with the elliptic class

E(Z,D) = Ẽ̀ `(Z,D)
e(TZ) = Ẽ̀ `

E(Z,D)
eE(TZ) .

Then, using the notation

δ(x, y) = ϑ(xy)ϑ′(1)
ϑ(x)ϑ(y)
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we have

E(Z,D)x := E(Z,D)|x =
dimZ∏
k=1

δ(χk, h1−ak).

5.2. Singular case. A T-stable singular pair (X,∆) is a singular T-variety X embedded in a
smooth ambient T-variety M with a divisor ∆ such that KX+∆ is Q-Cartier. The T-equivariant
elliptic classes of the pair (X,∆) are defined by

Ẽ̀ `(X,∆;M) = f∗Ẽ̀ `(Z,D) ∈ KT(M)(q, h), Ẽ̀ `
E(X,∆;M) = f∗Ẽ̀ `

E(Z,D) ∈ EllT(M)(q, h)
where f : Z → X is a T-equivariant resolution of singularities and KZ + D = f ∗(KX + ∆). If
the multiplicities of D are smaller4 than 1, then the definition does not depend on the resolution,
by [BL03].

Assumption 5.1. To have well defined elliptic class we assume that
(1) KX + ∆ is Q-Cartier,
(2) the coefficients of D = f ∗(KX + ∆)−KZ are smaller than 1.

Just like in the smooth case, it is worth considering the version

(12) E(X,∆) = Ẽ̀ `(X,∆;M)
e(TM) = Ẽ̀ `

E(X,∆;M)
eE(TM) ∈ e(TM)−1KT(M)(q, h).

Note that, assuming |MT| <∞, the Euler class e(TM) is invertible in the localization S−1KT(M),
where S ⊂ KT(pt) = R(T) is the multiplicative system generated by 1 − Cλ, λ ∈ t∗Z. Assuming
that the number of torus fixed points on X and Z are finite, the restriction of E(X,∆) to a T-
fixed point x will be denoted by E(X,∆)x. These latter classes are elements of the fraction field
of KT(pt)(q, h), and are also independent of the ambient manifold M—that is why we dropped
M from the notation.

5.3. Push-forward. In the case we study, i.e., that of finitely many T-fixed points, the push-
forward map f∗ can be described as follows. Let (Z,D) be the resolution of (X,∆) as above and
x a T-fixed point in X. Then, according to Lefschetz-Riemann-Roch, which is the equivariant
localization description of push-forward maps [CG97, Thm. 5.11.7], we have

E(X,∆)x =
∑

y∈f−1(x)∩ZT

E(Z,D)y.

6. Elliptic classes of Schubert varieties

Our main object of study is the equivariant elliptic characteristic classes of Schubert varieties,
living in the T-equivariant K-theory or elliptic cohomology of G/P . By the nature of the
definition of elliptic classes (see Section 5) we need to consider not the Schubert varieties or
the Schubert cells themselves, but pairs (XP

w ,∆P
w), where ∆P

w is a certain T-stable Q-divisor
contained in ∂XP

w (defined below), such that KXP
w

+ ∆P
w is Q-Cartier.

4The discrepancy divisor is equal to −D. We do not assume that ∆ is effective.
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6.1. The class E(XP
w ). Let XP

w be a Schubert variety in G/P , λ a character of P and assume
that the line bundle L P (λ) over XP

w is ample. Let ∆P
w,λ be the zero divisor of the unique (up

to scalar multiples) U -invariant section (eigenvector) of L P (λ)|XP
w

, where U := [B,B] is the
unipotent radical of B. Then, the support of ∆P

w,λ is precisely equal to ∂XP
w := ∪v→wXP

v .
Consider the pair
(13) ( XP

w ,
∑
v→w

mP
w,vX

P
v − t∆P

w,λ ),

where the coefficients mP
w,v are from Lemma 3.2. Our main object of study is the E class (see (12))

of this pair. For this to make sense we need to show that the requirements of such a pair are
satisfied.

Remark 6.1. For the case P = B Ganter and Ram [GR13, §1, item (a)] suggested to consider
the boundary divisor equal to ∂XB

w − t∆P
w,ρ for 0 < t � 1, but in our approach instead of ρ we

allow any weight λ defining a sufficiently ample line bundle on XP
w .

