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Introduction

The Pontrjagin-Thom construction establishes an isomorphism between the co-
bordism groups of embedded submanifolds in a euclidean space and the homotopy
groups of the Thom space. Here we extend this construction to (stable) maps
submitted to arbitrary local and global restrictions, or in other words, we prove
the existence of a Thom-type construction for maps of a given stable type. Before
explaining what this really means we summarize some earlier results.

An example of maps with local restriction is the class of immersions. The well-
known Smale-Hirsch-Gromov theory reduces the investigation of immersions to al-
gebraic topology. Using this theory Wells extended the Pontrjagin-Thom construc-
tion to immersions ([26]).

The computation of the cobordism groups of singular maps of any given type
seems to be a more difficult problem. Eliashberg developed a technique of surgery
of fold maps in non-positive codimensions ([2]). Koschorke established some useful
exact sequences for the cobordisms of maps with singularities. This way he com-
puted for any r the ranks of the cobordism groups of maps of corank ≤ r ([6]). In
1989 Arnold and Vasiliev published a surprising isomorphism between the cobor-
dism groups of fold maps of codimension 0 and the homotopy groups of the space
of functions having only mild singularities ([1], [23]).

However, none of these results can be considered as the proper extension of the
Pontrjagin-Thom construction to singular maps. (The analogue of the Thom space
was not constructed in them.) This was done for the simplest singular maps by the
second author in 1979 (and later he extended the construction for arbitrary corank
1 maps).

The original Pontrjagin-Thom construction is based on the fact that there is
a universal codimension k embedding (namely the embedding BO(k) ⊂ MO(k)),
from which any other such embedding can be pulled back.

Now let τ be some set of simple (multi)germs of stable codimension k maps. Call
a smooth map f a τ -map if for any point y of its target manifold the (multi-)germ
of f at the (finite) set f−1(y) belongs to τ . Our main theorem gives a universal
τ -map from which any other τ -map can be pulled back. This universal τ map can
be described very concretely as soon as the maximal compact symmetry groups of
the germs occurring in τ are understood. We give also an algorithm for finding
these maximal compact subgroups. Finally we give a list of differential topological
applications.
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Let the non-negative integer k be fixed throughout this paper. The singularity
theoretic notions used in this paper can be found in any introduction to singularity
theory text book, e.g. in [3] or [24]

Definition. Let A1, . . . , As be a set (maybe with multiplicities) of local algebras
corresponding to some simple stable map germs

ηi : (R
ni , 0) −→ (Rni+k, 0).

The set of stable germs

f : (Rnf , {P1, . . . , Ps}) −→ (Rnf+k, 0)

whose local algebras at P1, . . . , Ps are isomorphic to A1, . . . , As will be denoted by
S(A1, . . . , As). We will call this set the (multi)singularity type corresponding to
A1, . . . , As. The number s is called the multiplicity of the singularity type.

If we divide the set of all simple stable germs (R∗, finite set) −→ (R∗+k, 0) by
the equivalence relation generated by right-left (A-)equivalence and suspension
((Ση)(u, t) = (η(u), t)), then the equivalence classes are exactly the multisingu-
larity types just defined. If η ∈ S(A1, . . . , As) has the smallest source and target
dimension in its type then every other ζ ∈ S(A1, . . . , As) is A-equivalent to a sus-
pension of η. Then we will call η (defined up to A-equivalence) the root of its type,
and its singularity type will be denoted by [η].

We will use the following notations:

Emb(k) := S(R) Immr(k) := S(R, . . . ,R) (R occurs r times)

Σ1r(k) := S( R[[x]]/(xr+1) ) III2,2(k) := S( R[[x, y]]/(x2, y2, xy) ).

There is a hierarchy of multi-singularity types: S(A1, . . . , As) is said to be under
S(B1, . . . , Br) if for a (and therefore for every) representative f : Rn −→ R

n+k from
S(A1, . . . , As) there is a germ from S(B1, . . . , Br) arbitrary close to f , in the sense
that there are points y arbitrary close to 0 in f(Rn) such that the germ of f at
f−1(y) is from S(B1, . . . , Br). The top element of this hierarchy is Emb(k), the
set of germs of k-codimensional embeddings.

From now on let τ be an ascending set of multisingularity types.

Definition. A smooth map f : N −→ P is called a τ -map if for every y ∈ f(N)
the type of the germ of f at f−1(y) is from τ . If N is a manifold with boundary
then we also suppose that f behaves nicely near ∂N , i. e. f(∂N) ⊂ ∂P and for a
collar C of ∂N : f |C = Σ(f |∂N).
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Examples. If τ = {Emb(k)} then τ -maps are the k-codimensional embeddings. If

τ = {Emb(1), Imm2(1), Imm3(1),Σ11(1)}

then τ -maps are dense among the maps N2 −→ P 3. In general, if m and k are
fixed and the pair (m,m + k) is nice (see [8]) then there is a finite τ containing
multisingularities for which τ -maps are dense among the maps Nm −→ Pm+k.

