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Abstract. As an application of the generalized Pontryagin-Thom construction [RSz] here we
introduce a new method to compute cohomological obstructions of removing singularities — i.e.
Thom polynomials [T]. With the aid of this method we compute some sample results, such as
the Thom polynomials associated to all stable singularities of codimension ≤ 8 between equal
dimensional manifolds, and some other Thom polynomials associated to singularities of maps
Nn −→ Pn+k for k > 0. We also give an application by reproving a weak form of the multiple
point formulas of Herbert and Ronga ([H], [Ro2]). As a byproduct of the theory we define the
incidence class of singularities, which — the author believes — may turn to be an interesting,
useful and simple tool to study incidences of singularities.

1. Introduction

On the basis of the “generalized Pontryagin-Thom construction” of [RSz] here we present
a new method to compute Thom polynomials ([T]) of singularities. Recall that the Thom
polynomial Tp(η) of a singularity η is a polynomial in the Chern classes of the map f between
complex analytic manifolds N , P , and this polynomial equals the Poincaré dual [η(f)] of the
cycle carried by the closure of

η(f) = {x ∈ N | the singularity of f at x is η }

for most maps. About the existence of such a polynomial see [AVGL] or section 6 here. By
Chern classes of a map f : N −→ P we mean the Chern classes of the virtual bundle f ∗TP−TN
over N . The cohomology class [η(f)] is most easily understood when η(f) is a submanifold,
which is often the case if f has no more complicated singularities than η. In this case η(f)
carries a fundamental homology class. We take the image of this class in the homology of N
and apply Poincaré duality. The resulting class is [η(f)] ∈ H∗(N ;Z). Although the definition
of [η(f)] is not much more difficult when η(f) is not a manifold (it has singularities along
lower dimensional strata), the interesting thing is that we will not need this. We will only
use the definition of [η(f)] in the mentioned case. Observe that this is a difference from the
desingularization method (see e.g. [G]), where the behavior of η(f) near the singular part is
studied.

Now we clarify what we will mean by singularities, whose Thom polynomials we are studying.
Let k ≥ 0 be a fixed integer. By singularity we will mean an equivalence class of stable germs
(C∗, 0) −→ (C∗+k, 0) under the equivalence generated by right-left equivalence and suspension
(by suspension of a germ κ we mean its trivial unfolding: (x, v) 7→ (κ(x), v)). According to the
classical Mather theory singularities are in a one-to-one correspondence with (finite dimensional
local) C-algebras. So we might as well denote a singularity by its local algebra. Instead, we
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will use — more or less — standard notations as follows: Ai (= Σ1i) will stand for the stable
germs with local algebra C[[x]]/(xi+1) and we will adapt Mather’s notation for the ones of
Thom-Boardman type Σ2,0:

Ia,b for those with algebra C[[x, y]]/(xy, xa + yb) b ≥ a ≥ 2,
IIIa,b for those with algebra C[[x, y]]/(xy, xa, yb) b ≥ a ≥ 2 (k ≥ 1).
Recall also that among the germs in a singularity η there is a germ κ (defined up to right-left

equivalence) such that all the other germs in η are right-left equivalent to a suspension of κ.
We will call such a κ a prototype of the singularity η. E.g. a prototype of the singularity Ai

(for k = 0) is

(x, u1 . . . , ui−1) 7→ (xi+1 +
i−1
∑

j=1

ujx
j , u1, . . . , ui−1).

In [RSz] only those settings were handled where moduli do not occur. For simplicity therefore
in this paper we will also avoid the settings where moduli come into the picture (recall e.g.
that there is a Thom polynomial of Σ3 between equal dimensional manifolds, but Σ3 is not a
“singularity” in our sense, it is rather the union of a family of singularities).

The milestones of the history of Thom polynomials are (probably among others) the works
of Thom, Levine, Porteous, MacPherson, Ronga, Hayden, Damon, Gaffney, Turnbull, Ohmoto
(see the References, or the review on the history of Thom polynomials in [AVGL]). Wherever we
present a Thom polynomial in this paper the origin of that result will be indicated — according
to the author’s best knowledge. The author thanks A. Szűcs, I. Porteous and T. Ohmoto for
some helpful conversations and/or encouragement; and the many who pointed out an error in
a formal version of this paper.

2. Main theorem

Let k ≥ 0 and let η : (C∗, 0) −→ (C∗+k, 0) be a stable singularity with prototype κ :
(Cn, 0) −→ (Cn+k, 0).

Definition 2.1. (The total Chern class and the Euler class associated to a singularity.) The
maximal compact subgroup of the right-left symmetry group

Aut κ = { (φ, ψ) ∈ Diff(Cn, 0)×Diff(Cn+k, 0) | ψ ◦ κ ◦ φ−1 = κ }

of κ will be denoted by Gη. Its representations (projections) on the source Cn and the target
Cn+k spaces will be λ1(η) and λ2(η). The vector bundles associated to the universal principal
Gη-bundle EGη −→ BGη using the representations λ1(η) and λ2(η) will be called ξ̄η and ξη.
The total Chern class of the singularity η is defined as

c(η) :=
c(ξη)

c(ξ̄η)
∈ HΠ(BGη,Z)

where c(ξ) = 1 + c1(ξ) + c2(ξ) + . . . is the total Chern class of the vector bundle ξ. Let the
Euler class e(η) ∈ H2codim η(BGη,Z) be the Euler class of the bundle ξ̄η.

Let us make a few remarks about this definition. It is clear that Aut κ is much too big to
be a (finite dimensional) Lie group. Still, the concept of its maximal compact subgroup (up to
conjugacy) can be defined in a sensible way, see [W], [R1] — in fact, not only the definition
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but the computation of Gη is feasible. It is clear that Gη can be chosen so that the images
of its projection to its factors Diff(Cn), Diff(Cn+k) are linear, so we can indeed talk about
the representations λi(η) (i = 1, 2). The ring HΠ(X) is almost like the usual cohomology ring
H∗(X) of the space X with the only difference that in its elements we allow infinitely many
non-zero coefficients, see [MS] p.39. With the exception of section 7 from now on all cohomology
is meant with integer coefficients without any further notice.

Let η 6= ζ : (C∗, 0) −→ (C∗+k, 0) be stable singularities.

Definition 2.2. (The hierarchy of singularities.) The singularity η will be called more difficult
than ζ if in any neighbourhood of 0 in the source space of (a representative of) η there is a
point where the singularity of (the representative of) η is ζ. In this case we will write ζ < η.
Let us adapt the convention η 6< η, too.

For instance in the case k = 0 we have the following relations: Ak > Al iff k > l; I2,2 >
A1, A2, A3; I2,3 ≥ A1, A2, A3, A4, I2,2 etc. Some more results on the hierarchy is e.g. in [La]. A
trivial but key observation is that a more difficult singularity must have larger codimension, so:

Proposition 2.3. codim ζ ≥ codim η ⇒ ζ 6< η.

