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Abstract. Grothendieck polynomials were introduced by Lascoux and Schützenberger, and
play an important role in K-theoretic Schubert calculus. In this paper, we give a new definition
of double stable Grothendieck polynomials based on an iterated residue operation. We illustrate
the power of our definition by calculating the Grothendieck expansion of K-theoretic Thom
polynomials of A2 singularities. We present this expansion in two versions: one displays its
stabilization property, while the other displays its expected finiteness property.

1. Introduction

From the point of view of enumerative geometry, a very important invariant of a subvariety
X in a smooth variety M is its cohomological fundamental class [X ⊂ M ] ∈ Hcodim(X⊂M)(M),
obtained from the homology fundamental class by Poincaré duality. A key technique to approach
this invariant is to pass to the local equivariant version. Let G be a reductive group, J be a vector
space endowed with a G-action, and η be a G-invariant subvariety of J . Then the G-equivariant
fundamental class

[η ⊂ J ] ∈ Hcodim(η⊂J)
G (J) = H

codim(η⊂J)
G (pt)

is an invariant polynomial. The study of this invariant is also known as degeneracy locus theory
(see eg. [FP, BF, MS, BSz]).

We encounter this setup, for example, in a branch of Schubert calculus where J is a repre-
sentation vector space of a quiver and the fundamental class is called a quiver polynomial, see
e.g. [BF, KMS, B6]. Another instance is global singularity theory, where J is the vector space
of germs (or jets) of maps acted upon by reparametrization groups, and the fundamental class
is called the Thom polynomial [T, Ri, BSz] of the singularity.

In this paper we will be concerned with the notion of G-equivariant K-theoretic fundamental
class [η ⊂ J ] ∈ KG(J) = KG(pt) of an invariant subvariety η of a G-representation J . In fact,
there are at least two inequivalent notions that may be called “K-theoretic fundamental class”:

• the class of the structure sheaf of η,
• the push-forward of the class of the structure sheaf of a resolution.

These two notions coincide if η has rational singularities, but not in general (cf. Section 5).
The non-ambiguous notion of cohomological fundamental class can be recovered from either of
these two K-theoretic fundamental class notions via a limiting procedure. For a review of these
two notions, as well as a third notion of K-theoretic fundamental class, see [F, Section 2].
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K-theoretic fundamental classes have been computed and studied in numerous situations, in
particular, in Schubert calculus, for quivers, and for matroids, (see [B6, BFi] and references
therein). At the risk of oversimplification, we can say that the vector spaces J in these situations
are direct sums of spaces of linear maps: Hom(Ca,Cb), and the group G linearly reparametrizes
the vector spaces Ca and Cb. Linear maps may be thought of as local 1-jets of general maps
between manifolds. In this paper, we leave the realm of 1-jets, and our principal object of study,
the variety A2 defined below, is in a 2-jet space of the form Hom(Ca,Cb) ⊕ Hom(S2Ca,Cb). A
key novel aspect of this variety is that it has non-rational singularities.

It is customary to express GLn(C)-equivariant cohomological fundamental classes in terms of
Schur polynomials in the Chern roots of GL(n). One reason is for this is that Schur polynomials
are themselves cohomological fundamental classes of some basic varieties: the (matrix) Schubert
varieties. A key feature of these Schur-expansions is that their coefficients are often positive. More
generally, when G is a product of general linear groups, the cohomological fundamental classes
are still often expressible as positive linear combinations of some flavors of Schur polynomials,
and the coefficients are often related to interesting objects in combinatorics or algebra. See
[BF, KMS, BR] for examples of this phenomenon for quiver polynomials, and [PW] for Thom
polynomials.

In K-theory, the role of Schur polynomials is played by Grothendieck polynomials, as they are
the K-theoretic fundamental classes of Schubert varieties. The expectation is that K-theoretic
fundamental classes, when G is a product general linear groups, may be expressed as linear
combinations of some flavors of Grothendieck polynomials with coefficients that have alternating
signs (see for example [B5, M, B6]). In Section 8, we will show that this expectation holds for
A2, in fact, for two different Grothendieck polynomial expansions.

In the process of developing these expansions, we needed a new formula for (double stable)
Grothendieck polynomials. This lead us to a novel residue calculus for double stable Grothendieck
polynomials, which we present in §4. We briefly describe this formula below, and then present
our main result.

1.1. Grothendieck polynomials, Grothendieck expansions. In Section 2, we recall the
original definition of double stable Grothendieck polynomials [FK1, FK2]. This involves first
introducing ordinary Grothendieck polynomials Gw, indexed by permutations and defined by
a recursion involving divided differences. Geometrically, the polynomials Gw represent torus-
equivariant K-theoretic fundamental classes of Schubert varieties in full flag varieties [LS]. Next,
double stable Grothendieck polynomials Gλ(α; β) parametrized by partitions are defined by a
limiting procedure from ordinary Grothendieck polynomials, where α and β are sequences of
variables.

Finally, applying to these latter polynomials a set of certain straightening laws, one defines
double stable Grothendieck polynomials GI(α; β) parametrized by arbitrary integer sequences.
Another approach to double stable Grothendieck polynomials parametrized by partitions uses
the combinatorics of set-valued tableaux [B4].



RESIDUES, GROTHENDIECK POLYNOMIALS AND K-THEORETIC THOM POLYNOMIALS 3

In §4.1, we propose a new formula for the most general integer-sequence parametrized double
stable Grothendieck polynomials:

(1) GI(α1, . . . , αk; β1, . . . , βl) =

Res
z1=0,∞

. . . Res
zr=0,∞

(
r∏
j=1

(1− zj)Ij−j
∏
i>j

(
1− zi

zj

) r∏
j=1

∏l
i=1(1− zjβi)∏k

i=1(1− zjαi)(1− zj)l−k

r∏
j=1

dzj
zj

)
.

This formula is analogous to the useful residue formula

(2) sI(ᾱ1, . . . , ᾱk; β̄1, . . . , β̄l) =

(−1)r Res
z1=∞

. . . Res
zr=∞

(
r∏
j=1

z
Ij
j

∏
j>i

(
1− zi

zj

) r∏
j=1

∏l
i=1(1 + β̄i/zj)∏k
i=1(1 + ᾱi/zj)

·
r∏
j=1

dzj
zj

)
for the double stable Schur polynomials (see e.g. [FR3, Lemma 6.1]). Note that in the case of
Schur polynomials, the residues are taken only at infinity, while for Grothendieck polynomials,
one takes the sum of the residues at 0 and infinity.

Let us explain how our formula (1) helps us to find Grothendieck expansions of certain functions
of αi, βi. Assume that a function T = T (α1, . . . , αk, β1, . . . , βl) is presented in the form

(3) T = Res
z1=0,∞

. . . Res
zr=0,∞

(
F ·
∏
i>j

(
1− zi

zj

) r∏
j=1

∏l
i=1(1− zjβi)∏k

i=1(1− zjαi)(1− zj)l−k

r∏
j=1

dzj
zj

)
,

for some polynomial function F (z1, . . . , zr) of the form F =
∑

I cI
∏r

j=1(1− zj)Ij−j. Then, since
the transformation

(4) F 7→ Res
z1=0,∞

. . . Res
zr=0,∞

(F · fixed kernel function(z, α, β))

is linear in F , we conclude that the function T has Grothendieck expansion
∑

I cIgI . We note that
the Grothendieck polynomials gI , which appear in this expansion, are not linearly independent.
Now, unfortunately, it is too much to ask that we obtain Thom polynomials in the form of (3)
with polynomial F — in practice, F is often a rational function. Yet, this consideration indicates
that the Grothendieck expansion of (3) for general F should be related to a Laurent expansion
of F at zi = 1. We will give an idea below how to perform this calculation. A detailed analysis
will be carried out in Sections 4.3, 8.3, 8.4.

