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SPÉCIALIZATION DE POLYNÔMES DE GROTHENDIECK

ANDERS S. BUCH AND RICHÁRD RIMÁNYI

Abstract. We prove a formula for double Schubert and Grothendieck poly-
nomials specialized to two rearrangements of the same set of variables. Our
formula generalizes the usual formulas for Schubert and Grothendieck poly-
nomials in terms of RC-graphs, and it gives immediate proofs of many other
important properties of these polynomials.

Résumé. On démontre une formule pour les polynômes de Schubert et de
Grothendieck dans le cas de réarrangements du même ensemble de variables.
Cette formule généralise les formules usuelles pour ces polynômes en termes
de RC-graphs et donne des démonstrations immédiates de plusieurs propriétés
importantes de ces polynomes.

1. Introduction

Let v, w ∈ Sn be permutations and let Sw(x; y) and Gw(a; b) denote the double
Schubert and Grothendieck polynomials of Lascoux and Schützenberger [14]. The
goal of this note is to prove a formula for the specializations of these polynomials
to different rearrangements of the same set of variables. For example

Sw(yv ; y) = Sw(yv(1), . . . , yv(n) ; y1, . . . , yn) .

The double Schubert polynomial Sw(x; y) represents the class of the Schubert
variety for w in the torus-equivariant cohomology of SLn(C)/B. The specializa-
tion Sw(yv ; y) gives the restriction of this class to the fixed point corresponding
to v [8, Thm. 2.3]. Equivalently, Sw(x; y) represents the class of an orbit in the
B × B-equivariant cohomology of Cn×n [4, 9], and Sw(yv ; y) is the restriction of
this class to another orbit, i.e. an ‘incidence class’ in the sense of [18]. Specialized
Grothendieck polynomials Gw(bv ; b) have similar interpretations in equivariant K-
theory. Both kinds of polynomials also show up in transition matrices between
natural bases of Hecke algebras [11, 15, 16, 13]. For example, the operator on poly-
nomials that maps yi to yv(i) for all i is equal to

∑
w Sw(yv; y) ∂w, where ∂w is a

divided difference operator [16, Prop. 3.2]. Some ways to compute specialized Schu-
bert and Grothendieck polynomials using operators on polynomials are furthermore
suggested in [13].

The formula proved in this paper generalizes the usual formulas for Schubert and
Grothendieck polynomials in terms of RC-graphs [6, 5, 1, 10], and it furthermore
gives immediate proofs of several important properties of these polynomials, some
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of which have natural proofs in the above interpretations. We include a character-
ization of the Bruhat order [12, 16, 8], the existence and supersymmetry of stable
Schubert and Grothendieck polynomials [6], and the statements about Schubert
and Grothendieck polynomials needed in [3] and [2]. The proof of our formula
relies on Fomin and Kirillov’s construction of Grothendieck polynomials [5].

We thank W. Fulton, S. Billey, and the referee for helpful comments and refer-
ences, and L. Fehér for inspiring collaboration on related papers.

2. The main theorem

Consider the diagram Dv consisting of hooks of lines going due north and due
west from the points (v(j), j), and with each such hook labeled by bv(j). For
example, when v = 264135 we get:

Dv =

b2

b3

b4

b5

b6

b1

b1b4b2 b6 b3 b5

We let C(Dv) denote the crossing positions of this diagram, i.e. the points (i, j)
such that v(j) > i and v−1(i) > j. Notice that C(Dv) = D(v−1) with the notation
of [17, p. 8]. For (i, j) ∈ C(Dv) we let ν(i, j) be one plus the number of hooks going
north-west of (i, j) in the diagram Dv , i.e.

ν(i, j) = j + #{k > j : v(k) < i} .

We need the degenerate Hecke algebra, which is the free Z-algebra H generated
by symbols s1, s2, . . . , modulo the relations (i) sisj = sjsi if |i − j| ≥ 2, (ii)
sisi+1si = si+1sisi+1, and (iii) s2

i = −si. This algebra has a basis of permutations.
For a subset D ⊂ C(Dv), consider the product in H of the simple reflections

sν(i,j) for (i, j) ∈ D, in south-west to north-east order, i.e. sν(i,j) must come before
sν(i′,j′) if i ≥ i′ and j ≤ j′. This product is equal to plus or minus a single
permutation w(D). We say that D is a Fomin-Kirillov graph (or FK-graph) for
this permutation w.r.t. the diagram Dv, and that D is reduced if |D| equals the
length of w(D).

An FK-graph D can be pictured by replacing the crossing positions of Dv which
belong to D with the symbol “ ”, while the remaining crossing positions are
replaced with the symbol “ ”. If D is reduced then the string entering the resulting
diagram at column j at the top will exit at row w(D)(j) at the left hand side.

Our main result is the following theorem, which is proved combinatorially in the
next section. It is natural to ask for a geometric proof as well.

Theorem. For permutations v, w ∈ Sn and variables b1, . . . , bn we have

Gw(bv; b) =
∑

D

(−1)|D|−`(w)
∏

(i,j)∈D

(
1 −

bi

bv(j)

)

where the sum is over all FK-graphs D for w w.r.t. Dv.
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Corollary 1. For permutations v, w ∈ Sn and variables y1, . . . , yn we have

Sw(yv; y) =
∑

D

∏

(i,j)∈D

(yv(j) − yi)

where the sum is over all reduced FK-graphs D for w w.r.t. Dv.