Suppose we want to compute the Thom polynomial Tp(η). Our main theorem gives its value
under some substitutions.

Theorem 2.4. (Main theorem.)

Tp(η)
(

c(ζ)
)

=

{

e(ζ) if ζ = η

0 if ζ 6> η and ζ 6= η.

The proof will be given in the next chapter, and applications in chapter 5. Observe that this

theorem does not state anything about the value of Tp(η)
(

c(ζ)
)

for ζ > η, c.f. chapter 8.

Sometimes it will be convenient not to work with the whole maximal compact subgroup Gη

but with a subgroup G′
η ≤ Gη. For such a G′

η one can define c′(η) and e′(η) in the same way
as in definition 2.1. The following corollary of the main theorem will be useful in section 5.

Corollary 2.5.

Tp(η)
(

c′(ζ)
)

=

{

e′(ζ) if ζ = η

0 if ζ 6> η and ζ 6= η

for any subgroup G′
ζ ≤ Gζ.

Proof . These equations are homomorphic images of the equations of theorem 2.4 at the natural
homomorphism: HΠ(BGη;Z) −→ HΠ(BG′

η,Z).

Of course, if we choose G′
ζ too small (e.g. the trivial subgroup) then the statement of the

corollary is trivial — so to get reasonable statement we have to choose G′
ζ as ‘close’ to Gζ as

possible.
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3. Proof of the main theorem

The proof uses the generalized Pontryagin-Thom construction [RSz], whose idea goes back to
earlier works of A. Szűcs (e.g. [Sz1]), see references therein. Let us now recall the main results.
Meanwhile (and it the whole paper) we will use the following notation: if ξ is a vector bundle
then D(ξ), S(ξ) will denote its ball and sphere bundle, respectively. If A is a submanifold in
B then ν(A ⊂ B) or simply νA will denote the normal bundle of the embedding. The closure
of a subspace X will be called closure X . Note that overline does not mean closure.

Let k ≥ 0 be fixed and let τ be a set of multi-singularities (C, S) −→ (C∗+k, 0) (S a finite set)
satisfying that ζ < η, η ∈ τ ⇒ ζ ∈ τ . For this latter notion, of course, we have to extend the
definition of < to multi-singularities as in [RSz]. A map f : N −→ P is called a τ -map if for
any y ∈ P the singularity of f at f−1(y) is from τ . The result of [RSz] is a concrete description
of a universal τ -map fτ : Y τ −→ Xτ . The topological spaces Y τ and Xτ are glued together
from so called blocks, corresponding to elements of τ . The blocks in Y τ and Xτ corresponding
to η are constructed as follows. Let Gη be the maximal compact subgroup of the right-left
automorphism group of κ (the prototype of η), with the representations λ1(η) and λ2(η) on the
source and target spaces. We can associate vector bundles to the universal principal Gη-bundle
EGη −→ BGη using these representations, we obtain ξ̄η, ξη. The block in Y τ corresponding to
η is the disc bundle of ξ̄η and the block in Xτ corresponding to η is the disc bundle of ξη. One
can also define a natural map D(ξ̄η) −→ D(ξη) which is η in each fibre, obtaining the block

D(ξ̄η) −→ D(ξη)




y





y

K̄η −→ Kη = BGη

Remark 3.1. Let us remark here that in case of a multisingularity, i.e. if S has more than 1
element, some notions in the above paragraph should be meant more general. In this case λ1(η)
is a generalized representation, that is a representation on some disjoint (|S| copies of) vector
spaces (permutations allowed). Thus the result of the association to EGη −→ BGη with λ1(η)
will not be a vector bundle, but a composition of a vector bundle (the left-hand arrow in the
diagram above) with an |S|-sheeted covering (the bottom arrow). If |S| = 1, then K̄η = BGη,
too, and the bottom arrow is a diffeomorphism.

The gluing of these blocks are defined recursively. Suppose we have already constructed
fτ ′ : Y τ ′ −→ Xτ ′ and want to attach the block D(ξ̄η) −→ D(ξη), where both τ ′ and τ ′ ∪ {η}
satisfy the condition on τ above. The way of gluing is detailed in [RSz], here we will only need
that S(ξ̄η) is glued to Y τ ′ and S(ξη) is glued to Xτ .

Now we describe what we mean by fτ being a “universal τ -map”. In [RSz] — where the
real case is considered — theorem 1 has two parts: (A) and (B). Although the proof of part
(B) contains smooth techniques, which do not work in the complex case, part (A) holds with
no change. According to this for any τ -map N −→ P there are maps g and h such that the
diagram

P
g

−→ Xτ
x





f

x





fτ

N
h

−→ Y τ

is commutative. Also for all η ∈ τ we have that
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• η(f) = h−1(K̄η) and the normal bundle of η(f) in

N \ { ζ(f) | ζ > η }

is isomorphic to h∗(ξ̄η) (for simplicity here h is written instead of its restriction h|K̄η
);

• f(η(f)) = g−1(Kη) and the normal bundle of f(η(f)) in

P \ { f(ζ(f)) | ζ > η }

is isomorphic to g∗(ξ̄η) (for simplicity here g is written instead of its restriction g|Kη).

Now we start the proof of the main (2.4) theorem. Let us fix η and let τ be the following
set of (multi)singularities τ = {ζ |ζ 6> η}. For a τ -map f : N −→ P the subset η(f) is a
submanifold, so its cohomology class [η(f)] (the Poincaré dual of the fundamental homology
class it carries) is defined. The minimum that we expect from the Thom polynomial associated
to η is

Tp(η)
(

c(f)
)

= [η(f)] ∈ H∗(N)

for all τ -maps. Now let ζ ∈ τ different from η. If we restrict the above cohomological identity
to η(f) and ζ(f) we get

Tp(η)
(

c(νf(η(f)) − νη(f))
)

= e(νη(f)) ∈ H∗(η(f)) and
Tp(η)

(

c(νf(ζ(f)) − νζ(f))
)

= 0 ∈ H∗(ζ(f)).
(1)

Here we implicitly identified η(f) with its f -image and used some standard facts from differential
topology, such as

• c(f) = c(f ∗TP − TN) restricted to a submanifold M ⊂ N for which f |M is a diffeomor-
phism onto f(M) is

c(TM ⊕ νf(M))

c(TM ⊕ νM)
=
c(νf(M))

c(νM)
= c(νf(M) − νM).

• The cohomology class of a submanifold restricted to the submanifold itself is the Euler
class of its normal bundle.

• The cohomology class of a submanifold M restricted to a subset which is disjoint from M
is 0.