1.2. K-theoretic Thom polynomials of singularities. The general reference for singularities
of maps is [AVGL]. For a positive integer N , denote by RN(Ca) the algebra of N -jets of functions
on Ca at 0; this is the ring of polynomials in a variables modulo monomials of degree at least
N + 1. Let JN(Ca,Cb) be the space of N -jets of maps (Ca, 0) → (Cb, 0) vanishing at 0. An
element of JN(Ca,Cb) = RN(Ca)b is given by a b-tuple of jets from the maximal ideal of RN(Ca).
A singularity η is an algebraic subvariety of JN(Ca,Cb) invariant under the group of formal
holomorphic reparametrizations of (Ca, 0) and (Cb, 0) (cf. e.g. [BSz]).
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An important set of examples of singularities, called contact singularities, is obtained as
follows. A reparametrization invariant of N -jets of functions is the local algebra, defined for
h = (h1(x1, . . . , xa), . . . , hb(x1, . . . , xa)) ∈ JN(Ca,Cb) as the ideal quotient RN(Ca)/(h1, . . . , hb).
Then for a fixed finite-dimensional local commutative algebra Q and nonnegative integers a ≤ b,
we can define the singularity ηa→bQ as the Zariski closure of the set

{g ∈ JN(Ca,Cb) : the local algebra of g is isomorphic to Q}.

(We will omit the dimensions a and b from the notation when this causes no confusion.)
Denote the group of linear reparametrizations GLa(C) × GLb(C) by GL[a → b], and observe

that the space JN(Ca,Cb) is equivariantly contractible, hence we have the identification with the
symmetric polynomials:

H∗GL[a→b](J
N(Ca,Cb)) = H∗GL[a→b](pt) = Z[ᾱ1, . . . , ᾱa, β̄1, . . . , β̄b]

Sa×Sb ,

KGL[a→b](J
N(Ca,Cb)) = KGL[a→b](pt) = Z[α±1

1 , . . . , α±1
a , β±1

1 , . . . , β±1
b ]Sa×Sb ,

where Sm is the permutation group on m elements, and ᾱi and β̄j are the cohomological, while
αi, and βj are the K-theoretic Chern roots of the standard representation of GLa(C) and GLb(C),
correspondingly.

In §5, we recall the definition of the equivariant Poincaré dual class [X] of an invariant algebraic
subvariety X in a vector space V acted upon by a Lie group. Using this notion, we define the
Thom polynomial of the singularity η as the equivariant Poincaré dual

Tpa→bη = [η] ∈ H∗GL[a→b](J
N(Ca,Cb)).

The analogous K-theoretic notion

KTpa→bη = [η]K ∈ KGL[a→b](J
N(Ca,Cb))

is, in fact, problematic when η has non-rational singularities, and we will discuss its definition in
detail in Section 5 as well.

To simplify our notation, we will denote the Thom polynomial of the contact singularity ηQ as
TpQ (and KTpQ) when this causes no confusion. Consider the example of Q = A2 = C[x]/(x3).

We will write formulas for TpA2
in terms of Schur functions sλ = sλ(ᾱ1, . . . , ᾱa, β̄1, . . . , β̄b) defined

in (2), or equivalently, by the more standard definition sλ = det(cλ(i)+j−i) with

1 + c1t+ c2t
2 + . . . =

∏b
i=1(1 + β̄it)∏a
i=1(1 + ᾱit)

.

The general formula due to Ronga [R] is as follows:

(5) Tpa→a+l
A2

=
l+1∑
i=0

2isl+1+i,l+1−i.

Here are the first few cases:

Tpa→aA2
= s1,1 + 2s2,0, Tpa→a+1

A2
= s2,2 + 2s3,1 + 4s4,0, Tpa→a+2

A2
= s3,3 + 2s4,2 + 4s5,1 + 8s6,0.
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Formula (5) illustrates three key features of cohomological Thom polynomials of contact sin-
gularities:

• (stability) The Thom polynomial Tpa→bA2
only depends on the relative dimension b − a

(denoted by l), not on a and b individually.
• (l-stability) We obtain Tpa→a+l

A2
from Tpa→a+l+1

A2
by replacing each Schur polynomial sa,b

by sa−1,b−1 (note that sa,−1 = 0). The general statement of this property for arbitrary Q
may be found in [FR1, Theorems 2.1, 4.1].
• (positivity) The coefficients of Schur expansions of Thom polynomials of contact singu-

larities are non-negative [PW].

In §8 we calculate the K-theoretic Thom polynomials KTpa→bA2
for all a ≤ b, and in §10 we

comment on the case of higher singularities.
We will, in fact, obtain two formulas:

• the first (cf. Theorem 8.4), which we call minimal, is the unique representation in the
basis of the Grothendieck polynomials indexed by partitions. This expression is uniquely
defined but it is not l-stable.
• the second (cf. Theorem 8.2), which we will call formal stable, is a special representa-

tion as a formal infinite sum of Grothendieck polynomials indexed by integer sequences
(furnished with a summation procedure), which has the l-stability property analogous
to the l-stability of cohomological Thom polynomials, see Remark 8.3. This is a new
phenomenon in K-theory.

Let us give a visual presentation of the relation between the two Grothendieck expansions of
KTpA2

. Consider the rational function

f(x1, x2) =
1

1− z2/z2
1

∣∣∣∣
z1=1−x1,z2=1−x2

=
1− 2x1 + x2

1

x2 − 2x1 + x2
1

.
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The coefficients of its |x1| < |x2| Laurent expansion are naturally arranged in the infinite grid as
follows:

1 x1 x2
1 x3

1 x4
1 x5

1 x6
1 x7

1 x8
1

x−1
2 1 −2 1

x−2
2 2 −5 4 −1

x−3
2 4 −12 13 −6 1

x−4
2 8

UU

−28

VV

38

UU

−25

VV

8

WW

−1

WW

x−5
2 16

[[

−64

ZZ

104

ZZ

. . . . . .

x−6
2 32

]]

. . . . . . . . . .

In the formal stable version of Grothendieck expansion of KTpa→a+l
A2

(Theorem 8.2), these num-
bers are exactly the coefficients of the corresponding Grothendieck polynomials, for any l, with
an appropriate shift. To obtain a finite expression, we sum these Grothendieck polynomials first
in the vertical direction, and, as will we show, all but finitely many of these partal sums will
vanish, giving a correct finite expression for KTpA2

. For example, two of the vanishing terms in
the formally stable expansion of KTpa→aA2

are

4G4,0 − 12G4,−1 + 8G4,−2 = 4G4 − 12G4 + 8G4 = 0,
−G5,0 + 13G5,−1 − 28G5,−2 + 16G5,−3 = −G5 + 13G5 − 28G5 + 16G5 = 0,

corresponding to the x3
1 and x4

1 columns above.
To obtain the minimal version of our formula, Theorem 8.4, the coefficients of KTpA2,a,a+l for

different l’s are obtained by different procedures from this grid of integers. For example, for l = 1
we “sweep up” all numbers from below the third row to the third row. That is, replace the (3, k)
entry with the sum of entries (r, k) for r ≥ 3 and then delete the rows from the 4th one down.
This sweeping is illustrated by the framed entries in the picture. In the resulting table we get
the numbers (reading along the diagonals) 1, 2, 4; −2,−5,−12 + 8 = −4; 1, 4, 13− 28 + 16 = 1;
−1, and then infinitely many 0’s. These are exactly the coefficients in the minimal Grothendieck
expansion of KTpa→a+1

A2
, cf. (6). To get KTpa→a+2

A2
we need to “sweep” the same table below

the 4th row, for l = 3 we sweep from the 5th row, etc. The exact statement of this sweeping
procedure is given in Theorem 8.4.
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As a result, we obtain the following minimal expansions:

KTpa→aA2
=
(
G1,1 + 2G2

)
−
(
2G2,1 +G3

)
+G3,1(6)

KTpa→a+1
A2

=
(
G2,2 + 2G3,1 + 4G4

)
−
(
2G3,2 + 5G4,1 + 4G5

)
+
(
G4,2 + 4G5,1 +G6

)
−G6,1

KTpa→a+2
A2

=
(
G3,3 + 2G4,2 + 4G5,1 + 8G6

)
−
(
2G4,3 + 5G5,2 + 12G6,1 + 12G7

)
+
(
G5,3 + 4G6,2 + 13G7,1 + 6G8

)
−
(
G7,2 + 6G8,1 +G9

)
+G9,1.