Corollary 2. The usual formulas for double Schubert and Grothendieck polynomi-
als in terms of RC-graphs are true (see [6, 5, 1, 10]).

Proof. Apply the theorem to Gw(a1, . . . , an, b1, . . . , bn ; b1, . . . , bn, a1, . . . , an). �

The next corollary recovers the characterization of the Bruhat order proved in
[12, Cor. 3.2] (cf. [16, p. 171]) and [8, Thm. 2.4].

Corollary 3. Let v, w ∈ Sn. The following are equivalent:

(1) w ≤ v in the Bruhat order.
(2) Sw(yv; y) 6= 0.
(3) Gw(bv ; b) 6= 0.

Proof. The product defining w(C(Dv)) is a reduced expression for v. There exists a
reduced FK-graph D ⊂ C(Dv) for w if and only if w equals a reduced subexpression
of this product. The later is equivalent to w ≤ v. This shows that each of (2) and
(3) imply (1) (these implications are clear from geometry, too.) It is also clear
that (2) implies (3). To see that (1) implies (2), notice that if (i, j) ∈ C(Dv) then
i < v(j). Therefore each reduced FK-graph D for w in Corollary 1 contributes a
positive polynomial in the variables zi = yi+1 − yi. �

The following corollary implies that stable double Schubert and Grothendieck
polynomials exist and are supersymmetric [19, 14, 6, 5].

Corollary 4. Let w ∈ Sn and m ≤ n. Then we have

Gw(c1, . . . , cm, am+1, . . . , an ; c1, . . . , cm, bm+1, . . . , bn) =
{

Gu(am+1, . . . , an; bm+1, . . . , bn) if w = 1m × u for some u

0 otherwise.

Proof. Apply the theorem to Gw(c, a, b ; c, b, a). �

It was proved in [4, Prop. 4.1] that the Schubert polynomial Sv(yv; y) is a product
of linear factors. This also follows from the viewpoint of [11, 15, 16], or from our
theorem.

Corollary 5. For v ∈ Sn we have

Gv(bv ; b) =
∏

(i,j)∈C(Dv)

(
1 −

bi

bv(j)

)
.

Corollaries 3 through 5 above include all the facts about Schubert polynomials
required in [3]. We remark that Cor. 5.1 and Prop. 9.2 of [2] are also special cases
of our theorem.
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3. Proof of the main theorem

Let R be the ring of Laurent polynomials in the variables ai and bi, 1 ≤ i ≤ n.
For c ∈ R we set hi(c) = (1 + (1 − c) si) ∈ H ⊗ R. As observed in [5], these
elements satisfy the Yang-Baxter identities hi(c) hj(d) = hj(d) hi(c) for |i− j| ≥ 2;
hi(c) hi(d) = hi(cd); and hi(c) hi+1(cd) hi(d) = hi+1(d) hi(cd) hi+1(c).

For p ≥ q we furthermore set

Aq
p(c; k) = hk−1+p(bp/c) hk−1+p−1(bp−1/c) · · ·hk−1+q(bq/c)

and define, following [7] and [5, (2.1)], the product

G
(n)(a; b) = A1

n−1(a1; 1) A1
n−2(a2; 2) · · ·A1

1(an−1; n − 1) ∈ H⊗ R .

Fomin and Kirillov have proved that the coefficient of each permutation w ∈ Sn

in G
(n)(a; b) is equal to the Grothendieck polynomial Gw(a; b) (see Thm. 2.3 and

the remark on page 7 of [5], and use the change of variables xi = 1 − a−1
i and

yi = 1− bi.) We claim that the specialization G
(n)(bv; b) is equal to the south-west

to north-east product of the factors hν(i,j)(bi/bv(j)) for all (i, j) ∈ C(Dv).
By descending induction on q, the above Yang-Baxter identities imply that

Aq
p(c; k − 1) Aq

p−1(d; k) hq+k−2(c/d) = Aq
p(d; k − 1) Aq

p−1(c; k) ,

from which we deduce that, for 2 ≤ k ≤ n − p, we have

Ap+1
n−k+1(bp; k − 1) A1

n−k(ak; k) = Ap+1
n−k+1(ak; k − 1) A1

p−1(ak; k) Ap+1
n−k(bp; k) .

By using this identity repeatedly, and setting ã = (a2, . . . , an) and b̃ = (b1, . . . , bp−1,
bp+1, . . . , bn), we obtain that

G
(n)(bp, ã ; b) = A1

p−1(bp; 1) Ap+1
n−1(bp; 1)

n−1∏

k=2

A1
n−k(ak; k)

= A1
p−1(bp; 1)

(
n−p∏

k=2

Ap+1
n−k+1(ak; k − 1) A1

p−1(ak; k)

)


n−1∏

k=n−p+1

A1
n−k(ak; k)




= A1
p−1(bp; 1)

(
1 × G

(n−1)(ã; b̃)
)

.

Here “1×” is the operator on H ⊗ R which maps si to si+1 for all i. By setting
p = v(1) and ã = (bv(2), . . . , bv(n)), the above claim follows by induction, and our
theorem is an immediate consequence of the claim.
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[18] R. Rimányi, Thom polynomials, symmetries and incidences of singularities, Invent. Math.

143 (2001), no. 3, 499–521. MR 2001k:58082
[19] R. P. Stanley, On the number of reduced decompositions of elements of Coxeter groups,

European J. Combin. 5 (1984), no. 4, 359–372. MR 86i:05011

Matematisk Institut, Aarhus Universitet, Ny Munkegade, 8000 Århus C, Denmark
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