Definition. The τ -maps f1 : Nm
1 −→ Pm+k and f2 : Nm

2 −→ Pm+k (N1 and
N2 are closed) are called τ -cobordant if there is a manifold W with boundary the
disjoint union of N1 and N2, and a τ -map f : W −→ P × [0, 1] such that f |N1

= f1,
f |N2

= f2.

τ -cobordism between τ -maps to P is an equivalence relation, its equivalence
classes are called (τ -)cobordism classes, their set is denoted by Cobm(Pm+k; τ). If
P = Sm+k then we can define addition on it by “remote disjoint union”, which
makes it an Abelian group. The evidently defined oriented version of Cobm(P ; τ) is
denoted by CobSO

m (P ; τ) (the m-manifolds, their cobordisms and P are oriented).

The main theorem

In this section we will deal with “submanifolds” in topological spaces. By such a
submanifold in X we mean a subspace K which has a neighbourhood U in X with a
fixed homeomorphism to the total space of a vector bundle over K. This definition
allows one to define the transversality of a map P −→ X (P is a manifold) to the
submanifold K.

Example. The zero section BO(k) in EO(k) or in MO(k) is a submanifold.

Definition. A commutative diagram of topological spaces and continuous maps

P
g
−→ X

x




f̄

x





f

N
h
−→ Y

is called a pull-back diagram or a pull-back square if N is homeomorphic to the
subspace {(p, y) ∈ P × Y | g(p) = f(y)} of P × Y , and f̄ and h are the projections
to P and Y .

Observe that if here Y is a submanifold of the topological space X (f the in-
clusion), P is a manifold and g is transversal to f then N is a submanifold of P .
The following theorem asserts that for any τ there exists a “universal τ -map”, from
which any other τ -map can be pulled back.

Theorem 1. Let τ be as above. Then there exist topological spaces Xτ and
Y τ and a continuous map fτ : Y τ −→ Xτ as well as submanifolds

KS ⊂ Xτ, K̄S ⊂ Y τ (for every S ∈ τ), for which
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Y τ =
⋃

S∈τ

K̄S , fτ(Y τ) =
⋃

S∈τ

KS (disjoint unions),

and fτ |K̄S
: K̄S −→ KS is an r-fold covering — where r is the multiplicity of S.

We say that a map from a manifold to Xτ is transversal to fτ if it is transversal
to all KS. The map fτ : Y τ −→ Xτ will also have the following two properties:

(A) If g is a map from a manifold Pm+k (possibly with boundary) to Xτ which —
as well as its restriction to ∂P — is transversal to fτ and the following square
is a pull-back square

∂P ⊂ P
g
−→ Xτ

x




f̄

x





fτ

Mm−1 −→
h
−→ −→ Y τ

then there is a manifold Nm with boundary M , an extension ḡ of h to N and a
τ -map f : N −→ P which makes the diagram

∂P ⊂ P
g
−→ Xτ

x




f̄

x





f

x





fτ

M ⊂ N
ḡ
−→ Y τ

commutative, the right hand square a pull-back square.
(B) If f : Nm −→ Pm+k is a τ -map between manifolds with boundary, and a pull-

back square
∂P

h
−→ Xτ

x





f |∂N

x





fτ

∂N
h̄
−→ Y τ

is given, where h is transversal to fτ , then h and h̄ extend to maps g (transversal
to fτ) and ḡ, making the following diagram

P
g
−→ Xτ

x





f

x





fτ

N
ḡ
−→ Y τ,

a pull-back square.

Before proving Theorem 1 we prove its most important corollary.

Main Theorem. The space Xτ is a classifying space for τ -maps in the following
sense. For any closed manifold P there is a bijection between

Cobm(Pm+k; τ) and [Pm+k, Xτ ]

([ , ] means the set of homotopy classes).

Proof of the Main Theorem. Let N and P be closed manifolds and let f : Nm −→
Pm+k be a τ -map. By part (B) of the theorem there exists a map φ(f) : P −→ Xτ
(and also a map ψ(f) : N −→ Y τ). We will prove that [f ] 7→ [φ(f)] defines
a bijection between Cobm(P ; τ) and [P,Xτ ]. First we prove it is well defined
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(i.e. neither depends on the choice of φ(f) nor on the representative f of [f ]):
if f1 : N1 −→ P is τ -cobordant to f then the cobordism between them is a τ -
map F : W −→ P × [0, 1] satisfying the conditions of part (B) with the maps
φ(f) ∪ φ(f1) : P ∪ P −→ Xτ and ψ(f) ∪ ψ(f1) : N ∪ N1 −→ Y τ . Then the map
G : P × [0, 1] −→ Xτ assigned to these data in part (B) is a homotopy between
φ(f) and φ(f1).