It is remarkable that the third key feature, the positivity of cohomological Thom polynomials,
extends to a rule of alternating signs for both of our expansions. This result will be proved in §9.

Acknowledgements. The first author was supported by the Simons Foundation grant 523882.
He is also grateful for the hospitality and financial support of University of Geneva and CIB
during his stay there while parts of this research was done. The second author is partially
supported by FNS grants 156645, 159581 and 175799.

2. Combinatorial definition of Grothendieck polynomials

In this section we will review the traditional definition of various versions of Grothendieck
polynomials. We follow the references [LS, FK1, FK2, B1, B4, B6]. Our goal in Sections 2-4 is
to replace these traditional definitions with the residue description of Definition 4.2. The reader
not interested in the traditional definitions can take Definition 4.2 to be the definition of double
stable Grothendieck polynomials and jump to Section 5.

We will use standard notations of algebraic combinatorics. A permutation w ∈ Sn will be
represented by the sequence [w(1), w(2), . . . , w(n)]. The length of a permutation `(w) is the
cardinality of the set {i < j : w(i) > w(j)}. We will identify Sn with its image under the natural
embedding Sn = {w ∈ Sn+1| w(n+ 1) = n+ 1}.

2.1. Double Grothendieck polynomials. Double Grothendieck polynomials (in variables xi,
yj) were introduced by Lascoux and Schutzenberger [LS]. In the present paper, following e.g.
[B1], we perform the rational substitutions xi = 1 − 1/αi and yi = 1 − βi in those polynomials,
and denote the resulting rational functions by Gw(α, β). To keep the terminology simple, we will
continue calling these functions “Grothendieck polynomials”.

The functions Gw(α, β) are defined by the following recursion:

• For the longest permutation w0 = [n, n− 1, . . . , 1] ∈ Sn, let

Gw0 =
∏
i+j≤n

(
1− βi

αj

)
.

• Let si be the ith elementary transposition. If `(wsi) = `(w) + 1 then

Gw = πi(Gwsi),

where the isobaric divided difference operator πi is defined by
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πi(f) =
αif(. . . , αi, αi+1, . . .)− αi+1f(. . . , αi+1, αi, . . .)

αi − αi+1

=
f(. . . , αi, αi+1, . . .)

1− αi+1/αi
+
f(. . . , αi+1, αi, . . .)

1− αi/αi+1

.

For example, here is the list of double Grothendieck polynomials for all w ∈ S3

G321 =

(
1− β1

α1

)(
1− β2

α1

)(
1− β1

α2

)
G231 =

(
1− β1

α1

)(
1− β1

α2

)
G312 =

(
1− β1

α1

)(
1− β2

α1

)
G213 = 1− β1

α1

G132 = 1− β1β2

α1α2

G123 = 1.

2.2. Stable versions. For a permutation w ∈ Sn let 1m × w ∈ Sm+n be the permutation that
is the identity on {1, . . . ,m} and maps j 7→ w(j − m) + m for j > m. The double stable
Grothendieck polynomial Gw(α, β) is defined to be

(7) Gw = lim
m→∞

G1m×w .

For example, G21 = 1− β1β2β3···
α1α2α3··· . The precise definition of this limit may be found in [B1]: roughly,

rewritten in the x and y variables mentioned above, each coefficient of G1m×w stabilizes with m,
and hence the limit is defined as a formal power series in xi, yj with the stabilized coefficients.

2.3. Truncated versions. One usually considers specializations of double stable Grothendieck
polynomials of the type

(8) Gk,l
w (α1, . . . , αk; β1, . . . , βl) = Gw(α1, . . . , αk, 1, 1, . . . ; β1, . . . , βl, 1, 1, . . .).

In fact, Gk,l
w may be obtained by substituting αi = 1, i > k, βi = 1, i > l in G1m×w for m� k, l.

This way the truncated versions (8) may be calculated without the limm→∞ of (7).
Below, we will drop the superscripts k, l whenever they may be determined from the number

of α and β variables.
In the case l = 0, we will simply write Gw(α1, . . . , αk).

2.4. Stable Grothendieck polynomials parametrized by partitions. As usual, a weakly
decreasing sequence of nonnegative integers λ = (λ1, . . . , λr) will be called a partition. We will
identify two partitions if they differ by a sequence of 0’s, and we define L(λ), the length of a
partition λ to be the largest i for which λi > 0. The Grassmannian permutation associated to a
partition λ with descent in position p is the permutation

wλ(i) =

{
wλ(i) = i+ λp+1−i for i ≤ p, and

wλ(i) < wλ(i+ 1) unless i = p.

Note that necessarily p ≥ L(λ).
We define the double stable Grothendieck polynomial Gλ of the partition λ as Gwλ(α; β). It is

easy to show that this definition does not depend on the choice of p above.



RESIDUES, GROTHENDIECK POLYNOMIALS AND K-THEORETIC THOM POLYNOMIALS 9

2.5. Stable Grothendieck polynomials parametrized by integer sequences. The notion
Gλ (with λ a partition) is extended to GI where I ∈ Zr is any finite integer sequence—by repeated
applications of the straightening laws [B3, Sect. 3]

GI,p,q,J =

q∑
k=p+1

GI,q,k,J −
q−1∑

k=p+1

GI,q−1,k,J if p < q,(9)

GI,p = GI,0 = GI if p < 0.(10)

3. Properties of Grothendieck polynomials

We will need the following three properties of Grothendieck polynomials.

Proposition 3.1. [FK2], [B6, (2)] The polynomial Gw(α1, . . . , αk; β1, . . . , βl) is Sk×Sl-supersymmetric,
i.e. it is symmetric in the αi and the βj variables separately, and satisfies

Gw(α1, . . . , αk−1, t; β1, . . . , βl−1, t) = Gw(α1, . . . , αk−1; β1, . . . , βl−1).

In particular, the left hand side of this equality does not depend on t.

The next statement is an easy application of the Fomin-Kirillov formulas [FK1], and also
follows directly from the set-valued tableau description in [B1].

Proposition 3.2. Let λ = (λ1, . . . , λr) be a partition with λr > 0 and let 0 < k < r. Then
Gλ(α1, . . . , αk) = 0.

Proposition 3.3. Let λ = (λ1, . . . , λr) be a partition with λr ≥ 0. We have

Gλ(α1, . . . , αr) =
∑
σ∈Sr

∏r
i=1

(
1− 1/ασ(i)

)λi+r−i∏
i>j

(
1− ασ(i)/ασ(j)

) .

Proof. Consider the permutation

w̄λ = λ1 + r, λ2 + r − 1, . . . , λr + 1, i1, . . . , is

where ij < ij+1 for all j, and s is sufficiently large to make this a permutation. The permutation
w̄λ is a so-called dominant permutation. For dominant permutations the recursive definition of
Section 2.1 can be solved explicitly ([LS], or see the diagrammatic description in [FK1]), and we
obtain

Gw̄λ(α1, . . . , αr) =
r∏
i=1

(
1− 1

αi

)λi+r−i
.

Observe that w̄λ · w0 = wλ, where w0 is the longest permutation of 1, . . . , r. Hence

(11) Gλ(α1, . . . , αr) = Gwλ(α1, . . . , αr) = πw0(r)

(
r∏
i=1

(
1− 1

αi

)λi+r−i)
,
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where

πw0(r)(f) = (π1π2 . . . πr−1)(π1π2 . . . πr−2) . . . (π1)(f) =
∑
σ∈Sr

σ

(
f∏

i>j(1− αi/αj)

)
,

where σ ∈ Sr acts by permuting the variables αi. The right-hand side of (11) is equal to the
right-hand side of the displayed formula in the Proposition. If the number of α variables is at
least the length of the partition, then Gλ(α) = Gλ(α), which concludes our proof. �

Note that Proposition 3.3 may be used whenever the number of α variables is larger than the
length of the partition, because we can append 0’s to the end of λ to make the condition satisfied.