Fix a reduced word w of w. As earlier, let f̄w : Zw → XP
w be the composition of the BSDH

resolution fw : Zw → XB
w with the quotient map XB

w → XP
w . Let

(14) f̄ ∗w

(
KXP

w
+
∑
v→w

mP
w,vX

P
v − t∆P

w,λ

)
= KZw +

∑̀
i=1

ai∂iZw .

By Corollary 4.2 the coefficients ai < 1 if t � 0, that is, for large t (using Corollary 3.4)
Assumption 5.1 is satisfied; and the E class of (13) is indeed well defined.

Let us rephrase this construction without mentioning t: allowing rational weights λ, the class
(15) E(XP

w ,
∑
v→w

mP
w,vX

P
v −∆P

w,λ)

is well defined for λ belonging to a certain open subset of (t∗Q)WP . For these λ’s the dependence of
(15) on λ is an explicit meromorphic function in λ (this follows from the push-forward formalism
described in Section 5.3). This meromorphic function, now considered for all λ ∈ (t∗)WP , is our
main object: the elliptic class of the Schubert variety XP

w . We will denote it by E(XP
w ), or by

E(XP
w , λ) if we want to emphasize the λ-dependence. In some calculation below we will assume

that “λ is large enough” so that E(XP
w ) equals (15); thus obtained formulas then must hold for

the meromorphic function E(XP
w ).

6.2. Elliptic classes in the BSDH resolution. Observe that, by Proposition 4.1, Corollar-
ies 3.4, 4.2 and Remark 4.3,

f̄ ∗w(KXP
w

+
∑
v→w

mP
w,vX

P
v −∆P

w,λ) = KZw + ∂Zw − f ∗w(L B(λ− ρ̄L))

= f ∗w(KXB
w

+ ∂XB
w −∆B

w,λ−ρ̄L) ,(16)

where ∂Zw := ∑`
i=1 ∂iZw. Note that the bundle L B(ρ̄L) does not come from XP

w . The class
E(XP

w , λ) is obtained from
E(Zw, λ− ρ̄L) := E(Zw , ∂Zw − f ∗w(∆B

w,λ−ρ̄L))
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using the localization formula in Section 5.3.
The class E(Zw, λ − ρ̄L) is determined by its restrictions to the torus fixed points. The T-

fixed points of Zw are indexed by the subwords of v ⊂ w. From the well-known combinatorial
description of the BSDH resolution (see [RW19, §§3.2 and 4.3]), we obtain

Proposition 6.2. Let w ∈ W and let w be a reduced word for w. Then, for any (not necessarily
reduced) subword v of w, we have:

(17) E(Zw, λ− ρ̄L)v =
∏̀
i=1

δ(e−v[1,i]αji , ψ(i)),

where v[1,i] is the product of sjk ’s with k ≤ i appearing in v and

ψ(i) =

h if i-th letter of w is not omitted in v

h〈λ−ρ̄
L , γ∨i 〉 otherwise ,

where γi is as in Proposition 4.1.

Proof. The multiplicity of the divisor f ∗w(∆B
w,λ−ρ̄L) along ∂iZw is equal to (using Proposition 4.1)

〈λ− ρ̄L , γ∨i 〉 .
The tangent weights are the same as in [RW19, §3.2]. �

Recall that, by Subsection 5.3, we have the following: for any v, w ∈ W (choosing a reduced
word w for w):

(18) E(XB
w , λ− ρ̄L)v =

∑
v

E(Zw, λ− ρ̄L)v,

where the summation runs over those (not necessarily reduced) subwords v of w for which µ(v) =
v. Here µ(v) = si1 . . . sip for the word v = (si1 , . . . , sip). In particular,

(19) E(XB
w , λ− ρ̄L)v = 0, if v � w.

We note that (16) also implies the following corollary.

Corollary 6.3. Let λ ∈ t∗ be a WP -invariant weight, w ∈ W P . Then, for any v ∈ W P ,
E(XP

w , λ)v =
∑
u∈WP

E(XB
w , λ− ρ̄L)vu .

(In particular, if v � w, then E(XP
w , λ)v = 0 by using the above identity and the Identity (19).)