To prove surjectivity take a map g′ : P −→ Xτ and approximate1 it with another
one g which is transversal to fτ . Part (A) of the theorem assigns to g a τ -map
f : N −→ P and a map ḡ : N −→ Y τ . We prove that φ(f) is homotopic to g
by applying part (B) to the τ -map f × id : N × [0, 1] −→ P × [0, 1] and the maps
g ∪ φ(f) : P ∪ P −→ Xτ and ḡ ∪ ψ(f) : N ∪N −→ Y τ .

To prove injectivity suppose we have τ -maps f : N −→ P and f1 : N1 −→ P
with φ(f) homotopic to φ(f1). Let the homotopy be given by G : P × [0, 1] −→
Xτ and suppose it is transversal to fτ . Then the map assigned to the maps G,
φ(f) ∪ φ(f1) : P ∪ P −→ Xτ and ψ(f) ∪ ψ(f1) : N ∪ N −→ Y τ is a cobordism
between f and f1. �

The rest of this section is the proof of Theorem 1.

Proof of Theorem 1. The proof will proceed by induction on τ . The starting point
of the induction can be the classical Thom construction ([22]): τ = {Emb(k)},
Xτ = MO(k), Y τ = BO(k) and the map fτ is the embedding. In fact, we can
start the induction even earlier with τ = ∅, Xτ =one-point-space, Y τ = ∅ — this
way we get a proof for the Thom construction.

Now suppose we know the theorem for τ ′ and we want to prove it for τ =
τ ′ ∪ {[η]} where τ and τ ′ are ascending sets in the hierarchy of singularity types
and η : Rn −→ R

n+k is the root of its type. For simplicity suppose also that the
multiplicity of η is 1. For higher multiplicities the proof goes along the same line.

To define fτ : Y τ −→ Xτ we need some knowledge of

AutAη := { (ψ, φ) ∈ A = Diff(Rn, 0)×Diff(Rn+k, 0) | φ ◦ η ◦ ψ−1 = η }.

Although there is no convenient topology on this group, after appropriate definitions
we will see that it shares some properties with Lie groups.

Definition. The subgroup G ≤ AutAη is called compact if it is conjugate in A
with a compact linear group.

Theorem 2. ([5], [25]) Every compact subgroup of AutAη is contained in a max-
imal such one and any two maximal compact subgroups are conjugate in AutAη. �

Let G denote the maximal compact subgroup of AutAη with the representations
λ1 and λ2 on the source and the target spaces. By possibly choosing another
representative in the A-equivalence class of η, we can assure that λ1 and λ2 are
linear and orthogonal. The vector bundles associated to the universal principal G-
bundle EG −→ BG using these representations will be called ξ̄η and ξη respectively.

1by approximation we mean taking a homotopic one. This approximation is possible according
to the transversality theorems for stratified sets. Although g can be chosen close to g′ in some

sense, we will not need this fact.
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There is also a well defined fibrewise map fη : Eξ̄η −→ Eξη near the zero sections
which is A-equivalent to η in each fibre (see also [19]). Since τ is ascending, the
restriction of fη to the boundary of a small disc-bundle Dξ̄η is a τ ′-map so by the
induction hypothesis there are maps ρ, ρ̄ making the diagram

∂(Dξη)
ρ
−→ Xτ ′

fη|∂(Dξ̄η)

x





x




fτ ′

∂(Dξ̄η)
ρ̄
−→ Y τ ′

commutative (and even a pull-back square).2 We will prove that the spaces

Xτ := Xτ ′ ∪ρ Dξη,

Y τ := Y τ ′ ∪ρ̄ Dξ̄η

and the map
fτ := fτ ′ ∪ fη,

satisfy the conditions of the theorem,3 where the stratifications K[ζ] ⊂ Xτ , K̄[ζ] ⊂
Y τ are defined as follows. The submanifolds K[η] and K̄[η] are defined as the zero

sections in Eξη ⊂ Xτ and Eξ̄η ⊂ Y τ . For the other [ζ]’s in τ we will extend
K ′

[ζ] ⊂ Xτ ′ and K̄ ′
[ζ] ⊂ Y τ ′ to K[ζ] ⊂ Xτ and K̄[ζ] ⊂ Y τ by adding a point

x ∈ Dξη to K ′
[ζ] if and only if the germ at f−1

η (x) of fη restricted to a fibre of Dξ̄η

is from [ζ]. Let K̄[ζ] := fτ−1(K[ζ]).

Remark. Another characterization of this stratification is that x ∈ K[ζ] if and only

if fτ near fτ−1(x) is a (possibly infinite) suspension of ζ.

Proof of part (A).
The space BG is in Dξη and in Dξ̄η (as the zero sections), so it is in Xτ and in

Y τ , too. Moreover the map fτ maps BG ⊂ Y τ homeomorphically onto BG ⊂ Xτ .
Because of the conditions of the theorem g, g|∂P and h are transversal to BG in Xτ
and in Y τ . We also have that h−1(BG) is mapped by f̄ onto g|−1

∂P (BG) diffeomor-
phically (because of the pull-back property of the diagram). If no confusion arises
we will denote both of these manifolds by L. The submanifold K := g−1(BG) in

2In fact, one has to be a bit careful when choosing the small disc-bundles. First we choose
a small ball D about 0 in the target space of η such that it is transversal to all the strata of η.