4. Grothendieck polynomials in residue form

In this section we introduce a residue calculus for Grothendieck polynomials and show how
this new formalism helps to understand some of their properties.

Let z be a complex variable, and introduce the notation

Res
z=0,∞

f(z) dz = Res
z=0

f(z) dz + Res
z=∞

f(z) dz.

The following property of Resz=0,∞ is straightforward.

Lemma 4.1. Let 0 ≤ a ≤ s− r − 2 and let

f(z) = za ·
∏r

i=1(z − xi)∏s
i=1(z − yi)

for non-zero complex numbers xi, yi. Then Resz=0,∞ f(z) dz = 0. �

4.1. Residue form of double stable Grothendieck polynomials. Let z1, . . . , zr be complex
variables. For nonnegative integers k, l, define the differential form

(12) Mk,l(z1, . . . , zr) =
r∏
j=1

∏l
i=1(1− zjβi)∏k

i=1(1− zjαi)(1− zj)l−k
·

r∏
j=1

dzj
zj
.

When it causes no confusion, we will omit the indices k an l, and denote the vector (z1, . . . zr)
by z: thus we will write M(z) for Mk,l(z1, . . . , zr).

Definition 4.2. For an integer sequence I ∈ Zr, define the g-polynomial as
(13)

gI(α1, . . . , αk; β1, . . . , βl) = Res
z1=0,∞

. . . Res
zr=0,∞

(
r∏
j=1

(1− zj)Ij−j
∏
i>j

(
1− zi

zj

)
Mk,l(z1, . . . , zr)

)
.

Remark 4.3. In general, iterated residue formulas are sensitive to the order in which one takes
the residues Reszi—see for example [BSz, K1, K2, FR2]—due to factors of the type zi− zj in the
denominator. However, the denominators in (13) are linear factors each depending on a single
variable, and hence the order in this case does not matter.

The following is evident from Definition 4.2.
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Lemma 4.4. We have

(14) gI(α1, . . . , αk, 1; β1, . . . , βl) = gI(α1, . . . , αk; β1, . . . , βl, 1) = gI(α1, . . . , αk; β1, . . . , βl).

The function gλ(α1, . . . , αk; β1, . . . , βl) is supersymmetric: it is symmetric in the αi and the βj
variables separately, and we have

gλ(α1, . . . , αk−1, t; β1, . . . , βl−1, t) = gλ(α1, . . . , αk−1; β1, . . . , βl−1).

In particular, the left hand side does not depend on t. �

Theorem 4.5. For any integer sequence I, and nonnegative integers k, l, we have

GI(α1, . . . , αk; β1, . . . , βl) = gI(α1, . . . , αk; β1, . . . , βl).

First we prove two lemmas.

Lemma 4.6. Let I and J be integer sequences. Then we have

(15) gI,p,q,J =

q∑
k=p+1

gI,q,k,J −
q−1∑

k=p+1

gI,q−1,k,J if p < q,

and

(16) gI,p = gI if p ≤ 0.

Proof. For simplicity of notation, we assume that I = J = ∅. The general case is treated similarly.
For p < q consider

gp,q−gq−1,q = Res
z1=0,∞

Res
z2=0,∞

(
(1− z1)p−1(1− z2)q−2 − (1− z1)q−2(1− z2)q−2

)(
1− z2

z1

)
·M(z1, z2).

Applying the identities (
1− z2

z1

)
= −z2

z1

(
1− z1

z2

)
and(

(1− z2)q−2(1− z1)p−1 − (1− z2)q−2(1− z1)q−2
)(
−z2

z1

)
=

q−1∑
k=p+1

(1− z2)q−1(1− z1)k−2 −
q−1∑

k=p+1

(1− z2)q−2(1− z1)k−2,

we obtain that gp,q − gq−1,q equals

Res
z1=0,∞

Res
z2=0,∞

(
q−1∑

k=p+1

(1− z2)q−1(1− z1)k−2 −
q−1∑

k=p+1

(1− z2)q−2(1− z1)k−2

)(
1− z1

z2

)
·M(z1, z2).

Using the definition of g with the role of z1 and z2 switched, we obtain

gp,q − gq−1,q =

q−1∑
k=p+1

gq,k −
q−1∑

k=p+1

gq−1,k.
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This is equivalent to (15) up to the easy equality

gq−1,q = gq,q,

whose proof we leave to the reader.
Formula (16) immediately follows from the fact that, for p ≤ 0,

Res
zr=0

(1− zr)p−r
r−1∏
i=1

(
1− zr

zi

)
Mk,l(zr) = 1,

while the residue of this expression at zr =∞ vanishes. �

Lemma 4.7. Let λ = (λ1, . . . , λr) be a partition with λr > 0. Then for k < r, we have
gλ(α1, . . . , αk) = 0.

Proof. First note that, according to Lemma 4.4, the case k = r − 1 implies the case k < r.
Now assume k = r−1, and introduce the temporary notation γ for the differential form in (13).

Assume that the values of the αis are all different.
We calculate the first residue Reszr=0,∞ γ, taking into account Remark 4.3 and applying the

1-variable Residue Theorem. The exponent Ir − r+ k− l of the factor (1− zrβi) is nonnegative,
since Ir = λr > 0, k = r−1, and l = 0, and hence there is no pole at zr = 1. The remaining poles
are thus the points zr = 1/αi, i = 1, . . . , k, and each of these poles is simple. The residue at the
simple pole zr = 1/αi, up to a factor of −αi is obtained by omitting the factor (1− αizr) in the
denominator, and then substituting into the remainder zr = 1/αi. Continuing the application of
residues in (13), we obtain a sum over all choices of indices 1 ≤ ij ≤ k, j = 1, . . . r, of terms of
the following form

r∏
j=1

(1− αij)ε
∏
m>j

(
1− αim

αij

)
M̃,

where ε ≥ 0 and M̃ is some rational expression in the α’s. The relevant factor in the product is
the second one, which vanishes as long as im = ij for some 1 ≤ j < m ≤ r. As k < r, this is
certainly the case, and this completes the proof. �

Now we are ready to prove Theorem 4.5.

Proof. Since both g and G are supersymmetric (Proposition 3.1 and Lemma 4.4), it is sufficient
to prove Gλ = gλ for the β1 = β2 = . . . = 1 substitution. For that substitution, both gλ and Gλ

vanish if the number of α’s is less then the length of λ (see Proposition 3.2 and Lemma 4.7).
Let λ = (λ1, . . . , λr) and consider formula (13) for k = r, l = 0. We will apply the Residue

Theorem for each residue Reszi=0,∞, i.e. we replace Reszi=0,∞ by −
∑

p Reszi=p where the sum

runs over all poles different from 0 and ∞. We claim that the only such poles are at zi = 1/αj.
Indeed the substitution βi = 1 makes the exponent of (1− zi) in the formula equal to λi − i+ r,
which is nonnegative.

The only nonzero finite residues hence correspond to permutations σ ∈ Sr: zi = 1/ασ(i).
Straightforward calculation shows that the−Reszi=1/ασ(i) operation yields the term corresponding
to σ ∈ Sr in Proposition 3.3. This proves the theorem. �
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4.2. Consequences of the g = G theorem. Grothendieck polynomials have a rich algebraic
structure and they display beautiful finiteness and alternating-sign properties. We believe that
the residue form for the stable Grothendieck polynomials above sheds light on many of those
properties. We will illustrate this in Section 8 in a so-far unexplored situation—the Thom poly-
nomials of singularities. Here we will just sketch a simple example showing how the multiplication
structure of Grothendieck polynomials is encoded in their residue form.