Equivalently,
E(XP

w , λ) = πP∗ E(XB
w , λ− ρ̄L) ,

where πP : G/B → G/P is the natural quotient map. �

In Section 8, for G = SLn we will identify the functions E(XP
w , λ)v with some substitutions of

well-known special functions called weight functions. Corollary 6.3 seems to be a new result for
those substitutions of weight functions.
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6.3. Recursions. The Schubert varieties in G/P are parametrized by cosets in W/WP . Our
goal is to describe the behavior of the elliptic class when we pass from w to sαw for a simple
reflection sα such that dimXP

sαw > dimXP
w . First, we solve the recursion for the BSDH-variety

Zw, which is a resolution of XB
w as well as XP

w , provided w ∈ W P . Having an explicit formula for
E(Zw, λ− ρ̄L)v, we obtain a recursion for the classes of the BSDH resolution and then we push
it down to XP

w . It turns out that the recursion is well defined for the elliptic classes of Schubert
varieties.

Theorem 6.4. Let α be a simple root and w ∈ W P . If dimXP
w < dimXP

sαw (in particular,
sαw ∈ W P ), then, for any coset [v] ∈ W/WP ,

(20) E(XP
sαw, λ)[v] = δ

(
e−α, h〈λ−ρ̄

L,w−1α∨〉
)
· E(XP

w , λ)[v] + δ(eα, h) · szα
[
E(XP

w , λ)[sαv]
]
,

where szα[−] is the action of sα on the equivariant parameters of K-theory.

The notation “szα” will be justified below.

Proof. We first define, for any two cosets, [u] ≤ [v] if and only if u′ ≤ v′, where u′ is the smallest
length coset representative in [u]. If [v] � [sαw], then so is [sαv] � [w] (use [Ku02, Corollary
1.3.19]). Thus, both the sides of the equation (20) are zero by Corollary 6.3.

So, assume that [v] ≤ [sαw]. Let sαw be a reduced word for sαw. Let v be a subword (not
necessarily reduced) of sαw. Let v′ = v ∩ w, i.e., v′ = v if the first letter of sαw is omitted in v
and sαv

′ = v otherwise. Then, by Proposition 6.2,
(21)

E(Zsαw, λ−ρ̄L)v =

δ(e
α, h) szα · [E(Zw, λ− ρ̄L)v′ ] if the first letter of sαw is not omitted in v,

δ
(
e−α, h〈λ−ρ̄

L,w−1α∨〉
)
E(Zw, λ− ρ̄L)v′ otherwise .

To compute E(XP
sαw, λ)[v], by Corollary 6.3 and the Identity (18), we sum up the contributions

coming from E(Zsαw, λ− ρ̄L)v, where v varies over those (not necessarily reduced) subwords v of
sαw such that µ(v) ∈ [v]. Let us examine the first factor of the product (17), appearing in (21):

• If the first letter of sαw is not omitted in v, then the corresponding factor is equal to
δ(eα, h) .

In the remaining factors the variables in the first argument of δ should be changed by the
action of sα.
• If the first letter of sαw is omitted in v, then the corresponding factor is equal to

δ
(
e−α, h〈λ−ρ̄

L,w−1α∨〉
)
.

The remaining factors are unchanged.
Therefore, we obtain two kinds of summands in the decomposition of E(XP

sαw, λ)[v], one coming
from the subwords v of sαw which do not contain the first letter sα which contribute to E(XP

w , λ)[v]
and the other coming from those subwords v which do contain the first letter sα and hence
contribute to E(XP

w , λ)[sαv]. �
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The following lemma for v , 1 follows from Corollary 6.3, and for v = 1 it follows easily from
the definition.

Lemma 6.5. For v ∈ W P , we have

E(XP
1 , λ)v =

1 if v = 1
0 otherwise.

The recursion with initial condition presented in Theorem 6.4 and Lemma 6.5 is an effective
way of computing the fixed point restrictions of the elliptic classes E(XP

w ). We invite the reader
to verify the initial condition and the recursion in the following examples. In these examples we
consider homogeneous spaces for G = SLn. It is convenient to extend the action to GLn and
to have n-dimensional maximal torus. We use the notation zi = eε

∗
i (εi is the standard basis of

t = Cn for n = 2, 3, 4), for more general notation for the natural variables of E(Xw)v for G = GLn
see the next section.