Then taking its pre-image D̄ under η will be a manifold diffeomorphic to a ball about 0 in the
source space of η (if D is small enough). Then we can take D̄ and D in every fibre of Eξ̄η −→ BG

and Eξη −→ BG (as they are invariant under the actions of λ1(G) and λ2(G)) to get Dξ̄η and

Dξη . For these disc-bundles the restriction of fη : ∂Dξ̄η −→ ∂Dξη is a τ ′-map, provided BG
is a compact manifold. In fact, BG is only the limit of compact manifolds — so we define the

map ρ̄ and ρ first over a finite dimensional approximation (BG)1, then over a closed tubular

neighbourhood U of (BG)1 in (BG)2 (a bigger finite dimensional approximation) by suspension,
and then over the closure of (BG)2 − U using the induction hypothesis for bounded manifolds.

Iterating this process will give ρ̄ and ρ over the union of the finite dimensional approximations,
so over the whole BG.

3The definition of fτ makes sense, since fτ ′ and fη coincide on ∂(Dξ̄η), i. e. ρ ◦ fη|∂(Dξ̄η)
=

fτ ′ ◦ ρ̄ by definition.
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P has boundary L. Let U denote the closure of g−1(int Dξη). We may suppose
that U is a tubular neighbourhood of K. Therefore U can be regarded as the
disc bundle of g|∗Kξη. The boundary of U is the union of a sphere bundle over K

and a disc bundle over L. Let the latter be called U(L). Let P ′ := P − U and

R′ := ∂P − U(L).
The following diagram may help the reader to follow the proof.

∂P = R′ ∪ U(L) ⊃ L
∩ ∩ ∩

P = P ′ ∪ U ⊃ K




y

g





y

g|P ′





y

g|U





y

g|K

Xτ = Xτ ′ ∪ρ Dξη ⊃ BG
x





fτ

x




fτ ′

x





fη ||

Y τ = Y τ ′ ∪ρ̄ Dξ̄η ⊃ BG
x





ḡN′

x





ḡV

x





g|K

N = N ′ ∪ V ⊃ K
∪ ∪ ∪

M = S′ ∪ V (L) ⊃ L

Let V be the disc bundle of g|∗K ξ̄η (this defines the map ḡV : V −→ Dξ̄η). The
boundary of V consists of a sphere bundle overK and a disc bundle over L. Observe
that this disc bundle over L can be identified with a tubular neighbourhood V (L)
of L in M . Then glue V and M together along it. Let S′ denote M − V (L).

The map fη : Dξ̄η −→ Dξη induces a map f̄η : V −→ U between the bull-back
bundles and the restriction of f̄η to V (L) coincides with the restriction of f̄ (by
definition). Because of the definitions of ξη, ξ̄η and the transversality assumptions
f̄η is a τ -map.

Now P ′ is a manifold with boundary R′ ∪ g|∗K∂(Dξη). The closed manifold
S′∪g|∗K∂(Dξ̄η) is τ

′-mapped to ∂P ′, and a map of it to Y τ ′ is defined (ḡV ∪h). The
relevant transversality and pull-back properties hold, so we can apply the induction
hypothesis for these data, yielding to a manifold N ′ with boundary S′∪g|∗K∂(Dξ̄η)
and two maps: a τ -map fN ′ : N ′ −→ P ′ and a continuous map ḡN ′ : N ′ −→ Y τ ′.4

Now the diagram above is commutative.

Form the union of N ′ and V along g|∗K∂(Dξ̄η) to get N . As a result we see that

N, ḡ := ḡV ∪ ḡN ′ and f := f̄η ∪ fN ′

satisfy the conditions of the theorem. �

4In fact P ′ is a manifold with corners (having points at the boundary diffeomorphic to a

quarter of a Euclidean space), and S′ ∪ g|∗K∂(Dξ̄η) is not a manifold a priori; first we have to
“fold them out”, then use the induction hypothesis and after this fold them back. What makes

all this possible is the fact that a) the germ of a τ -map at a boundary point is just a suspension,

b) the map g can be supposed to be constant on short normal lines of ∂P in P , and c) since ∂Dξ̄η
and ∂Dξη are transversal to all strata of fη the restriction of fη : Dξ̄η −→ Dξη is a τ -map, i.e. it

satisfies the “suspension” condition on its boundary.
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Before turning to the proof of part (B) we have to study the group AutAη, i.e.
we have to be able to reduce the structure group of “generalized vector bundles”
from AutAη to its maximal compact subgroup. The property which will help us
is the “generalized contractibility” of the space AutAη / G (Lemma 3 below).
This statement, just like Theorem 2, asserts that AutAη shares properties with Lie
groups. Although Lemma 3 is a key step in the proof of Theorem 1, the singularity
theoretic techniques used in its proof are completely different from the differential
topological tools we are using otherwise. On the other hand analoguous problems
have been studied and solved extensively since the original paper of Jänich [5], see
e.g. [11], [7], [12]. Therefore the proof of Lemma 3 will not be given here, a detailed
proof can be found in [13].