4.3. Multiplication. Consider the concrete example of calculating the g-expansion of the prod-
uct g2 · g2 (here “2” in the subscript is a length 1 partition). We have

g2 · g2 = Res
z=0,∞

(1− z)M(z) · Res
u=0,∞

(1− u)M(u) = Res
z,u=0,∞

(1− z)(1− u)M(z, u) =

Res
z,u=0,∞

(
(1− z)(1− u)

1

1− u
z

(
1− u

z

)
M(z, u)

)
=

Res
z,u=0,∞

(
(1− z)(1− u)

(
2∑
i=0

(1− z)i

(1− u)i+1
−

2∑
i=1

(1− z)i

(1− u)i
+

u(1− z)3

(z − u)(1− u)3

)(
1− u

z

)
M(z, u)

)
.

The term involving u(1− z)3/((z − u)(1− u)3) has u-residue 0, because of Lemma 4.1. Hence
we further obtain

g2 · g2 = Res
z,u=0,∞

((
2∑
i=0

(1− z)i+1

(1− u)i
−

2∑
i=1

(1− z)i+1

(1− u)i−1

)(
1− u

z

)
M(z, u)

)

= g2,2 + g3,1 + g4,0 − g3,2 − g4,1.

In general the calculation of products of arbitrary Grothendieck polynomials is similar, see
[AR]. Namely, to find an explicit expression for gI · gJ as sums of Grothendieck polynomials, one
considers ∏

i

(1− zi)Ii−i
∏
j

(1− u)Jj−j
∏
i,j

1

1− uj
zi

,

and replaces 1/(1−uj/zi) with an appropriate initial sum of its Laurent series at zi = uj = 1. The
initial sum needs to be chosen in such a way that the remainder multiplied by

∏
(1−zi)Ii−i

∏
(1−

u)Jj−j has 0 residue.

Remark 4.8. The example above can be generalized to show that the product of two Grothen-
dieck polynomials (parametrized by integer sequences) is a finite sum of Grothendieck polynomi-
als parametrized by integer sequences with coefficients with alternating signs, see [AR]. Proving
the much more difficult analogous statement for Grothendieck polynomials parametrized by par-
titions [B2] needs extra considerations. We will perform a similar analysis for Thom polynomials
in Section 9.
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5. Fundamental class in cohomology and K-theory

5.1. The cohomology fundamental class. LetX be a subvariety of codimension d in a smooth
projective variety M . Then X has a well-defined fundamental class [X] ∈ H2d(M,Q), satisfying

(17)

∫
X

ι∗ω =

∫
M

[X] · ω,

where ι : X →M is the embedding, and ω ∈ H∗(M,Q) is arbitrary, cf. [GH].
There is a natural extension of this notion to the equivariant setting, which plays a fundamental

role in enumerative geometry. Let V be a complex vector space acted upon by a complex torus
T . Then a T -invariant affine subvariety X has a fundamental class [X]T ∈ H2d

T (V ) = H2d
T (pt),

d = codim(X), which satisfies the equivariant version of (17):∫
X

ι∗ω =

∫
V

[X]T · ω,

where ω is any equivariantly closed, compactly supported form on V .
There is a number of definitions of this notion (cf. [BSz, §3] for a discussion); below we recall

one due to Joseph [J]. We begin with introducing some necessary notation.

• Let exp : Lie(T )→ T be the exponential map; the pull-back of a function from f : T → C
to Lie(T ) via this map will be denoted by exp∗ f .
• For a character α ∈ Hom(T,C∗), we will write ᾱ for the corresponding weight in the

weight lattice WT ⊂ Lie(T)∨. We will thus have the following equality of functions on
Lie(T ):

exp∗ α = eᾱ,

where factor of 2πi is considered to be absorbed in the definition of the exponential, and
will be ignored in what follows.
• Fix a Z-basis β1, . . . , βr : T → C∗ of Hom(T,C∗). We then have

H∗T (V ) = H∗T (pt) = Z[β̄1, . . . , β̄r].

• Let xj, j = 1, . . . N be a set of coordinates on V , corresponding to a basis of eigenvectors of
the T action, and denote by ηj ∈ Hom(T,C∗), j = 1, . . . N , the corresponding characters:
for t ∈ T , we have t · xj = ηj(t)

−1xj. For what follows, it is convenient to make the
following

Assumption 5.1. All the weight vectors of the vector space V lie in an open half-space
of the weight lattice WT ⊂ Lie(T)∨, i.e. there exists an element Z ∈ Lie(T ) such that we
have

〈η̄j, Z〉 > 0, j = 1, . . . N.

One can carry out the constructions of the theory without this assumption as well, but
this is more technical, and this case is sufficient for our purposes.
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Recall that for a finite-dimensional representation W of T with a diagonal basis

W = ⊕mi=1 Cwi, t · wi = αi(t) · wi, we have Tr [t |W ] =
m∑
i=1

αi, for t ∈ T.

This function on T is called the character of W .
Now let X ⊂ V be a T -invariant subvariety, and denote by RX the ring of algebraic functions

on X. The character

χX(t) = Tr[t |RX], t ∈ T
of RX considered as a T -representation is only a formal series since RX is infinite-dimensional
whenever the dimension of X is positive. Under Assumption 5.1, however, this series converges
in a domain in T , and χX(t) makes sense as a rational function on T .

For example, RV = C[x1, . . . , xN ] is the ring of polynomial functions on V , and we have

(18) χV =
N∏
j=1

1

1− η−1
j

,

as can be seen by expanding this function in an appropriate domain in T .
The following theorem is a consequence of the Hilbert’s syzygy theorem (cf. [MS, Chapter 8]).

Theorem 5.2. Let X ⊂ V be a T -invariant subvariety of codimension d. Then χX is a function
on T defined whenever χV is defined (cf. (18)), and has the form of a finite integral linear
combination of T -characters multiplied by χV :

(19) χX = χV ·
M∑
j=1

ajθj, where aj ∈ Z, θj ∈ Hom(T,C∗).

Moreover, expanding the function exp∗(χX/χV ) =
∑M

j=1 aj θ̄j on Lie(T ) around the origin, we
obtain a power series with lowest degree terms in degree d:

(20)
M∑
j=1

aj exp θ̄j =
1

d!

M∑
j=1

aj θ̄
d
j + ρd+1 with ρd+1 ∈ md+1,

where m is the maximal ideal of analytic functions vanishing at the origin in Lie(T ).

The last part of the theorem states that, after the expansion, the terms up to degree d − 1
cancel.

Definition 5.3. Let X ⊂ V be a T -invariant subvariety of codimension d. We define the T -
equivariant fundamental class of X in V as the degree-d (leading) term on the right hand side of
(20) interpreted as an element of H∗T (V ):

[X]T = (−1)d
M∑
j=1

aj θ̄
d
j .
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Example 5.4. Let V = C2 be endowed with a diagonal action of T = C∗ with weight 1 on each
of the two coordinate functions x and y, and let X = {xy = 0}. Then X is T -invariant, and
there is a short exact sequence of RV -modules

0→ RV [−2]→ RV → RX → 0,

where RV [−2] stands for the free module of rank 1, generated by a single element of degree 2,
whose image is the function xy. This implies

χV =
1

(1− β−1)2
, and χX =

1− β−2

(1− β−1)2
=

1 + β−1

1− β−1
.

Now we substitute β = eβ̄, and we see that modulo β̄3, we have χX/χV = 1 − β−2 = 2β̄, and
hence [X]T = 2β̄.

5.2. Equivariant K-theoretic fundamental classes. It is not immediately obvious what one
should take as the appropriate definition of the equivariant fundamental class in K-theory.

In our setup, we have

KT (pt) = ZHom(T,C∗) = Z[β±1
1 , β±1

2 , . . . , β±1
r ],

and thus for a T -invariant X ⊂ V , it would seem natural to define as this fundamental class the
linear combination of torus characters χX/χV in (19), which naturally lies in this space.1 This
invariant is very difficult to calculate, however (cf. [K] for a more detailed discussion), and, in
fact, there are some alternatives.