Example 6.6. For G = SL2, P = B, W = {1, s}, we have:
E(XP

1 )1 = 1, E(XP
1 )s = 0,

E(XP
s )1 = δ(z2/z1, µ2/µ1), E(XP

s )s = δ(z1/z2, h) ,
where λ = (λ1, λ2) and µi = h−λi . Observe the obvious triangularity property v � w ⇒
E(XP

w )v = 0, and that the ‘diagonal’ restrictions E(XP
w )w = ∏

χ δ(χ, h) for the weights χ of
TwX

P
w . The off-diagonal restrictions may be complicated formulas in general.

Example 6.7. For G = SL3, P = B, with analogous notation, we have the following fixed point
restrictions.

v =123 v =132 v =213 v =231 . . .

E(XP
123)v 1 0 0 0 . . .

E(XP
132)v δ( z3

z2
, µ3
µ2

) δ( z2
z3
, h) 0 0 . . .

E(XP
213)v δ( z2

z1
, µ2
µ1

) 0 δ( z1
z2
, h) 0 . . .

E(XP
231)v δ( z2

z1
, µ3
µ1

)δ( z3
z2
, µ3
µ2

) δ( z2
z1
, µ3
µ1

)δ( z2
z3
, h) δ( z3

z1
, µ3
µ2

)δ( z1
z2
, h) δ( z1

z2
, h)δ( z1

z3
, h) . . .

...
...

...
...

...
. . .

Example 6.8. Let G = SL4 and G/P be the Grassmannian of 2-planes in C4. The cells, as
well as the fixed points are indexed by the two-element subsets of {1, 2, 3, 4}. The Weyl group
WP ⊂ W = S4 is spanned by two transpositions s1 and s3. Let µ = µ(λ) = h〈λ,ε2−ε3〉 be
the function in λ ∈ (t∗)WP ⊂ (C4)∗ given by the exponent of the product with the dual root
α∨2 = ε2 − ε3. The restrictions of E(XP

w ) are presented in the following table:
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v = 12 v = 13 v = 14 v = 23 . . .

E(XP
12)v 1 0 0 0

E(XP
13)v δ( z3

z2
, µ) δ( z2

z3
, h) 0 0 . . .

E(XP
14)v δ( z3

z4
, h)δ( z4

z2
, µ) + δ( z3

z2
, µ)δ( z4

z3
, µh ) δ( z2

z3
, h)δ( z4

z3
, µh ) δ( z2

z4
, h)δ( z3

z4
, h) 0 . . .

E(XP
23)v δ( z1

z2
, h)δ( z3

z1
, µ) + δ( z2

z1
, µh )δ( z3

z2
, µ) δ( z2

z1
, µh )δ( z2

z3
, h) 0 δ( z1

z2
, h)δ( z1

z3
, h) . . .

...
...

...
...

...
. . .

Comparing with the previous example, here the µ-variable and h may appear together in one
argument of δ. This is due to the presence of the component ρ̄L, which for P = B vanishes.

Example 6.9. Let G = Sp2 and let G/P = LG(2) be the Lagrangian Grassmannian of 2-planes
in C4. It is isomorphic to the quadric in P4. The Weyl group W of G is generated by the

transposition s1 =
(

0 1
1 0

)
and the sign change s2 =

(
1 0
0 −1

)
under the {ε1, ε2} basis as in

[Bou81, Planche III]. The corresponding roots are
α1 = (1,−1), α2 = (0, 2).

With respect to the standard scalar product the coroots are the following
α∨1 = (1,−1), α∨2 = (0, 1).

The weight ρ̄L appearing in our computation is equal to (1, 0). The group WP is generated by
s1. There are four cells in LG(2) corresponding to the words

1, s2, s1s2, s2s1s2.

The weights, which are invariant with respect to WP are of the form (λ, λ). Let µ = hλ. The
elliptic class of the top dimensional Schubert variety restricted to 1 is equal to

(22) E(XP
s2s1s2)1 = δ

(
1
z2

2
,
µ

h

)
δ

(
z2

z1
,
µ2

h

)
δ

(
1
z2

2
, µ

)
+

+ δ
(
z2

2 , h
)
δ

(
1
z1z2

,
µ2

h

)
δ

(
1
z2

2
, h

)
+ δ

(
1
z2

2
,
µ

h

)
δ
(
z1

z2
, h
)
δ

(
1
z2

1
, µ

)
.