Let M be a smooth manifold with boundary and let

G < H < A.

Call a map q :M −→ H/G smooth if M can be covered by open sets U , on which
q can be represented by pairs of local diffeomorphisms (U × R

n −→ U × R
n and

U × R
n+k −→ U × R

n+k) (in fact germs at the zero section), which map all the
fibres u× R

n and u× R
n+k into themselves.

Definition. Let G be a subgroup of AutAη. We call AutAη/G contractible if for
every smooth manifold M with boundary any smooth map q : ∂M −→ AutAη/G
can be extended to a smooth map M −→ AutAη/G.

Lemma 3. If η is finitely determined and G ≤ AutAη is a maximal compact
subgroup then AutAη/G is contractible. There is also a section σ : AutAη/G −→
AutAη such that any smooth map M −→ AutAη/G composed with σ is also
smooth. �

Let us fix a maximal compact subgroup G of AutAη, where η : Rn −→ R
n+k is

a stable germ. If E is a set, B is a smooth manifold then a map p : E −→ B is
called a bundle with fibre AutAη/G provided there is given an open cover {Ui} of
B such that p|p−1(Ui) is the projection Ui × AutAη/G −→ Ui, and the transition
maps (along which these product spaces are glued together in E) are smooth maps
Ui ∩ Uj −→ AutAη (remember that AutAη acts on AutAη/G). A smooth section
of such a bundle is a section s : B −→ E satisfying that prAutAη/G ◦ s|Vi

: Vi −→
AutAη/G are smooth maps for some open cover {Vi} which is a refinement of {Ui}.

According to Lemma 3 all bundles with fibre AutAη/G have a smooth section.
Indeed, a section which is almost everywhere smooth can be constructed by skeleton
induction: the induction step is exactly what we have claimed in Lemma 3. This
section might not be smooth where the cells of B meet. However the standard
smoothing procedure of that kind of sections (see e.g. [4] 2.2.11) works here with
no change.

In what follows we will consider bundle germs with fibre R
l whose structure

group is a subgroup of Diff(Rl). Note that this kind of bundle germs over smooth
base spaces can be defined even if there is no topology on Diff(Rl), because the
smoothness of the transition maps is defined. The usual notion of equivalence of
bundles also extends to these generalized bundles.
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Now consider two bundle germs ξ1 : E1 −→ B and ξ2 : E2 −→ B with fibres
R

n and R
n+k respectively. Let the structure group of ξi be pri(AutAη) (remember

that AutAη ⊂ Diff(Rn) × Diff(Rn+k), and pr1, pr2 are projections to the 1st
and 2nd factor). Also suppose that ξ1 and ξ2 are “associated to each other” in the
following sense. There is an open cover {Ui} of B whose elements are trivializing
neighbourhoods of both ξ1 and ξ2 for which the transition maps φ1ij : Ui ∩ Uj −→

Diff(Rn) and φ2ij : Ui ∩ Uj −→ Diff(Rn+k) have the form φ1ij = pr1 ◦ φij and

φ2ij = pr2 ◦ φij for some smooth φij : Ui ∩ Uj −→ AutAη.
Our goal is to reduce the structure group from AutAη to its maximal compact

subgroup, which is a Lie group, so the bundles become vector bundles.

Lemma 4. There exist ξ′1 : E′
1 −→ B and ξ′2 : E′

2 −→ B bundle germs which
• are equivalent to ξ1 and ξ2,
• have structure groups pr1(G) and pr2(G), and are associated to each other.

Proof. First associate to ξ1 and ξ2 a “bundle” ξ′ : E′ −→ B with fibre AutAη/G: if
the Ui’s are trivializing neighbourhoods of ξ1 and ξ2 (with transition maps φ1ij , φ

2
ij

as above) then glue Ui × AutAη/G’s together by φij . Denote by pi the projection
of Ui × AutAη/G to the second factor. Take a smooth section s of ξ′. Recall
from Lemma 3 that exists a section σ : AutAη/G −→ AutAη of the “fibration”
π : AutAη −→ AutAη/G. Now let λi = σ◦pi◦s : Ui −→ AutAη and φ̄ji = λ−1

j φjiλi.

Using the new transition maps pr1 ◦ φ̄ji and pr2 ◦ φ̄ji we can construct bundle germs
ξ′1 and ξ′2. From the form of φ̄ij it is clear that ξ1 and ξ2 are equivalent to ξ′1 and
ξ′2, and φ̄ij(u) ∈ G because if π : AutAη −→ AutAη/G is the natural projection
then

π(φ̄ji(u)) = π(λj(u)
−1φji(u)λi(u)) = λj(u)

−1φji(u) · π(λi(u)) =

λj(u)
−1φji(u) · pis(u) = λj(u)

−1pjs(u) = λj(u)
−1π(λj(u)) = the coset of G.