Now we use the result of the generalized Pontryagin-Thom construction: the map f : N −→ P
induces the maps g : P −→ Xτ , h : N −→ Y τ . By abuse of notation let us denote the
restriction of these maps to some subsets (e.g. f(η(f)), η(f), f(ζ(f)) and ζ(f)) by the same
letter. We have that

νf(η(f)) = g∗ξη, νη(f) = h∗ξ̄η, νf(ζ(f)) = g∗ξζ, νη(f) = h∗ξ̄ζ ,

and therefore formula (1) (after appropriate identifications) yields

Tp(η)
(

h∗c(ξ̄η − ξη)
)

= e(h∗ξ̄η) Tp(η)
(

h∗c(ξ̄ζ − ξζ)
)

= 0.

Keeping our eyes on the definition of c(η), c(ζ), e(η), we have

Tp(η)
(

h∗c(η)
)

= h∗e(η) Tp(η)
(

h∗c(ζ)
)

= 0,

that is
h∗
(

Tp(η)
(

c(η)
)

− e(η)
)

= 0 h∗
(

Tp(η)
(

c(ζ)
)

)

= 0.
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Since this holds for all τ -maps f (and the map h is induced from f) we have the same identities
without h∗. This proofs the theorem.

4. Symmetries of singularities

To effectively use theorem 2.4 we need to study the maximal compact subgroup of some
singularities. In this section we will use the following notations: ρi will mean the standard i-
dimensional representation of the unitary group U(i). The powers of representations are meant
tensor powers. The following theorem is essentially from [W] (see also [R1]).

Theorem 4.1. Let η be a singularity whose prototype is κ : (Cn, 0) −→ (Cn+k, 0). The germ
κ is the miniversal unfolding of another germ β : (Cm, 0) −→ (Cm+k, 0) with dβ = 0. The
group Gη is a subgroup of the maximal compact subgroup of the algebraic automorphism group
of the local algebra Qη times U(k −D), where D is the defect of Qη.

1 With β well chosen Gη

acts as a right-left symmetry group on β with representations µ1 and µ2. The representations
λ1, λ2 are equal to µ1 ⊕ µV , µ2 ⊕ µV respectively, where µV is the representation of Gη on the
unfolding space V ∼= Cn−m with the formula

(φ, ψ) · α := ψ ◦ α ◦ φ−1 for α ∈ V ≤ Germs
(

(Cm, 0) −→ (Cm+k, 0)
)

and (φ, ψ) ∈ Gη ≤ Aut β ≤ Diff(Cm, 0)×Diff(Cm+k, 0).

Remark 4.2. Observe that the formulas given for λ1 and λ2 imply that one does not have to
determine µV (so does not have to work with κ, but only with β) when wants to compute c(η).
Observe also that β’s source and target dimensions are usually much smaller than those of κ.

Let us see these notions on examples. Consider first the case k = 0, i.e. singularities
between equal dimensional manifolds. Let η be the set of stable singularities of type Ai (i >
0). Its prototype κ maps from (Ci, 0) to (Ci, 0) and is the miniversal unfolding of the map
β : (C, 0) −→ (C, 0), x 7→ xi+1 (dβ = 0). The maximal compact subgroup of the automorphism
group of the algebra C[[x]]/(xi+1) is U(1) (defect= 0), so GAi

= U(1) and it acts on β (as right-
left symmetry group) with the representations ρ1, ρ

i+1
1 . An appropriately chosen unfolding

space V is generated by the germs gj : x 7→ xj for j = 1, 2, . . . , i − 1. The formula in the

theorem implies that Gη = U(1) acts on the line spanned by gj with the representation ρ−j+i+1
1 .

Therefore we have proved the following theorem.

Theorem 4.3. For k = 0

GAi
= U(1), λ1(Ai) =

i
⊕

j=1

ρj1, λ2(Ai) =

i+1
⊕

j=2

ρj1.

Now we consider the case η = Ia,b where a, b ≥ 2, a 6= b. Its prototype maps from (Ca+b, 0)
to (Ca+b, 0) and is the miniversal unfolding of β : (C2, 0) −→ (C2, 0), (x, y) 7→ (xy, xa + yb)
(dβ = 0). The maximal compact subgroup of Aut(C[[x, y]]/(xy, xa+ yb)) is U(1) and it acts on
β (as right-left symmetry group) with the representations

ρ
b
d

1 ⊕ ρ
a
d

1 , ρ
a+b
d

1 ⊕ ρ
ab
d

1 ,

1The defect of an algebra is the integer D such that if we present the algebra as a quotient of a formal power
series algebra with minimal number of relations then D = #{relations} −#{generators}.



THOM POLYNOMIALS, SYMMETRIES AND INCIDENCES OF SINGULARITIES 7

where d is the greatest common divisor of a and b. An appropriately chosen unfolding space V
is generated by the germs fj : (x, y) 7→ (0, xj) for j = 1, 2, . . . , a−1 and gj : (x, y) 7→ (0, yj) for
j = 1, 2, . . . , b−1. The formula in the theorem implies that Gη = U(1) acts on the line spanned

by fj with the representation ρ
b(a−j)/d
1 and on the line spanned by gj with the representation

ρ
a(b−j)/d
1 . Therefore we have proved the following theorem.

Theorem 4.4. For η = Ia,b (a 6= b) between equal dimensional manifolds Gη = U(1), λ1(η) =
µ1 ⊕ µV , λ2(η) = µ2 ⊕ µV , where

µ1 = ρ
b
d

1 ⊕ ρ
a
d

1 , µ2 = ρ
a+b
d

1 ⊕ ρ
ab
d

1 , µV =
a−1
⊕

j=1

ρ
b(a−j)/d
1 ⊕

b−1
⊕

j=1

ρ
a(b−j)/d
1 .

The following theorems use the same argument, so we give only the results.

Theorem 4.5. For η = Ia,a, a > 2 between equal dimensional manifolds the group Gη has an
index 2 subgroup G′

η = U(1). The formulas for the representations restricted to this subgroup
are the same as in theorem 4.4 (with b, d = a).

Theorem 4.6. For η = I2,2 between equal dimensional manifolds the group Gη has an index 2
subgroup G′

η = U(1)× U(1). The representations restricted to this subgroup are λ1 = µ1 ⊕ µV ,
λ2 = µ2 ⊕ µV , where

µ1 = ρ1(1) ⊕ ρ1(2), µ2 = ρ21(1) ⊕ ρ21(2), µV = ρ21(1) ⊗ ρ−1
1(2) ⊕ ρ21(2) ⊗ ρ−1

1(1).

(The number i in the bracket refers to a representation of the i’th factor.)

Now we are ready to compute the total Chern classes and Euler classes associated to the
singularities mentioned.