The first summand corresponds to the empty subword, the second one to s2s2, the third one
to s1. See also Section 9.1.

7. Elliptic classes of Schubert varieties in type A

7.1. Notation in type A. Let G = SLn. For convenience we consider the full group of linear
transformations GLn and the maximal torus therein. Denote the standard basis of t = Cn by εi.
The simple roots, following standard convention as in [Bou81, Planche I], are αi = εi− εi+1 (1 ≤
i ≤ n − 1). Fixing the standard scalar product in tQ = Qn, we identify coroots with roots, that
is αi = α∨i . The Weyl group W = Sn is identified with the group of permutations of the set
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{1, 2, . . . , n}, and also with the group of n × n permutation matrices. Let {si}1≤i≤n−1 ⊂ W be
the set of (simple) reflections corresponding to the simple roots αi.

Consider the parabolic subgroup P corresponding to the sequence of positive integers k =
(k1, k2, . . . , km) with ∑ ki = n. The variety G/P is the partial flag variety parametrizing flags of
subspaces (Vi)i=1,...,m with dim Vi/Vi−1 = ki. The Weyl group of the Levi factor is

WP = Sk1 × Sk2 × · · · × Skm ⊂ W = Sn.

Set k(s) = ∑s
i=1 ki and k(0) = 0. The simple roots of the Levi factor are those αi such that

{i, i+ 1} ⊂ [k(s−1) + 1, k(s)] for some s ∈ [1,m]. The defining condition

〈ρ̄L, α∨i 〉 =

1 if si ∈ WP

0 if si < WP

of ρ̄L translates to the formula ρ̄L = (r1, r2, . . . , rn), where, for 1 ≤ i ≤ n− 1,

ri − ri+1 =

1 if ∃s ∈ [1, m] with {i, i+ 1} ⊂ [k(s−1) + 1, k(s)]
0 otherwise.

The weight ρ̄L is determined by this condition up to the addition of Z∆, where ∆ := (1, . . . , 1).
For example, if (k1, k2, k3) = (2, 3, 1), then ρ̄L = (4, 3, 3, 2, 1, 1) or equally well we can take
ρ̄L = (3, 2, 2, 1, 0, 0).

The number 〈wρ̄L, α∨i 〉 is crucial for our computations. In type A it is rewritten as

(23) 〈ρ̄L, w−1α∨i 〉 = rw−1(i) − rw−1(i+1).

7.2. The recursion for E(XP
w , λ) in type A. Let us denote the basis characters T = (C∗)n →

C∗ by zi = eε
∗
i . The exponential of the simple root αi is hence

eαi = zi
zi+1

for i = 1, 2, . . . , n− 1.

Let yi = h−εi . It is treated as a function on t∗ = Cn: for λ = (λ1, λ2, . . . , λn),

(24) yi(λ) = h−〈λ,εi〉 = h−λi .

With this notation, and using (23), we obtain that the recursion of Theorem 6.4 in type A takes
the following form for v, w ∈ W P and a simple reflection si such that siw ∈ W P and siw > w:

(25) E(XP
siw

)[v] = δ

(
zi+1

zi
,
hrw−1(i+1) yw−1(i+1)

hrw−1(i) yw−1(i)

)
· E(XP

w )[v] + δ

(
zi
zi+1

, h

)
· szi [E(XP

w )[siv]],

where szi [f(. . . , zi, zi+1, . . .)] = f(. . . , zi+1, zi, . . .), and the initial condition takes the form

(26) E(XP
1 , λ)v =

1 if v = 1
0 if v , 1.
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8. Weight functions of [RTV19] represent elliptic characteristic classes

We first introduce a class of special functions called elliptic weight functions. Then, we show
that after a certain shift of variables they represent elliptic classes E(XP

w , λ) in type An−1.