Proposition 5.5. Let X ⊂ V be a T -invariant subvariety in the vector space V satisfying
Assumption 5.1. Then the cohomology groups of the structure sheaf H i(Y,OY ) for a smooth T -
equivariant resolution π : Y → X are independent of the choice of Y , and thus are invariants of
X. In particular,

(21) χ̃X(τ)
def
=

dimY∑
i=0

(−1)iTr
[
τ |H i(Y,OY )

]
is an invariant of X, which coincides with χX if X has only rational singularities. Moreover,
χX/χV and χ̃X /χV have the same leading term in the sense of (19) and (20) in Theorem 5.2.

These statements are fairly standard—see for example [MS, H]—hence we only give a sketch
of the proof to emphasize the key ideas involved. First we recall that for two smooth resolutions
Y1 → X ← Y2, there exists a resolution Y → X which dominates Y1, Y2. This fact reduces the
theorem to the case when both X and Y are smooth and π is birational. In this case, the first
statement may be found in [H, Chapter III].

The statement on rational singularities is essentially a tautology: for an affine variety X,
having rational singularities means precisely that for any smooth resolution Y → X, we have
H0(Y,OY ) = H0(X,OX) and H i(Y,OY ) = 0 for i > 0.

1This polynomial is called the K-polynomial in [MS] for this reason.
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Finally, note that the cohomology groups H i(Y,OY ) are the sections over X of the derived
push-forward sheaves Riπ∗OY . Applying the flat base change for the smooth locus in X, we
see that for i > 1, these sheaves are supported on the singular locus of X, which is of higher
codimension than X itself. For such a sheaf then, the corresponding leading term will be of
higher degree than d, the codimension of X (see [MS]), and this completes the proof. �

Definition 5.6. Let X be a T -invariant subvariety of the vector space V endowed with a T -action
and satisfying Assumption 5.1. Then we define the K-theoretic fundamental class [X]KT of X in
V as the character χ̃X /χV , where χ̃X is given by the formula (21).

Now let us revisit Example 5.4. Denote by Y the normalization of X, which is the union of
two nonintersecting lines. Then H0(Y,OY ) is two copies of a polynomial ring in one variable,
and H0(X,OX) ⊂ H0(Y,OY ) is the subset of those pairs of polynomials whose constant terms
coincide. We have

χ̃X = χY =
2

1− β−1
, χV =

1

(1− β−1)2
, and hence [X]KT =

χ̃X
χV

= 2(1− β−1).

It is instructive to verify directly the last statement of Proposition 5.5 even in this simple case.
When we used χX instead of χ̃X , we obtained a different answer:

χX
χV

=
(1 + β−1)/(1− β−1)

1/(1− β−1)2
= 1− β−2.

Yet, after substituting β = eβ̄, we see that, modulo (β̄3) we have the equality:

χ̃X /χV = χX/χV = 2β̄ mod (β̄3),

recovering the cohomological fundamental class of Example 5.4.

Remark 5.7. For a holomorphic map between complex manifolds g : Ma → P b, one can consider
the η-singularity points

η(g) = {x ∈M : the N -jet of g at x belongs to η}.

Thom’s principle on cohomological Thom polynomials states that if g satisfies certain transver-
sality properties then

[η(g)] = Tpa→bη (Chern roots of TM,Chern roots of g∗(TP )).

This powerful statement relies on the fact that the notion of “cohomological fundamental class”
is consistent with pullback morphisms. The way we set up the notion of K-theoretic fundamental
class in Definition 5.6 is not consistent with pullback morphisms (rather, it is consistent with
push-forward morphisms), hence Thom’s principle does not hold for our K-theoretic Thom poly-
nomials. The interesting project of studying another version of K-theoretic fundamental class of
singularities—one for which Thom’s principle holds—is started in [K].

We end this section with an observation addressing the situation when the group G acting
on V is a general reductive group with maximal torus T . For a reductive group G, we have
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KG(pt) = KT (pt)W (the Weyl-invariant part). For a G-invariant X ⊂ V , the class [X]KT will be
in this Weyl-invariant part, and hence we can define [X]KG = [X]KT .

In the rest of the paper, if the group that acts is obvious, we will drop the subscript and use
the notation [X] = [X]G, [X]K = [X]KG for the cohomological and K-theoretic fundamental class.

6. Singularities and their Thom polynomials

Recall the notion of contact singularities and their Thom polynomials from §1.2. Let us see a
few examples.

Example 6.1.

• The simplest case is Q = C, also known as the A0-algebra. In this case, we have

ηa→bA0
= JN(Ca,Cb),

which is essentially the inverse function theorem.
• When the algebra Q is A1 = C[x]/(x2), the set ηa→bA1

is the set of singular map-jets, i.e.
those whose derivative at 0 is not injective.
• For r > 0, consider Q = C[x1, . . . , xr]/(x1, . . . , xr)

2. In this case, ηa→bQ is the set of those
map-jets whose linear part has corank at least r (also known as the Σr singularity).
• The contact singularities corresponding to the algebra Q = Ar = C[x]/(xr+1) are called

Morin singularities. A generic element of η2→2
A2

may be represented as (x, y) 7→ (x3+xy, y);
it is called the cusp singularity.

6.1. The model. By a model for a singularity η ⊂ J(Ca,Cb), we mean a GL(Ca) × GL(Cb)-
equivariant commutative diagram

X

π
&&LL

LLL
LLL

LLL
LL i
//

ρ

((

M × J(Ca,Cb)

π1

��

π2
// J(Ca,Cb)

��
M

pM // pt,

where

• M is a smooth compact manifold,
• π : X →M is a subbundle of the trivial bundle π1 : M × J(Ca,Cb)→M ,
• ρ = π2 ◦ i is birational to η,
• and pM is the map from M to a point pt.

Let ν be the quotient bundle of π1 : M × J(Ca,Cb)→M by X →M . It follows that for such
a model for the singularity η one has

Tpη = pM∗(e(ν)),

where e stands for the (equivariant) Euler class. Indeed, we have

(22) Tpη = ρ∗(1) = π2∗(i∗(1)) = π2∗(e(ν)) = pM∗(e(ν)).
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The advantage of our definition of K-theoretic fundamental class in Section 5 is that the
argument (22) goes through without change to the K-theoretic setting, and we have

KTpη = pM !(e(ν)),

where e is now the K-theoretic (equivariant) Euler class, and pM ! is the K-theoretic push-forward
map.

6.2. Integration in K-theory using residues. In what follows we will use residue calculus
for the push-forward map in K-theory.

Let the torus T act on the smooth variety X with finitely many fixed points. Let W be a
rank-d equivariant vector bundle over X, and let ω1, . . . , ωw be its Chern roots (i.e. virtual line
bundles whose sum is W ). Let p : Gr(r,W ) → X be the Grassmannization of W , that is an
equivariant bundle whose fiber over x ∈ X is the Grassmannian Gr(r,Wx) of dimension r linear
subspaces of the fiber Wx of W over x. Let S be the tautological subbundle over Gr(r,W ),
and let σ1, . . . , σr be its Chern roots. A symmetric Laurent polynomial g(σ1, . . . , σr) is hence an
element of KT (Gr(r,W )).

Lemma 6.2. We have

(23) p!(g(σ1, . . . , σr)) = Res
z1=0,∞

. . . Res
zr=0,∞

∏
i>j

(
1− zi

zj

)
g(z1, . . . , zr)∏r

i=1

∏w
j=1

(
1− zi

ωj

) r∏
i=1

dzi
zi

 .

Proof. Consider first the special case when X is a point. Then the equivariant localization formula
for the push-forward map is

p!(f(σ1, . . . , σr)) =
∑
I

f(ωI1 , . . . , ωIr)∏
i∈I
∏

j∈Ī

(
1− ωi

ωj

) ,
where the summation is over r-element subsets I of {1, . . . , n}, and Ī is the complement of I.
Applying the Residue Theorem for the right hand side of (23), for z1, z2, . . . gives the same
expression. This proves the lemma when X is a point.