Corollary 4.7. For k = 0

c(Ai) = 1+(i+1)x
1+x

= 1 + ix− ix2 + ix3 − . . . ∈ Z[[x]]
e(Ai) = i! · xi ∈ Z[x]

c′(I2,2) = (1+2x)(1+2y)
(1+x)(1+y)

=

1 + (x+ y) + (−x2 + xy − y2) + (x3 − x2y − xy2 + y3) + . . . ∈ Z[[x, y]]
e′(I2,2) = xy(2x− y)(2y − x) ∈ Z[x, y]

c(Ia,b)a6=b =
(1+ a+b

d
·x)(1+ ab

d
·x)

(1+ b
d
·x)(1+ a

d
·x)

∈ Z[[x]]

e(Ia,b)a6=b = b
d
x · a

d
x ·Πa−1

j=1

(

b(a−j)
d

x
)

·Πb−1
j=1

(

a(b−j)
d

x
)

= a!b!ab−1ba−1

da+b · xa+b ∈ Z[x]

c′(Ia,a)a>2 = (1+2x)(1+ax)
(1+x)(1+x)

∈ Z[[x]]

e′(Ia,a)a>2 = (a− 1)!2 · x2a ∈ Z[x]

The letters c′ and e′ instead of c, e mean that we used a subgroup G′
η (given above) instead

of the whole Gη.

This method to compute maximal compact symmetry groups and thus to compute total
Chern classes and Euler classes of singularities works for k > 0, too. As an example let us
present without proof the result on Morin singularities An (n > 0) for any k ≥ 0.
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Theorem 4.8. Let k ≥ 0. The prototype of An : (C∗, 0) −→ (C∗+k, 0) is the miniversal
unfolding of κ : (C, 0) −→ (Ck+1, 0), (x) 7→ (xn+1, 0, . . . , 0). So GAn = U(1)× U(k) with

µ1 = ρ1, µ2 = ρn+1
1 ⊕ ρk, µV =

n
⊕
j=2

ρj1 ⊕
n
⊕
j=1

(ρk ⊗ ρ−j
1 ).

Hence
c(An) = 1+(n+1)x

1+x
(1 + y1 + y2 + . . .+ yk) ∈ Z[[x, y1, y2, . . . , yk]]

e(An) = n!xnΠn
j=1(yk − jxyk−1 + j2x2yk−2 − . . .+ (−1)kjkxk) ∈ Z[x, y1, y2, . . . , yk].

5. Computation of Thom polynomials

In this section we will use theorem 2.4 and the computations in section 4 to compute some
Thom polynomials. Let us start with the setting where the most activity took place in the
past, i.e. singularities of maps between equal dimensional manifolds.

Theorem 5.1. The polynomials in this table are Thom polynomials associated to the given
singularities between equal dimensional manifolds. By c = 1+ c1 + c2 + . . . we mean c(f ∗TP −
TN).

codim 1

A1 c1 [T]

codim 2

A2 c21 + c2 [folklore]

codim 3

A3 c31 + 3c1c2 + 2c3 [folklore]

codim 4

A4 c41 + 6c21c2 + 2c22 + 9c1c3 + 6c4
I2,2 c22 − c1c3

[G]
[P1]

codim 5

A5 c51 + 10c31c2 + 25c21c3 + 10c1c
2
2 + 38c1c4 + 12c2c3 + 24c5

I2,3 2c1c
2
2 − 2c21c3 + 2c2c3 − 2c1c4

[Tu]
[P2]

codim 6

A6 c61 + 15c41c2 + 55c31c3 + 30c21c
2
2 + 141c21c4 + 79c1c2c3 + 5c32+

202c1c5 + 55c2c4 + 17c23 + 120c6
I2,4 2c21c

2
2 + 3c32 − 2c31c3 + 2c1c2c3 − 3c23 − 5c21c4 + 9c2c4 − 6c1c5

I3,3 c21c
2
2 − c32 − c31c3 + 3c1c2c3 + 3c23 − 2c21c4 − 3c2c4 [P2]

codim 7

A7 c71 + 21c51c2 + 105c41c3 + 70c31c
2
2 + 399c31c4 + 301c21c2c3 + 35c1c

3
2 + 960c21c5+

467c1c2c4 + 139c1c
2
3 + 58c22c3 + 1284c1c6 + 326c2c5 + 154c3c4 + 720c7

I2,5 2c31c
2
2 + 9c1c

3
2 − 2c41c3 + 14c22c3 − 17c1c

2
3 − 9c31c4 + 29c1c2c4 − 10c3c4−

26c21c5 + 34c2c5 − 24c1c6
I3,4 2c31c

2
2 − c1c

3
2 − 2c41c3 + 8c21c2c3 − 2c22c3 + 13c1c

2
3 − 7c31c4 − 5c1c2c4 + 10c3c4−

6c21c5 − 10c2c5
(x2, y3) 2c1c

3
2 − 2c21c2c3 + 2c22c3 + 2c1c

2
3 − 4c1c2c4 + 2c3c4 − 2c2c5 [P2]



THOM POLYNOMIALS, SYMMETRIES AND INCIDENCES OF SINGULARITIES 9

codim 8

A8 c81 + 28c61c2 + 140c41c
2
2 + 140c21c

3
2 + 14c42 + 182c51c3 + 868c31c2c3 + 501c1c

2
2c3+

642c21c
2
3 + 202c2c

2
3 + 952c41c4 + 2229c21c2c4 + 364c22c4 + 1559c1c3c4 + 332c24+

3383c31c5 + 3455c1c2c5 + 954c3c5 + 7552c21c6 + 2314c2c6 + 9468c1c7 + 5040c8
I2,6 2c41c

2
2 + 18c21c

3
2 + 7c42 − 2c51c3 − 4c31c2c3 + 57c1c

2
2c3 − 53c21c

2
3 + 4c2c

2
3−

14c41c4 + 60c21c2c4 + 74c22c4 − 90c1c3c4 − 3c24 − 71c31c5 + 166c1c2c5−
39c3c5 − 154c21c6 + 162c2c6 − 120c1c7

I3,5 2c41c
2
2 + 3c21c

3
2 − 4c42 − 2c51c3 + 8c31c2c3 + 10c1c

2
2c3 + 13c21c

2
3 + 24c2c

2
3−

11c41c4 + 7c21c2c4 − 32c22c4 + 34c1c3c4 − 20c24 − 26c31c5 − 2c1c2c5+
60c3c5 − 24c21c6 − 40c2c6

I4,4 c41c
2
2 − c21c

3
2 + 2c42 − c51c3 + 6c31c2c3 − 5c1c

2
2c3 + 18c21c

2
3 − 11c2c

2
3 − 5c41c4−

9c21c2c4 + 13c22c4 + 27c1c3c4 + 23c24 − 6c31c5 − 29c1c2c5 − 21c3c5 − 2c2c6
(x2 + y3, xy2) 2c21c