8.1. Elliptic weight functions. As in Subsection 7.1, we have k = (k1, . . . , km) ∈ Zm≥1, k(s) =∑s
i=1 ki and n = k(m) = ∑m

i=1 ki. The corresponding partial flag variety SLn /P parametrizes flags
of subspaces {Vi}i=1,...,m with dimVi = k(i). The set of cosets W/WP (in fact, the set W P ) is in
natural bijection with the set of partitions I = (I1, . . . , Im) of {1, . . . , n} with |Ii| = ki. For such
an I we use the notation ∪si=1Ii = {i(s)1 < . . . < i

(s)
k(s)}.

Consider the set of variables t(s)i for s = 1, . . . ,m, i = 1, . . . , k(s), and set t(m)
i = zi. Following

[RTV19] define the elliptic weight function by

wI = 1∏m−1
s=1

∏k(s)
i=1

∏k(s)
j=1 ϑ(ht(s)j /t

(s)
i )
· Symt(1) . . . Symt(m−1)(UI),

where Symt(s) is symmetrization with respect to the t(s)1 , . . . , t
(s)
k(s) variables, and

UI =
m−1∏
s=1

k(s)∏
a=1

k(s+1)∏
c=1

ψI,s,a,c(t(s+1)
c /t(s)a )

k(s)∏
b=a+1

ϑ(ht(s)b /t(s)a )
ϑ(t(s)b /t

(s)
a )

 ,
where

ψI,s,a,c(x) = ϑ(x) ·


δ(x, h) if i(s+1)

c < i(s)a

δ(x, h1+pI,j(I,s,a)(i(s)
a )−pI,s+1(i(s)

a )µa/µb) if i(s+1)
c = i(s)a

1 if i(s+1)
c > i(s)a .

Here µa := h−λa and we used the numerical functions
• j(I, s, a) is defined by i(s)a ∈ Ij(I,s,a);
• pI,j(i) = |Ij ∩ {1, . . . , i− 1}|.

For example, for k = (1, 1) we have (temporarily denoting t = t
(1)
1 )

(27) w{1},{2} = ϑ(z1t
−1hµ2µ

−1
1 )ϑ(z2t

−1)
ϑ(hµ2µ

−1
1 )

, w{2},{1} = ϑ(z1t
−1h)ϑ(z2t

−1µ2µ
−1
1 )

ϑ(h)ϑ(µ2µ
−1
1 )

.

More important than the actual formula above—we admit that it is terribly complicated at
the first sight—is the recursion for the weight functions phrased in the next two propositions.
Recall that the szi operator switches the variables zi and zi+1. The operator si acts on a partition
I by replacing the numbers i and i+ 1.

Proposition 8.1 (R-matrix recursion for weight functions). Assume that for i ∈ Ia, i + 1 ∈ Ib
we have a < b. Then

(28) wsi(I) = δ

(
zi+1

zi
,
µbh

pI,a(i)

µahpI,b(i+1)

)
·wI +δ

(
zi
zi+1

, h

)
· szi [wI ].
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Proof. This is, in fact, not a new result. The weight functions defined in [RTV19, Section 2.4]
only differ from ours by some irrelevant power of ϑ(h), and some global factors. For the weight
functions defined there, an R-matrix recursion is proved there in Theorem 2.2(2.18). Applying
that formula for σ = 1, renaming I to si(I), and rearranging, we arrive at (28). �

For a function f in the variables t(s)i (e.g. a weight function), and I ∈ W/WP let f |I be the
function obtained from f by substituting

t
(s)
j 7→ z

i
(s)
j

for s = 1, . . . ,m− 1, j = 1, . . . , k(s).

Let I0 be the “smallest” I, that is I0
1 = {1, 2, . . . , k1}, I0

2 = {k1 + 1, . . . , k1 + k2}, etc.

Proposition 8.2. We have

wI0 |J =


∏

1≤a<b≤m
∏
i∈I0

a

∏
j∈I0

b
ϑ(zj/zi) if J = I0

0 if J , I0.

Proof. The statement follows from [RTV19, Lemmas 2.4, 2.5], or by careful inspection of the
formula for the weight function. (The reader is advised to verify the statement by substituting
t = z1 or t = z2 in the formulaW{1},{2} in (27), the general case only differs by tracing indexes). �

8.2. Weight functions versus elliptic classes. The variables of the weight function wI are
t
(s)
i , zi, µi, h. The elliptic class E(XP

w , λ) lives in the T = (C∗)n equivariant K-theory of G/P
extended by variables h and yj (see (24)).