�

Proof of part (B). Suppose that the statement is true for τ ′ and prove it for τ =
τ ′ ∪{[η]} where we assume η : Rn −→ R

n+k to be a singularity with multiplicity 1,
η is taken to be a root of [η]. (The proof for singularities with higher multiplicities
goes along the same line.)

Let K ⊂ P be the submanifold of y’s for which the germ f : (N, f−1(y)) −→
(P, y) is from [η], and let K̄ := f−1(K). (Remark that f |K̄ is a diffeomorphism.)
To understand the situation we note that the restriction of f maps a transversal
slice of K̄ to a transversal slice of K, and this restriction is A-equivalent to η.

Take tubular neighbourhoods Ū and U of K̄ and K in N and P respectively,
satisfying f(Ū) ⊂ U , f(∂Ū) ⊂ ∂U . The subspace of U (Ū) containing the fibres
over ∂K (∂K̄) will be denoted by U(∂K) (Ū(∂K̄)). The projection maps

Ū −→ K̄, U −→ K

are bundles with fibres R
n and R

n+k and have structure groups pr1(AutAη) and
pr2(AutAη) (see also [19]). Further, they are “associated to each other” in the sense
used in the discussion before the proof. Now Lemma 3 states that the structure
groups can be reduced to pri(MC AutAη), i = 1, 2 (MC here and in what follows
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will always mean “maximal compact subgroup of”). This means that the bundles
Ū −→ K and U −→ K are pull-back bundles of ξ̄η −→ BG and ξη −→ BG by some
maps k̄ : K̄ −→ BG and k : K −→ BG. The following diagram is commutative.

−→
fη
−→ −→

ր ց
Dξ̄η −→ BG = BG ←− Dξη
x





ḡŪ

x



k̄

x




k

x





gU

Ū −→ K̄
f |K̄−→ K ←− U

ւ ∪ ∪ ∪ ∪ տ
Ū(∂K̄) −→ ∂K̄ −→ ∂K ←− U(∂K)

ց ր
−→ −→ −→

f |Ū−→ −→ −→ −→

Now let N ′ be the closure of N − Ū , S′ the closure of ∂N − Ū(∂K̄), P ′ the
closure of P − U and R′ the closure of ∂P − U(∂K). It can be seen that

∂N ′ = k̄∗(∂Dξ̄η) ∪ S
′

and
∂P ′ = k∗(∂Dξη) ∪R

′.

The restriction of f to N ′ is a τ ′-map and it goes into P ′. Further, there are
maps h1 : ∂P ′ −→ Xτ ′ and h̄1 : ∂N ′ −→ Y τ ′ defined as follows: h1 := h on R′,
h1 := ρ ◦ gU on k∗(∂Dξη); h̄1 := h̄ on S′, h̄1 := ρ̄ ◦ ḡŪ on k̄∗(∂Dξ̄η).

Since the relevant transversality and pull-back properties hold we can use the
induction hypotheses, i.e. statement (B) for τ ′, for the spaces N ′, P ′, ∂N ′, ∂P ′

and the maps h1, h̄1. This gives maps gP ′ : P ′ −→ Xτ ′ and ḡN ′ : N ′ −→ Y τ ′ for
which the diagram

P ′ gP ′

−→ Xτ ′
x





f |N′

x




fτ ′

N ′ ḡN′

−→ Y τ ′

is commutative and
ḡN ′ |∂Ū = ρ̄ ◦ ḡŪ |∂Ū ,

gP ′ |∂U = ρ ◦ gU |∂U ,

ḡN ′ |S′ = h̄, gP ′|R′ = h.

This means that there are maps

g = gU ∪ gP ′ : P −→ Xτ ′,

ḡ = ḡŪ ∪ ḡN ′ : N −→ Y τ ′;

and the transversality and pull-back relations and the restriction equalities just
mentioned ensure that g and ḡ satisfy the requirements of the theorem. The proof
of Theorem 1 is complete. �



11

Now suppose that P = Sm+k. Then the operation in the homotopy group
πm+k(Xτ) = [Sm+k, Xτ ] clearly corresponds to the (remote) disjoint union opera-
tion in Cobm(Sm+k; τ). Therefore we have the group isomorphism:

πm+k(Xτ) ∼= Cobm(Sm+k; τ).

Since XEmb(k) =MO(k), as a special case we obtained the theorem of Thom [22]:

πm+k(MO(k)) ∼= Cobm(Sm+k; {Emb(k)}).

We can generalize the analogous statement of Thom dealing with oriented cobor-
disms of oriented embeddings:

πm+k(MSO(k)) ∼= CobSO
m (Sm+k; {Emb(k)}).