3
2 + c42 − 2c31c2c3 + 4c1c

2
2c3 + 2c21c

2
3 + 2c2c

2
3 − 7c21c2c4 + 2c22c4+

5c1c3c4 + c24 − 9c1c2c5 + 3c3c5 − 4c2c6

Proof. Consider the following table of singularities up to codimension 8 between equal dimen-
sional manifolds, together with their Thom-Boardman class (although it it not important here,
we count codimension in the source), see e.g. [WP]:

codimC Σ0 Σ1 Σ2,0 Σ2,1

0 A0

1 A1

2 A2

3 A3

4 A4 I2,2
5 A5 I2,3
6 A6 I2,4 I3,3
7 A7 I2,5 I3,4 (x2, y3)
8 A8 I2,6 I3,5 I4,4 (x2 + y3, xy2)

Let η be one of these singularities. If codim ζ ≤ codim η and ζ 6= η then ζ 6> η (proposition

2.3) and therefore Tp(η)
(

c(
′)(ζ)

)

= 0 which gives a restriction on the possible values of the

coefficients in Tp(η). (The sign (′) means that c is meant with or without the prime according

to which is computed in section 4.) In fact if G
(′)
ζ = U(1) and hence its cohomology ring is a

polynomial ring in one variable then this restriction is a linear equation. If G
(′)
ζ is U(1)×U(1)

then it gives a number of linear equations. Anyway, considering all these restrictions we get
a system of linear equations on the coefficients of Tp(η). We can add the additional linear
equation(s) coming from Tp(η)(c(

′)(η)) = e(
′)(η). These all turn to be uniquely solvable in the

cases given in the theorem. The actual computations were carried out by the computer algebra
package called Maple. A detailed description of the calculation for Tp(A4) can be found in
[R2].

Carrying out the computations mentioned, one can see that although in some cases there
are some redundancies in the system of linear equations but typically the equations are “quite
independent”. That is e.g. to compute Tp(A8) it is not enough to consider only e.g. A1–A8 for
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ζ , or those and Ia,b (a+b ≤ 8), one has to consider all singularities with codimension at most 8.
Thus our method heavily depends on the classification of singularities. Since this classification
is known much further than codim 8 (see [WP]), the method is probably applicable to compute
further Thom polynomials. Now we are presenting a result which gives a partial information
on the Thom polynomials of all Morin singularities.

Theorem 5.2. k = 0. Let π(r) denote the set of partitions of r and π(r; i) the set of partition
in exactly i terms; let σj be the j’th elementary symmetric polynomial (σ0 = 1).

• If Tp(Ar) =
∑

I∈π(r) αIcI , then

∑

I∈π(r;i)

αI = σr−i(1, 2, . . . , r − 1) for all i = 1, 2, . . . r.

• Let η be a codimension r singularity different from Ar. If Tp(η) =
∑

I∈π(r) αIcI , then

∑

I∈π(r;i)

αI = 0 for all i = 1, 2, . . . r.

Proof . For both Ar and η we have A1, A2, . . . , Ar−1 6> Ar, η. So theorem 2.4 gives r − 1
linear equations for the coefficients both of Tp(Ar) and Tp(η). We can add one more equation:
Tp(Ar)

(

c(Ar)
)

= e(Ar) in case of Ar and Tp(η)
(

c(Ar)
)

= 0 in case of η. So in both case
we have r linear equations on the coefficients of the relevant Thom polynomial, whose general
solution is given in the theorem.

Remark 5.3. Theorem 5.2 is sufficient to determine Tp(A1), Tp(A2), Tp(A3) completely.
From A4 on, however, it is not enough, e.g. for A4 it only gives:

c41 + 6c21c2 + Ac22 +Bc1c3 + 6c4, where A+B = 11,

cf. remark 6.4.

Corollary 5.4. • In the polynomial Tp(Ar) the coefficient of cr1 is 1, that of cr is (r − 1)!,
that of cr−2

1 c2 is r(r − 1)/2 (r ≥ 2).
• In the polynomial Tp(η) (η 6= Ar is of codimension r) the coefficients of the terms cr1, cr,
cr−2
1 c2 are all 0.

Theorem 5.2 assures that there must be negative coefficients in Tp(η) if η 6= Ar (unless
Tp(η) = 0, is it possible?). Since the converse is true for Ar till it is computed (and not only
for k = 0) let put it as a conjecture.

Conjecture 5.5. All the non-zero coefficients of Tp(Ar) (for any k ≥ 0) are positive.

Since our method works for k > 0, too, let us give a few results in this setting.

Theorem 5.6. The following are Thom polynomials for k = 1
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A1 c2 [T], [P1]
A2 c1c3 + c22 + 2c4 [Ro1]
A3 2c21c4 + 3c1c2c3 + 10c1c5 + c32 + 7c2c4 + c23 + 12c6
A4 c42 + 6c1c

2
2c3 + 2c21c

2
3 + 4c2c

2
3 + 9c21c2c4 + 16c22c4 + 17c1c3c4+

+11c24 + 6c31c5 + 53c1c2c5 + 21c3c5 + 54c21c6 + 76c2c6 + 156c1c7 + 144c8
III2,2 c23 − c2c4 [P1]
I2,2 c1c

2
3 − c1c2c4 + 2c3c4 − 2c2c5

III2,3 2c2c
2
3 − 2c22c4 + 2c1c3c4 − 2c1c2c5 − 4c2c6 + 6c3c5 − 2c24

Proof . The proof is essentially the same as that of theorem 5.1 — with the only difference that
here we have to consider the hierarchy basically implied by the following table

codimC Σ0 Σ1 Σ2

0 A0

1
2 A1

3
4 A2

5
6 A3 III2,2
7 I2,2
8 A4 III2,3

and of course, we have to consider the symmetries of these singularities (some of them is given
in theorem 4.8).

Carrying out these kind of calculations for singularities of codim > 8 (k = 1) or for singu-
larities with a concrete k > 1 seems to be a question of computer capacity. However, another
challenge is to find Thom polynomials consisting k as a parameter. The easiest is the computa-
tion of Tp(A1) for any k ≥ 0, which was the first Thom polynomial computed, and is very easy
with the former methods ([T], [P1]). Still let us show how it is proved with our techniques.

Theorem 5.7. Tp(A1) = ck+1.

Proof . According to the main theorem Tp(A1) = e(A1), hence according to theorem 4.8, we
know that substituting c1 = −a + b1, c2 = −a2 − ab1 + b2, . . . , ck = −ak − ak−1b1 . . . + bk,
ck+1 = ak+1−akb1− . . .−abk into the polynomial Tp(A1) we obtain −a(ak +ak−1b1+ . . .+ bk).
Observe that this latter is ck+1 and that c1, c2, . . . , ck, ck+1 are polynomially independent in
Z[a, b1, . . . , bk], so Tp(A1) must be ck+1.