The general case is shown applying this special case to W restricted to fixed points. �

When G is a connected algebraic group G, Lemma 6.2 may be applied to the maximal torus
T ⊂ G, and since KG(X) is the Weyl-invariant part of KT (X), formula (23) holds without
change.

7. Σr singularities

In this short section we illustrate the residue technique to calculate the K theoretic Thom
polynomial of singularities that are defined by the behavior of their first derivatives. The obtained
results are not new, but our proof will serve as a sample to the more involved calculations of the
next section.
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7.1. The model for Σr. The obvious model for the

Σr = Σr(Ca,Cb) = {g ∈ J1(Ca,Cb) : dim ker g ≥ r}
singularity is M = Gr(r,Ca), and

X = {(V, g) ∈ Gr(r,Ca)× J1(Ca,Cb) : g|V = 0}.
Let the tautological rank r bundle over Gr(r,Ca) be S. The bundle π : X → Gr(r,Ca) can
be identified with J1(Ca /S,Cb), hence the normal bundle is ν = J1(S,Cb). Thus KTpΣr =
p!(e(J

1(S,Cb))) for the map p : Gr(r,Ca)→ pt.

Theorem 7.1. We have

(24) KTpΣr = Res
z1=0,∞

. . . Res
zr=0,∞

∏
i>j

(
1− zi

zj

) r∏
i=1

∏b
j=1

(
1− zi

βj

)
∏a

j=1

(
1− zi

αj

)∏
i

dzi
zi

 .

Proof. We have

KTpΣr = p!(e(J
1(S,Cb))) = p!

(
r∏
i=1

b∏
j=1

(
1− σi

βj

))
,

and applying Lemma 6.2 proves the Theorem. �

Comparing expression (24) with the residue formula for Grothendieck polynomials (Defini-
tion 4.2), we obtain

KTpΣr = G(r+l)r(α
−1
1 , . . . , α−1

a ; β−1
1 , . . . , β−1

b ).

This result is known in Schubert calculus [LS] as the K-theoretic Giambelli-Thom-Porteous for-
mula.

8. A2 singularities

8.1. The model for A2. Consider the tautological exact sequence S → Ca → Q over Gr(1,Ca).
Let M = Gr(1, S⊗2 ⊕ Q) be the projectivization of the vector bundle S⊗2 ⊕ Q over Gr(1,Ca),
and denote the tautological line bundle over M by D.

According to [BSz, K2] there is a model for the

ηa→bA2
= {g ∈ J2(Ca,Cb) : Qg

∼= C[x]/(x3)]}

singularity with this M , and normal bundle ν = Hom(S ⊕D,Cb).

8.2. Residue formula for KTpA2
.

Theorem 8.1. We have

KTpa→bA2
= Res

z1=0,∞
Res

z2=0,∞

1− z2
z1

1− z2
z21

2∏
i=1

∏b
j=1

(
1− zi

βj

)
∏a

j=1

(
1− zi

αj

) dz2dz1

z2z1

 .
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Note that the order of taking residues is important here: first we take residues with respect to
z2, then with respect to z1.

Proof. We know that KTpA2
= pM !(e(Hom(D ⊕ S,Cb))). Let the Chern roots of the bundle Q

be ω1, . . . , ωa−1, and let the class of S be σ, and the class of D be τ . We have

e(ν) =
b∏

j=1

(
1− σ

βj

) b∏
j=1

(
1− τ

βj

)
.

Pushing forward this class to Gr(1,Ca), using Lemma 6.2 we get

Res
z2=0,∞

∏j

(
1− σ

βj

)∏
j

(
1− z2

βj

)
(
1− z2

σ2

)∏
j

(
1− z2

ωj

) dz2

z2

 .

Using the fact that S → Ca → Q is an exact sequence, this is further equal to

Res
z2=0,∞

∏j

(
1− σ

βj

)∏
j

(
1− z2

βj

) (
1− z2

σ

)
(
1− z2

σ2

)∏
j

(
1− z2

αj

) dz2

z2

 .

Pushing this class further from Gr(1,Ca) to a point, using Lemma 6.2, we obtain

Res
z1=0,∞

Res
z2=0,∞

∏j

(
1− z1

βj

)∏
j

(
1− z2

βj

)(
1− z2

z1

)
(

1− z2
z21

)∏
j

(
1− z2

αj

)∏
j

(
1− z1

αj

) dz2

z2

dz1

z1

 ,

which is what we wanted to prove. �

8.3. KTpA2
in terms of Grothendieck polynomials—the stable expansion. Let

1

1− z2/z2
1

=
∑
r,s

dr,s(1− z1)r(1− z2)s

be the Laurent expansion of the named rational function on the |1 − z1| < |1 − z2| region.
Equivalently, after substituting x1 = 1− z1, x2 = 1− z2, let

1− 2x1 + x2
1

x2 − 2x1 + x2
1

=
∑
r,s

dr,sx
r
1x

s
2

be the Laurent expansion of the named rational function on the |x1| < |x2| region. Based on the
calculation

1

x2 − 2x1 + x2
1

=
1

x2

· 1

1− (2x1 − x2
1)/x2

=
∞∑
k=1

1

xk2
(2x1 − x2

1)k−1(25)

=
∞∑
k=1

2k−2∑
r=k−1

(−1)r−k+122k−2−r
(

k − 1

2k − 2− r

)
xr1x

−k
2 ,
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we have that

dr,s = (−1)r+s+1

(
2−2s−2−r

(
−s− 1

−2s− r − 2

)
+ 2−2s−r

(
−s− 1

−2s− r − 1

)
+ 2−2s−r

(
−s− 1

−2s− r

))
for r = 0, 1, . . . , s = −r − 1, . . . ,−br/2c. In particular, the sign of dr,s is (−1)r+s+1.

For the values of dr,s for small (absolute value) r, s see the table in §1.2.

Theorem 8.2 (Grothendieck expansion of KTpA2
: the stable version). Let l = b − a, and

N > 2l + 2. Then

(26) KTpa→bA2
=

N∑
r=0

−b r
2
c∑

s=−r−1

dr,sGr+l+1,s+l+2(α−1
1 , . . . , α−1

a ; β−1
1 , . . . , β−1

b ).

Note that for a given r, the set of non-zero dr,s coefficients are exactly those between s = −r−1
and s = −br/2c, hence, in the summation above, s runs through all its relevant values.

Remark 8.3. Since N may be arbitrarily large in (26), it is tempting to phrase Theorem 8.2
informally as

(27) KTpa→bA2
=
∑
r,s

dr,sGr+l+1,s+l+2(α−1
1 , . . . , α−1

a ; β−1
1 , . . . , β−1

b ).

This series does not converge, however.

Proof. The finite expansion of 1/(1 − z2/z
2
1) with respect to z1, around z1 = 1, with remainder

term is

(28)
1

1− z2/z2
1

=
N∑
r=0

(∑
s

dr,s(1− z2)s

)
(1− z1)r +RN(z1, z2)

where the s-summation is finite. A quick calculation shows that the remainder term may be
expressed as

(29) RN(z1, z2) = −
(

1− z1

1− z2

)N+1
z1qN(z2) + pN(z2)

1− z2
1/z2

.

where

pN(z) =

bN+1
2
c∑

i=0

(
N + 1

2i

)
zi, qN(z) =

bN
2
c∑

i=0

(
N + 1

2i+ 1

)
zi.