Recall that the partial flag variety G/P parametrizes nested subspaces Vs of dimension k(s).
Let the tautological bundle over G/P whose fiber is Vs be denoted by T s. Then, T s represents
an element in KT(G/P ).

Consider the following evaluation of the variables of wI :

(29)

t
(s)
i 7→ Grothendieck roots of T s
zi 7→ Grothendieck roots of the tautological n-bundle over the classifying space BT
h 7→ h

µs 7→ yj · hs−k
(s−1) where j ∈ [k(s−1) + 1, k(s)].

Note that the last substitution makes sense, since if j, j′ ∈ [k(s−1) + 1, k(s)] then yj(λ) = yj′(λ)
for λ ∈ (t∗)WP .

Theorem 8.3. For any I ∈ W P , the evaluation (29) of wI /e
E(T (G/P )) represents E(XP

I , λ).

In other words the evaluation of the weight function wI is the Ẽ̀ `E-class of the pair (13).

Proof. Introducing the notation eI = eE(T (G/P ))|I , from the known description of the tangent
space of partial flag varieties we obtain

eI =
∏

1≤a<b≤n

∏
i∈Ia

∏
j∈Ib

ϑ(zj/zi).
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With this notation we need to show that

(30) wI |J
eJ

= E(XP
I , λ)J

for all I and J , which we will prove by induction on the length of I. For I0 (30) follows from the
comparison of (26) and Proposition 8.2.

Now, assume that for i ∈ Ia, i+ 1 ∈ Ib we have a < b. Then, from (28), for all J we obtain

wsi(I) |J = δ

(
zi+1

zi
,
µbh

pI,a(i)

µahpI,b(i+1)

)
·wI |J + δ

(
zi
zi+1

, h

)
· (szi [wI ]) |J .

Using (szi [wI ]) |J = szi [wI |si(J)], and temporarily denoting the left hand side of (30) by E ′(XP
I )J ,

we can write

E ′(XP
si(I))J · eJ =

δ

(
zi+1

zi
,
µbh

pI,a(i)

µahpI,b(i+1)

)
· E ′(XP

I )J · eJ + δ

(
zi
zi+1

, h

)
· szi [E ′(XP

I )si(J)]szi [esi(J)].

Remarkably, from the explicit formula for eI we can see that szi [esi(J))] = eJ . Hence, after division
by eJ , we arrive at

(31) E ′(XP
si(I))J = δ

(
zi+1

zi
,
µbh

pI,a(i)

µahpI,b(i+1)

)
· E ′(XP

I )J + δ

(
zi
zi+1

, h

)
· szi [E ′(XP

I )si(J)].

We claim that this recursion is the same as the recursion for E(XP
I )J given in (25), which will

complete our proof. Hence, we only need to identify the coefficient of E(XI)J in (25) with the
coefficient of E ′(XI)J in (31)—after the substitution (29). That is, we need the combinatorial
statement

rw−1(i+1) − rw−1(i) = (b− k(b−1) + pI,a(i))− (a− k(a−1) + pI,b(i+ 1)),

or equivalently, that the quantity

pI,a(i) + rw−1(i) + k(a−1) − a

does not depend on i (a is determined by i via i ∈ Ia). Tracing back the definitions of these
combinatorial functions we see that

• pI,a(i) + k(a−1) + 1 = w−1(i), and
• a− w−1(i) works for a choice of rw−1(i) (recall from Section 7.1 that rj’s are only defined

up to a uniform scalar addition).
From these two claims, by cancelling w−1(i), we obtain that pI,a(i) + k(a−1) + rw−1(i) − a = −1,
that is, a number independent of i. This completes the proof. �

Example 8.4. Let k = (2, 3, 2), and choose w = [i1, i2, . . . , i7] ∈ W P . For the corresponding
I = ({i1, i2}, {i3, i4, i5}, {i6, i7}) the various combinatorial functions
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i i1 i2 i3 i4 i5 i6 i7
w−1(i) 1 2 3 4 5 6 7
a 1 1 2 2 2 3 3

rw−1(i) 0 -1 -1 -2 -3 -3 -4
k(a−1) 0 0 2 2 2 5 5
pI,a(i) 0 1 0 1 2 0 1

illustrate the last, combinatorial, part of the proof above, namely the identity pI,a(i) + k(a−1) +
rw−1(i) − a = −1.