A bit more delicate but still managable calculation gives the result for A2 for any k ≥
0: the linear equations on the coefficients of Tp(A2) implied by Tp(A2)(c(A1)) = 0 and
Tp(A2)(c(A2)) = e(A2) have the unique solution

Tp(A2) = c2k+1 +
k

∑

j=0

2k−jc2k+2−jcj.

Since this result has already been known by Ronga [Ro1] and because our proof is pure linear
algebra, we omit the proof.
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The author was not able to similarly organize the solution of the linear equations implied by

Tp(A3)(c(A1)) = 0, T p(A3)(c(A2)) = 0, T p(A3)(c(A3)) = e(A3), T p(A3)(c(III2,2)) = 0

to obtain a general formula for Tp(A3) — although it can easily be done for concrete k’s.

6. Existence

In this section we are discussing the existence of Thom polynomials in terms of our techniques.
This will be different from the one in the literature, see e.g. [AVGL] p. 187.

Let η : (C∗, 0) −→ (C∗+k, 0) be a singularity of codimension d and let τ be the set of
multisingularities τ = {ζ | ζ 6> η}. Consider them fixed until the final remark of this section.

Let p(c1, c2, . . . , cd) be a weighted homogeneous degree 2d polynomial (the weight of ci is 2i).
Our goal is to analyze the logical connections between the following four statements.

(A) For almost all maps f : Nn −→ P n+k the cohomology class [η(f)] ∈ H2d(N) is
equal to p(c1(f), c2(f), . . . , cd(f)), i.e. p is the Thom polynomial associated to η.

(B) For all τ -maps f : Nn −→ P n+k the cohomology class [η(f)] ∈ H2d(N)
is equal to p(c1(f), c2(f), . . . , cd(f)).

(C) [K̄η] = p(c1(fτ), c2(fτ), . . . , cd(fτ)) ∈ H2d(Y τ).
(D) 0 = p(c1(ζ), c2(ζ), . . . , cd(ζ)) ∈ H2d(K̄ζ) for all ζ ∈ τ , ζ 6= η and

e(η) = p(c1(η), c2(η), . . . , cd(η)) ∈ H2d(K̄η).

The first thing we have to observe is that in (C) [K̄η] and the ci(fτ)’s are not defined (yet),
since the spaces Y τ , Xτ are not manifolds (even less finite dimensional ones). So we first define
these notions. Let [K̄η] be the image of the Thom class of ξ̄η under the composition

H2d(ξ̄η, ξ̄η − K̄η)
excision
∼= H2d(Y τ, Y τ − K̄η)

restriction
−→ H2d(Y τ).

(Here we identified vector bundles with their total spaces.) To justify this definition recall that
in (B) [η(f)] could be defined similarly as the image of the Thom class of η(f)’s normal bundle
under the composition

H2d(νη(f), νη(f) − η(f))
excision
∼= H2d(N,N − η(f))

restristion
−→ H2d(N).

The definition of ci(fτ) is a bit more delicate and uses a conjecture which holds for all singu-
larities mentioned in the previous sections.

Conjecture 6.1. Let ζ be a singularity. The multiplication by e(ζ) in H∗(BGζ) is a monomor-
phism.

In fact, in all the singularities occurred above the ring H∗(BGζ) is a polynomial ring and the
element e(ζ) is different from 0. (Let us remark that unfortunately e(ζ) = 0 quite often over the
reals.) Now we define ci(fτ) by recursion on τ . Let ci(f{A0}) be the i’th universal Chern class
in H2i(Y {A0}) = H2i(BGA0

) = H2i(BU(k)). Now suppose we have already defined ci(fτ
′) and

want to define ci(fτ) where τ = τ ′ ∪ {ζ}. According to conjecture 6.1 map 4 (and so map 3)
in the Gysin sequence

H2i−1(Dξ̄ζ)
1

−→ H2i−1(Sξ̄ζ)
2

−→ H2i(Dξ̄ζ, Sξ̄ζ)
3

−→ H2i(Dξ̄ζ)
|| ||

H2i−2codim ζ(BGζ)
4

−→ H2i(BGζ)
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is monomorphism, so map 2 is 0-map, and therefore map 1 is surjective. Then map 5 in the
exact sequence

H2i−1(Y τ ′)⊕H2i−1(Dξ̄ζ)
5

−→ H2i−1(Sξ̄ζ)
6

−→ H2i(Y τ)
7

−→ H2i(Y τ ′)⊕H2i(Dξ̄ζ)

is also surjective and therefore map 7 is injective. So we can define ci(fτ) as the unique inverse
image of (ci(fτ

′), ci(ζ)) (which maps to 0 in H2i(Sξ̄ζ)) at map 7.

Remark 6.2. There is another way to define ci(fτ) — suggested to the author by A. Szűcs,
as follows. One can identify the map fτ : Y τ −→ Xτ with an ideal end-object of the category
of all τ -maps, where the morphisms are the pull-back diagrams defined in [RSz]. Under such a
pull-back morphism Chern classes of τ -maps are mapped to each other. So the Chern classes
of the “ideal end-object” can be defined as their direct limit. Of course, some more work is
needed to make this definition precise.

Now we study the properties (A) – (D). Clearly (A) ⇒ (B), since τ -maps must be among
‘most maps’. The definition of ci(fτ) and [K̄η] assures that (B) ⇔ (C) holds. What is proved
in the proof of the main theorem is that (C) ⇒ (D) since (D) is in fact the restriction of (C)
to the K̄ζ ’s (ζ ∈ τ). Now we prove that provided conjecture 6.1 holds then (D) ⇒ (C). This
will be done by a Mayer-Vietoris type argument. We will use induction: first observe that (C)
restricted to Y {A0} holds, this is (D) for ζ = A0. Now we will prove that if (C) holds restricted
to Y τ ′ where τ ′ ⊂ τ then it holds restricted to Y τ ′′ where τ ′′ = τ ∪ {ζ} for a ζ ∈ τ \ τ ′. That
is we want to show that the element [K̄η]− p(c1(fτ), c2(fτ), . . . , cd(fτ)) in H

d(Y τ) is 0. Our
hypotheses and condition (C) for ζ says that this element is mapped to (0, 0) at map 10 in the
exact sequence

H2d−1(Y τ ′)⊕H2d−1(Dξ̄ζ)
8

−→ H2d−1(Sξ̄ζ)
9

−→ H2d(Y τ)
10
−→ H2d(Y τ ′)⊕H2d(Dξ̄ζ).

Just like in the argument above it is clear that map 8 is surjective (provided conjecture 6.1
holds) and therefore map 10 is injective. This proves our claim.

Conclusions. On one hand we have the partial converse of the main theorem, that is the
implication (D) ⇒ (B). On the other hand, if there are polynomials satisfying (D), then the
implication (D) ⇒ (B) can be interpreted as a proof of the existence of Thom polynomials for
τ -maps. If the polynomial satisfying (D) is unique and we know the existence of a polynomial
satisfying (A) then clearly the one satisfying (D) is the Thom polynomial. Since this is the case
in all cases studied by the author let us put it as a conjecture.