According to Theorem 8.1, we have the following expression for KTpA2
:

KTpa→bA2
= Res

z1=0,∞
Res

z2=0,∞

(
(1− z1)l(1− z2)l

1

1− z2/z2
1

×

×
(

1− z2

z1

) 2∏
i=1

∏b
j=1

(
1− zi

βj

)
∏a

j=1

(
1− zi

αj

)
(1− zi)l

dz2dz1

z2z1

 .
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Substituting (28), we obtain

KTpa→bA2
= Res

z1=0,∞
Res

z2=0,∞

(
N∑
r=0

(∑
s

dr,s(1− z2)s+l

)
(1− z1)r+l×

×
(

1− z2

z1

) 2∏
i=1

∏b
j=1

(
1− zi

βj

)
∏a

j=1

(
1− zi

αj

)
(1− zi)l

dz2dz1

z2z1

+

Res
z1=0,∞

Res
z2=0,∞

RN(z1, z2)

(
1− z2

z1

) 2∏
i=1

∏b
j=1

(
1− zi

βj

)
∏a

j=1

(
1− zi

αj

) dz2dz1

z2z1

 .

According to the residue expression for Grothendieck polynomials (Definition 4.2) the first term
equals

N∑
r=0

∑
s

dr,sGr+l+1,s+l+2(α−1
1 , . . . , α−1

a , β−1
1 , . . . , β−1

b ),

and we claim that the second term vanishes for large N . Indeed, using the form (29) of the
remainder term RN(z1, z2), we can see that for large N , the rational form

(30) RN(z1, z2)

(
1− z2

z1

) 2∏
i=1

∏b
j=1

(
1− zi

βj

)
∏a

j=1

(
1− zi

αj

) dz2dz1

z2z1

satisfies the conditions of Lemma 4.1 in z2. This means that already applying the first residue
operation Resz2=0,∞ results in 0. This completes the proof. �

8.4. KTpA2
in terms of Grothendieck polynomials – the minimal expansion.

Theorem 8.4 (Grothendieck expansion of KTpA2
, the minimal version). We have the following

expression for KTpa→bA2
in Grothendieck polynomials indexed by partitions:

KTpa→bA2
=

2l+2∑
r=0

−b r
2
c∑

s=−l−2

Dr,s,l ·Gr+l+1,s+l+2(α−1
1 , . . . , α−1

a ; β−1
1 , . . . , β−1

b ),

where l = b− a, and

Dr,s,l =

{
dr,s if s > −l − 2∑−l−2

t=−r−1 dr,t =
∑−l−2

t=−∞ dr,t if s = −l − 2.

Proof. It follows from Theorem 8.2 that for large N

(31) KTpa→bA2
=

N∑
r=0

−b r
2
c∑

s=−r−1

dr,sGr+l+1,s+l+2.
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For notational simplicity we omit the arguments α−1
i , β−1

i of the Grothendieck polynomials. Con-
sider the sum

−br/2c∑
s=−r−1

dr,sGr+l+1,s+l+2

for a given r. In it, the occurring Grothendieck polynomials have the same first index r+l+1, but
varying second index s+ l+2. Notice that if r > 2l+2 then all s+ l+2 indexes are non-positive.
Indeed, if r > 2l + 2 then s ≤ −br/2c < −b(2l + 2)/2c = −l − 1 and hence s+ l + 2 < 1. Then
using the straightening law GI,0 = GI,−1 = GI,−2 = . . . (see (10) or Lemma 4.6) we have that

(32)

−br/2c∑
s=−r−1

dr,sGr+l+1,s+l+2 =

 −br/2c∑
s=−r−1

dr,s

Gr+l+1,0.

Plugging in z2 = 0 into 1/(1 − z2/z
2
1) results 1, hence for r > 0 we have

∑br/2c
s=−r−1 dr,s = 0, and

in turn, the expression (32) is 0. This proves that in (31) the number N can be chosen to be as
small as 2l+ 2. The same statement may be obtained from a careful analysis of the vanishing of
the residues of (30).

Now let r ≤ 2l + 2. Using the same straightening law of Grothendieck polynomials we obtain

−br/2c∑
s=−r−1

dr,sGr+l+1,s+l+2 =

(
−l−2∑

s=−r−1

dr,s

)
︸ ︷︷ ︸

Dr,s,l

Gr+l+1,0 +

−br/2c∑
s=−l−1

dr,sGr+l+1,s+l+2,

completing the proof. �

Remark 8.5. The expansion in Theorem 8.4 is minimal in the sense that each occurring Gro-
thendieck polynomial is parametrized by a partition (with non-negative components), and hence
can not be simplified by the straightening laws (9)-(10) (or Lemma 4.6).

9. Alternating signs

The coefficients of the Grothendieck polynomials in both the stable and the minimal Grothen-
dieck polynomial expansions of KTpA2

have alternating signs.

Theorem 9.1. The coefficient of Ga,b(α
−1
1 , . . . , α−1

e ; β−1
1 , . . . , β−1

b ) in both the expansion of The-
orem 8.2 and the expansion of Theorem 8.4 has sign (−1)a+b.

Proof. The statement for the expansion in Theorem 8.2 is equivalent to dr,s having sign (−1)r+s+1,
which follows from the explicit formula for dr,s in Section 8.3.

The statement for the expansion in Theorem 8.4 is equivalent to Dr,s,l having sign (−1)r+s+1

for any l. For this we need to additionally prove that

(33) the sign of
−l−2∑
t=−∞

dr,t is (−1)r+s+1
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for any l.
To prove (33) consider f = (1−2x1+x2

1)/(x2−2x1+x2
1) =

∑
r,s dr,sx

r
1x

s
2 (as before, |x1| < |x2|),

and let g = (−1 + f)/(1− x2). On the one hand g = 1/(x2 − 2x1 + x2
1) (from the explicit form

of f). On the other hand

g =

(
−1 +

∑
r,s

dr,sx
r
1x

r
2

)
(1 + x2 + x2

2 + . . .) =
∑
r,s

(
s∑

t=−∞

dr,t

)
xr1x

s
2.

Here we used that d0,−1 = 1 and d0,s = 0 for all s 6= −1.
Comparing the two forms of g we find that statement (33) is equivalent to the the property

that the coefficient of xr1x
s
2 in the expansion of 1/(x2 − 2x1 + x2

1) has sign (−1)r+s+1. This latter
claim follows from the calculation (25). �

10. Remarks on higher singularities

For singularities higher than A2, it is difficult to carry out our program. There are no practical
models for Ad-singularities for d ≥ 7, but even in the case of A3, where the model is very simple
([BSz, K2]), the combinatorial problems we face are rather complicated. A proof analogous to
that of Theorem 8.1 in this case yields the following statement.

Theorem 10.1. We have

KTpa→bA3
= Res

z1=0,∞
Res

z2=0,∞
Res

z3=0,∞


(

1− z2
z1

)(
1− z3

z1

)(
1− z3

z2

)
(

1− z2
z21

)(
1− z3

z21

)(
1− z3

z1z2

) 3∏
i=1

∏b
j=1

(
1− zi

βj

)
∏a

j=1

(
1− zi

αj

) dz3dz2dz1

z3z2z1

 .

�

This formula suggests that to obtain the Grothendieck expansion of KTpA3
, we ought to

consider the expansion

1

(1− z2/z2
1) (1− z3/z2

1) (1− z3/z1z2)
=
∑
r,s,t

dr,s,t(1− z1)r(1− z2)s(z − z3)t,

valid in the region |1− z1| < |1− z2| < |1− z3|, and then find an appropriate way to resum the
series

(34)
∑
r,s,t

dr,s,tGr+l+1,s+l+2,t+l+3(α−1
1 , . . . , α−1

a ; β−1
1 , . . . , β−1

b ).

to obtain finite expressions. The concrete form of the resummation procedure and the resulting
finite expression is not clear at the moment.

It seems even more difficult to find the analogue of Theorem 8.4 (the minimal Grothendieck
expansion) for A3. To achieve the Grothendieck expansion of Theorem 8.4 from that of Theo-
rem 8.2 we needed to work only with one of the straightening laws, namely (10). However, to
“straighten” the partitions in (34) one is forced to use the other straightening law, namely (9),
and this seems much more complex. It would be interesting to develop the residue calculus or
another analytic tool which replaces the combinatorics of (9).
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