9. Remarks

9.1. Transformation properties. Equivariant elliptic cohomology classes of a point can be
regarded as sections of certain line bundles over some products of elliptic curves. Hence, the
function E(XP

w )v can be regarded as a section of a line bundle (depending on G,P,w, v) over
a product of elliptic curves. For example, the function (22) can be regarded as a section of a
line bundle over E4, where E = C∗ /(qZ), q = e2πiτ , and the coordinates of the factors of E4 are
z1, z2, h, µ.

To a product of theta functions we associate a quadratic form as follows: to ϑ(∏p
i=1 x

ri
i ) as-

sociate (∑p
i=1 rixi)2, and to a product of ϑ-functions associate the sum of the quadratic forms

of each factor. For a more conceptual explanation see [FRV18, Section 5]. For example, the
quadratic forms associated to the three terms of the function (22) are (up to the same scalar
multiple)

−2z2(µ− h) + (z2 − z1)(2µ− h) + (−2z2)µ,

(−z1 − z2)(2µ− h) and − 2z2(µ− h) + (z1 − z2)h+ (−2z1)µ.
The reader can trivially verify that these three quadratic forms are all equal.

The general fact that the different summands of E(XP
w )v must have the same transformation

property (i.e., the same associated quadratic form) is a useful practical reality check in calcula-
tions.

9.2. Axiomatic characterization. The fact that characteristic classes of Schubert (or other
geometrically relevant) varieties can be described by axioms turned out useful in several parts
of enumerative geometry. Such axiomatic characterizations were initially known for the coho-
mological fundamental class [Ri01], but, after Okounkov’s works, such axiomatic characteriza-
tions are proved for the cohomological CSM classes and for the K-theoretic MC classes as well
[RV18, FR18, FRW18, FRW19].

It can be shown that the elliptic classes of Schubert varieties studied in this paper have an
axiomatic characterization, too. However, no argument in this paper relies on such characteriza-
tion, and, in fact, even phrasing the axioms precisely would be rather technical. Hence, here we
only sketch the axiomatic characterization briefly.
The E(XP

w )v functions satisfy:
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(1) (GKM axiom) Let α : T→ C∗ be a root of G (not necessarily simple). If v1 = v2sα then(
E(XP

w )v1 − E(XP
w )v2

)
| ker(α)×(t∗)WP = 0 .

Here the restriction of the elliptic class is considered as a function on t× (t∗)WP .
(2) (support axiom) In the appropriate sense, the class E(XP

w ) is supported on the union of
the conormal spaces of Schubert cells X̊P

v for v ≤ w. To make sense of this condition,
first one needs to interpret E(XP

w ) as an element of the K-theory or elliptic cohomology
of the cotangent bundle of G/P (using h as the first Chern class of an extra C∗ action
scaling the fibers). Then, the support condition means that the class E(XP

w ) restricted to
the complement of the named union is 0. A more practical interpretation (which can be
phrased without involving the cotangent bundle) is that the local classes E(XP

w )v satisfy
certain divisibility properties. (For an argument reducing the support condition to a set
of divisibility conditions see [RTV19, Proof of Thm 5.1].)

(3) (normalization axiom) The ‘diagonal’ local classes are E(XP
w )w = ∏

δ(χ, h) for the weights
χ of Tw(XP

w ).
The axiomatic characterization theorem for the E(XP

w ) classes states that if a collection of func-
tions fw,v satisfy the three listed conditions, as well as the transformation property of fw,v are
the same as those of E(XP

w )v, then fw,v = E(XP
w )v. For analogous arguments see [AO16, 3.3.5],

[RTV19, Sec.7.8].
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[AMSS17] P. Aluffi, L. C. Mihalcea, J. Schürmann, Ch. Su. Shadows of characteristic cycles, Verma modules, and

positivity of Chern-Schwartz-MacPherson classes of Schubert cells, Preprint arXiv:1708.08697.
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[FRW18] L. M. Fehér, R. Rimányi, A. Weber. Motivic Chern classes and K-theoretic stable envelopes. To appear
in Proc. London Math. Soc. 2020, arXiv:1802.01503.
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