To perform this generalization for τ -maps we need some definitions. Denote by
Diff+(Rn) the subgroup (of index two) in Diff(Rn) containing the elements
whose differentials at 0 have positive determinant and let

Diff−(Rn) = Diff(Rn)−Diff+(Rn).

Definition. If G ≤ Diff(Rn)×Diff(Rn+k) then

GSO := G ∩


Diff+(Rn)×Diff+(Rn+k) ∪Diff−(Rn)×Diff−(Rn+k)


.

Now for every singularity type [η] with multiplicity 1 in τ change the group
G =MC AutAη to G

SO in the definition of Xτ and Y τ (and perform the analogous
changes for singularities with higher multiplicities). Denote the resulting spaces by
XSOτ , Y SOτ . Now it is clear that the oriented cobordism set CobSO

m (P, τ) is in a
one-to-one correspondence with [P,XSOτ ]. In case P = Sm+k this correspondence
is also a group isomorphism.

Symmetry of singularities

The main theorem asserts an isomorphism between a group defined in differ-
ential topological terms and another group defined in algebraic topological terms.
Therefore — using this isomorphism — algebraic topological computations can lead
to differential topological results. For this we must have some information about
the space Xτ . We saw that Xτ is glued together from blocks, each of which is a
disc bundle of a vector bundle ξη. This vector bundle ξη is associated to a universal
principal bundle EG −→ BG with a representation λ2. (Recall that G is the max-
imal compact subgroup of AutAη and λ2 is its representation on the target space
of η.) Therefore it is clear that the effective usage of this “bridge” between differ-
ential and algebraic topology requires a method to compute the maximal compact
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subgroup G of AutAη and its representation λ2. By method here we mean that this
problem (“infinite dimensional” in nature) of determining G should be reduced to
a “finite dimensional” one.

Many analogues of this reduction have already been studied, see e.g. [9], [10],
[11]. The cases occurring in our theorem (right-left equivalence of real, smooth,
stable singularities of codimension k ≥ 0) are different from the ones in the liter-
ature, but the main idea and the results are shown to be very similar. Therefore
here we give only the statement which reduces the computation of G and λ1, λ2 to
classical mathematics (a detailed proof can be found in [13]).

Theorem 5. Let Qη be the local algebra of η and let d denote its defect, i.e.
the minimal value of b− a when Qη can be presented as

R[[x1, . . . , xa]] / (r1, . . . , rb).

Then MC AutAη ≤MC Aut Qη ×O(k − d).

The representations λ1, λ2 can be determined as follows. Since G acts on Qη

(the action of O(k − d) is trivial) G also acts on

h : (x1, . . . , xa) 7→ (r1, . . . , rb)

as an A-equivalence group, where a and b are minimal and Qη is presented as above.
This action induces an A-action on

f : (x1, . . . , xa) 7→ (r1, . . . , rb, 0, . . . , 0)

(k − d 0’s at the end), with the standard O(k − d)-action on R
k−d “at the end”.

Since η is the miniversal unfolding of f , the G-action on f induces a G-action on η
(see [25]).

Examples.

Notation. In what follows ρl will always mean the usual representation of O(l) on
R

l. If ρl is written as a representation of a direct product O(l)×H then ρl is really
meant to be ρl ◦ prO(l).

Let ηr,k be the root of Σ1r(k) (the “isolated Morin singularity of type Σ1r in
codimension k”). It has local algebra Qηr,k

= R[[x]]/(xr+1) (defect=0).

Theorem 6.

MC AutAηr,k ∼= Z2 ×O(k) = O(1)×O(k).

Its representations λ1 and λ2 on the source and target spaces are

λ1 = µ1 ⊕ µV λ2 = µ2 ⊕ µV ,

where
µ1 := ρ1,
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µ2 := ρr+1
1 ⊕ ρk

and

µV :=




2r
∑

l=r+2

ρ⊗l
1



⊕




r
∑

i=1

ρk ⊗ ρ
⊗i
1



 =

=
⌈r − 1

2

⌉

1⊕
⌊r − 1

2

⌋

ρ1 ⊕
⌊r

2

⌋

ρk ⊕
⌈ r

2

⌉

ρ1 ⊗ ρk.

�

Now let η be the simplest singularity type of Thom-Boardman symbol Σ2,0

(corresponding to the algebra R[[x, y]]/(x2, y2, xy)).
Denote by ρl2 the map O(2) −→ O(2) which sends

(

cosα − sinα
sinα cosα

)

to

(

cos lα − sin lα
sin lα cos lα

)

and

(

1 0
0 −1

)

to itself.

Theorem 7. The group MC AutAη ∼= O(2)×O(k − 1), and its representation
on the source and target spaces are

λ1 = µ1 ⊕ µV λ2 = µ2 ⊕ µV ,

where
µ1 := ρ2 µ2 := 1⊕ ρ22 ⊕ ρk−1,

and
µV := ρ2 ⊕ ρ

3
2 ⊕ (ρ2 ⊗ ρk−1).