Conjecture 6.3. Let η be singularity. The polynomial satisfying the conditions of theorem 2.4
is unique.

Remark 6.4. In fact, one could go further and define the set of Thom polynomials Tp(η; τ) of a
singularity η modulo a set τ (satisfying that η ∈ τ and a closeness assumption: ζ < η ⇒ ζ ∈ τ).
One can e.g. ask for the Thom polynomials of An considering only Morin-maps, i.e. τ -maps
for τMorin = ∪∞

m=0 ∪
m
i=0(a0A0 + a1A1 + . . .+ amAm). The arguments in this section prove that

the set Tp(η; τ) coincides with the set of polynomials satisfying condition (D) for ζ ∈ τ . E.g.
computations show that

Tp(A4; τMorin) = {c41 + 6c21c2 + Ac22 +Bc1c3 + 6c4 | A+B = 11},
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or even more generally, the polynomials in Tp(An; τMorin) are exactly the polynomials satisfying
the equations of the first part of theorem 5.2.

7. Multiple points

The “universal map method” which we used to compute Thom polynomials is capable to
determine multiple point formulas (see e.g. [K], [Sz3], [Sz4]), too — this will be shown in a
subsequent paper. In this section we just show how to use our method to (re)prove the most
basic multiple point formula (of Herbert [H] and Ronga [Ro1]) with rational coefficients. Proving
it with integer coefficients needs finer cohomological analysis. In this section all cohomologies
are meant with rational coefficients.

Definition 7.1. For a self-transverse immersion f : Nn
# P n+k let ∆̄r ⊂ N denote the

(possibly open) submanifold of r-tuple points of f , and let ∆r be its f -image.

Theorem 7.2. (Herbert, Ronga) For any self-transverse immersion f : N # P and any r ≥ 0

[closure ∆̄r] = f ∗[closure ∆r−1]− e(f) · [closure ∆̄r−1] ∈ H2(r−1)k(N)

where e(f) is the top Chern class (top Stiefel-Whitney class in the real case) of the map – or
what is the same, of the normal bundle of the immersion.

Proof . Let k be fixed and let τ be the set of the multisingularities of self-transverse immersions,
i.e. τ = {A0, 2A0, 3A0, . . . }. Associated to this τ we can construct the universal τ -map fτ :
Y τ −→ Xτ , i.e. the universal self-transverse immersion, which we now describe.

Both Y τ and Xτ are glued together from blocks corresponding to the elements of τ . The
block corresponding to sA0 in Y τ is the disc bundle of a vector bundle ξ̄sA0

over the bases space
K̄sA0

, where

K̄sA0
= B

[

U(k)×
(

U(k)s−1
⋊ Ss−1

)

]

ξ̄sA0
=

(

γk2 × . . .× γks
)

⋊ Ss−1.

Here Si means the symmetric group on i elements and its action on the other factor is permu-
tation. The bundle γki is the universal k-bundle over the i’th U(k) factor.

The block corresponding to sA0 in Xτ is the disc bundle of a vector bundle ξsA0
over the

base space KsA0
, where

KsA0
= B

[

U(k)s ⋊ Ss

]

ξsA0
=

(

γk1 × . . . γks
)

⋊ Ss.

The pull back of ξsA0
by the s-sheeted covering (fτ)|K̄sA0

is

(fτ)|∗K̄sA0

(ξsA0
) = γk1 ×

[

(

γk2 × . . .× γks
)

⋊ Ss−1

]

.

To prove the formula of the theorem we only have to prove it for fτ , that is

[closure K̄rA0
] = (fτ)∗[closure K(r−1)A0

]− e(fτ) · [closure K̄(r−1)A0
] ∈ H2(r−1)k(Y τ).(2)

Our strategy is to prove this first restricted to K̄sA0
for all s = 1, 2, . . . (I) and then use a

Mayer-Vietoris argument to prove it in Y τ (II).

(I) We need to determine the restrictions of [closure K̄rA0
], (fτ)∗[closure KrA0

] and e(fτ)
to H∗(K̄sA0

). Since this latter cohomology ring is not easy to determine, we go further and
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pull back the mentioned classes by the (s − 1)!-sheeted covering ι : B
[

U(k)s
]

−→ K̄sA0
and

compute them in the polynomial ring

H∗
(

B
[

U(k)s
]

)

= Z[v
(1)
1 , . . . , v

(1)
k , v

(2)
1 , . . . , v

(2)
k , . . . , v

(s)
1 , . . . , v

(s)
k ].

Here v
(j)
i is a generator in dimension i, the upper index is just a distinguishing sign.

Lemma 7.3.

(i) ι∗ is injective

(ii) ι∗ [closure K̄rA0
]|K̄sA0

= σr−1(v
(2)
k , . . . , v

(s)
k )

(iii) ι∗ (fτ)∗[closure KrA0
]|K̄sA0

= σr(v
(1)
k , . . . , v

(s)
k )

(iv) ι∗ e(fτ)|K̄sA0
= v

(1)
k

Here, again, σi is the i’th elementary symmetric polynomial, with the convention that σ0( any-
thing ) = 1 and σi( less than i elements ) = 0.

Proof of the lemma. Statement (i) is clear since ι is a covering, and in the coefficient group
(rationals) one can divide by any integer. Statement (iv) comes from the above description of
fτ as follows:

ι∗c(fτ)|K̄sA0
=

(

1 + v
(1)
1 + . . .+ v

(1)
k

)

· . . . ·
(

1 + v
(s)
1 + . . .+ v

(s)
k

)

(

1 + v
(2)
1 + . . .+ v

(2)
k

)

· . . . ·
(

1 + v
(s)
1 + . . .+ v

(s)
k

)
= 1 + v

(1)
1 + . . .+ v

(1)
k ,

so ι∗e(fτ)|K̄sA0
= v

(1)
k .