�

Applications to differential topology

To illustrate how our Main Theorem works, here we present four groups of differ-
ential topological applications. Some of them are already present in the literature
(since special cases of the Main Theorem have already been proved by the second
author) some others are detailed in the Ph. D. Thesis of the first author or in
preprints.

• Orientability questions

If f : Nm −→ Pm+k is a stable smooth map then the submanifold consisting of
the points y ∈ P for which the germ of f at f−1(y) (has multiplicity 1 and) is of
Thom-Boardman class Σi will be denoted by Σi(f).
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Theorem 8. Let k, i > 1. The following two statements are equivalent:
• for every stable smooth map f : N∗ −→ P ∗+k where P is orientable, the manifold
Σi(f) is orientable;
• k is even and i is odd.

Theorem 9. Let k, i > 1. The following two statements are equivalent:
• for every stable smooth map f : N∗ −→ P ∗+k where N is orientable, the manifold
Σi(f) is orientable;
• k is even and i is even.

Theorem 10. Let k, i > 1. The following two statements are equivalent:
• for every stable smooth map f : N∗ −→ P ∗+k where both N and P are orientable,
the manifold Σi(f) is orientable;
• k is even.

Sketch of the proof. The orientability of a submanifold in an orientable manifold
is equivalent to the orientability of its normal bundle. We proved that the normal
bundle of the simplest Σi points (we can forget about the others, since if k > 1
then the others form a subspace of codimension > 1 in this, which has no effect on
orientability) is a pull-back bundle of certain universal bundle whose structure group
is λ1(G) or λ2(G) (according to whether we are working in the source or the target
space) . The study of these representations give the results of the theorems. �

• Cobordism group of embeddings and immersions

Let us have an embedding or an immersion f : Nm −→ R
m+k. Compose it with

the standard projection of Rm+k to a hyperplane. Then we have a (special) Σ1-map.
The cobordism group of embeddings or immersions in codimension k is therefore
isomorphic to the cobordism group of those special Σ1-maps in codimension k− 1.
The careful analysis of the latter gave results for those dimension pairs (m, k)
for which the classical Thom construction could not. The detailed proofs for the
following theorems are given in [20], [16].

Theorem 11. If k is even and m ≤ 3k then the group Cobm(Sm+k, Emb(k))
is isomorphic modulo 2-primary torsion to Ωm−k (the abstract cobordism group of
oriented m− k-manifolds). �

Remark. The same group is known to be finite 2-primary if k is odd.

Theorem 12. If m < 2k then the cobordism group CobSO
m (Sm+k, Imm(k)) is

isomorphic modulo 2-primary torsion to

{

Ωm ⊕ Ωm−k if k is even,

Ωm if k is odd. �

An analogous result holds for m ≤ 3k, too, see [21].

Theorem 13. If m ≤ 3k the the cobordism group Cobm(Sm+k, Imm(k)) is
isomorphic modulo 2-torsion to Cobm(Sm+k, Emb(k)). �
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• Removing singularities

Using our generalized Thom construction we can answer questions of the follow-
ing type: when can a map (a τ -map) be approximated with another one, which is
less singular (τ ′-map) than the original? The proof of this kind of theorems leads
to the comparison of the homotopic or homologic properties of Xτ and Xτ ′. The
detailed proofs of the following theorems are in [18], [16] and [13].

Theorem 14. a) Let M be a smooth oriented manifold and x ∈ Ωi(M
m)

an element of its oriented i-dimensional bordism group, i < m. If x contains a
map having only Σ1,0 singular points, then a non-zero multiple of x contains an
immersion.
b) In particular, if i < 2

3
m, then a non-zero multiple of any class x ∈ Ωi(M

m)
contains an immersion. This non-zero multiple can be chosen to be a power of
2. �

Theorem 15. If m ≤ 3k and f : Nm −→ R
m+k is the composition of an

immersion N −→ R
m+k+2 and the standard projection, then the only obstacle to

the existence of a g cobordant (among the maps that are compositions of immer-
sions and the projections just mentioned) to f is the abstract cobordism class of
Σ2(f). �

• CW models for various loop spaces

If Xτ is the classifying space (in the sense used in the Main Theorem) of those
Σ1-maps Mm −→ R

m+k that can be lifted to an embedding Mm −→ R
m+k+1 then

clearly Xτ is weakly homotopic equivalent to ΩMO(k + 1). Indeed,

πm+k(Xτ) ∼= Cobm(Sm+k, Σ̄1(k)) ∼=

∼= Cobm(Sm+k+1, Emb(k + 1)) ∼= πm+k+1(MO(k + 1)) ∼= πm+k(ΩMO(k + 1)).

In fact our main theorem — as stated — does not deal with this Xτ , but some
modification of the statement can cover this case, too. Some more detail on this
kind of CW-representations of loop spaces can be found in [17].
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13. R. Rimányi: Pontrjagin-Thom construction for singular maps; Ph.D. Thesis,
ELTE Budapest; 1996
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