Now let us turn to the computation of ι∗[closure K̄rA0
]|K̄sA0

for r ≤ s, since the r > s case is

trivial (indeed, for r > s the subspaces closure K̄rA0
and K̄sA0

are disjoint). The reader here is
advised to picturize first a special case, e.g. k = 1, r = 3, s = 4. Recall that the neighbourhood
of K̄sA0

in Y τ is the total space of the bundle (γk2 × . . .× γks )⋊ Ss−1. Pulling back this bundle
by the map ι we get the bundle γk2 × . . .× γks . In this bundle we can identify the inverse images
Li := ι−1(K̄iA0

) as follows.
Ls = 0-section
Ls−1 = γk2 ∪ γ

k
3 ∪ . . . ∪ γ

k
s \ Ls

Ls−2 = span(γk2 , γ
k
3 ) ∪ span(γ

k
2 , γ

k
4 ) ∪ . . . ∪ span(γ

k
s−1, γ

k
s ) \ closure Ls−1

. . .
L1 = span(γk2 , γ

k
3 , . . . , γ

k
s ) \ closure L2

So the closure of Lr has
(

s−1
s−r

)

branches through Ls. These all considered we have that

ι∗[closureK̄rA0
]|K̄sA0

= [closure Lr]|Ls = e
(

ν(closure Lr ⊂ closure L1)
)

|Ls =

= e
(

ν(closure Lr ⊂ closure L1)|Ls

)

= e
(

⊕

(γki1 × . . .× γkir−1
)
)

=

=
∑

v
(i1)
k · . . . · v

(ir−1)
k = σr−1(v

(2)
k , . . . , v

(s)
k ).

(The
⊕

and the
∑

is taken for all the r − 1-element subsets {i1, . . . , ir−1} of {2, 3, . . . , s}.
The proof of (iii) is similar.
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To complete the proof of part (I) we only have to substitute the cohomology classes computed
in the lemma (keeping in mind that ι∗ is injective), i.e. we have to check the equation

σr−1(v
(2)
k , . . . , v

(s)
k ) = σr−1(v

(1)
k , . . . , v

(s)
k )− v

(1)
k · σr−2(v

(2)
k , . . . , v

(s)
k )

in Z[v
(1)
1 , . . . , v

(1)
k , . . . , v

(s)
1 , . . . , v

(s)
k ]. This is an identity, so part (I) is proved.

(II) Now we are going to use a Mayer-Vietoris type argument to prove formula (2) in
H2(r−1)k(Y τ). This will be done by induction. The formula clearly holds restricted to the
first block, i.e. restricted to Y τ1, where τ1 = {A0}, since this is the result of part (I) for s = 1.
Now we are going to prove that if the formula holds for Y τs, τs = {A0, 2A0, . . . , sA0} then it
must hold for Y τs+1, too. Consider the following portion of the Mayer-Vietoris sequence:

H2(r−1)k−1(Y τs)⊕H2(r−1)k−1(Dξ̄(s+1)A0
)

1
−→H2(r−1)k−1(Y τs ∩Dξ̄(s+1)A0

)
2

−→

H2(r−1)k(Y τs ∪Dξ̄(s+1)A0
)

3
−→H2(r−1)k(Y τs)⊕H2(r−1)k(Dξ̄(s+1)A0

).

According to the induction hypothesis the cohomology class
(

[closure K̄rA0
]− (fτ)∗[closure K(r−1)A0

] + e(fτ) · [closure K̄(r−1)A0
]
)

|Y τs+1

in H2(r−1)k(Y τs ∪ Dξ̄(s+1)A0
) = H2(r−1)k(Y τs+1) maps to (0, 0) at map 3. Now we prove that

map 2 is the 0-map, which then shows our claim. To show this we will prove that map 1 is
surjective, in fact already the map H2(r−1)k−1(Dξ̄(s+1)A0

) −→ H2(r−1)k−1(Y τs ∩ Dξ̄(s+1)A0
) is

surjective. Observe that this latter cohomology group is equal to H2(r−1)k−1(Sξ̄(s+1)A0
) (where

S means “sphere bundle”), and the map is contained in the Gysin sequence (as map 4)

H2(r−1)k−1(Dξ̄(s+1)A0
)

4
−→H2(r−1)k−1(Sξ̄(s+1)A0

)
5

−→

H2(r−1)k(Dξ̄(s+1)A0
, Sξ̄(s+1)A0

)
6

−→H2(r−1)k(Dξ̄(s+1)A0
).

Map 6 is — after appropriate identifications — a multiplication by the Euler class e of ξ̄(s+1)A0

in the cohomology ring of K̄(s+1)A0
. Considering the commutative diagram

H∗(K̄(s+1)A0
)

·e
−→ H∗+2sk(K̄(s+1)A0

)




y
ι∗





y
ι∗

H∗(BU(k)r)
·ι∗(e)
−→ H∗+2sk(BU(k)r)

as well as the facts that in the bottom line we have a polynomial ring, and ι∗(e) = v
(1)
k 6= 0, we

see that map 6 is injective. Therefore map 5 is a 0-map, so map 4 is surjective. The proof is
complete.

Remark 7.4. Let us remark that the history of the universal immersion used in this section
(or at least its target space) goes back to works of Szűcs much before [RSz], see e.g. [Sz2].
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8. Incidences

Let η and ζ be singularities (non-multi ones for now), i.e. sets of germs (C∗, 0) −→ (C∗+k, 0),
with the same k. Let their codimensions be d and b, respectively.

Definition 8.1. The incidence class of η, ζ is defined as

I(η, ζ) := [K̄η]|K̄ζ
∈ H2d(BGζ).

Although this definition assumes familiarity with the generalized Pontryagin-Thom construc-
tion, according to our theory an alternative definition can be given without any mentioning of
[RSz]:

Proposition 8.2. I(η, ζ) = Tp(η)
(

c(ζ)
)

.

Our main theorem in these terms can be composed as

Proposition 8.3. • If ζ 6> η, ζ 6= η then I(η, ζ) = 0;
• I(η, η) = e(η).

Let us remark, that at least one of ζ 6> η and η 6> ζ necessarily holds, so at least one of
I(η, ζ) = 0, I(ζ, η) = 0 necessarily holds.

While definition 8.1 gives us a geometric idea of I(η, ζ), proposition 8.2 is easily computable.
This duality can be used in both ways. The geometric ⇒ computable direction was, in fact, our
method to compute Thom polynomials. One can, however, consider the other direction, too.
We are going to show it on an example.

Let ζ be the singularity between equal dimensional manifolds corresponding to the local
algebra C[[x, y]]/(x2, y3). Its codimension is 7, so proposition 2.3 allows it to be > than A6

whose codimension is 6. Still, if we compute

I(A6, ζ) = Tp(A6)
(

c(ζ)
)

= Tp(A6)
((1 + 2a)(1 + 3b)

(1 + a)(1 + b)

)

we find that it is 0, so we might suspect that η 6> A6. In fact it it true, and can be proved by long
algebraic computations (the author used the computer algebra package Maple/grobner). The
same method can be used to calculate I(A8, (x

2, y4)) = 0 and so conjecture that (x2, y4) 6> A8

although codim(x2, y4) = 10. Just like above, long calculation can prove that indeed (x2, y4) 6>
A8.

There are two directions which the author believes may turn to be interesting in the study
of incidences of singularities this way. The first challenge is a deeper geometric understanding
of the incidence class. The other is the possible proof of the converse of proposition 8.3:

Conjecture 8.4. If I(η, ζ) = 0 then ζ 6> η.
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