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Abstract. In this paper we study the elliptic characteristic classes known as “stable en-
velopes”, which were introduced by M. Aganagic and A. Okounkov. We prove that for a rich
class of holomorphic symplectic varieties—called Cherkis bow varieties—their elliptic stable en-
velopes exhibit a duality property inspired by mirror symmetry in d = 3, N = 4 quantum field
theories. A crucial step of our proof involves the process of “resolving” large charge branes into
multiple smaller charge branes. This phenomenon turns out to be the geometric counterpart of
the algebraic fusion procedure. Along the way we discover various new features in the geometry
of bow varieties.
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1. Introduction

In this paper we prove the 3d mirror symmetry of elliptic stable envelopes on type A bow varities.

1.1. Stable envelopes. A key concept of this paper, the “stable envelope”, is due to A. Ok-
ounkov and his co-authors [31, 39, 1]. It is that rare notion in mathematics that not only
organizes and generalizes several earlier mathematical objects (in this case, from enumerative
geometry and representation theory), but also opens up a plethora of new connections, found in
places like geometry, quantum integrable systems, KZ-type PDE’s, difference equations, quan-
tum groups, and quantum cohomology.

Stable envelopes are equivariant characteristic classes assigned to the fixed point components
of certain smooth holomorphic symplectic varieties with a torus action. They come in three
flavors: cohomological, K theoretic, and elliptic. They depend on some choices: a “chamber”
and an “attracting bundle” (in the elliptic case) or “alcove” (in K theory).

Instead of a precise definition of stable envelopes, let us get familiar with them through an
example: The natural A = (C×)2 action on C2 induces A actions on P1 and on X = T ∗P1. An
additional C×

ℏ acts on X scaling the fibers. The set of T = A×C×
ℏ fixed points on X is two
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points, f1 = (1 : 0) and f2 = (0 : 1), and there are two possible choices of chambers C1 and
C2. For an appropriate choice of attracting bundle, the cohomological stable envelopes and their
fixed point restrictions are

StabC1(f1) = t− a2, ( )|f1 = a1 − a2 ( )|f2 = 0,
StabC1(f2) = a1 − t+ ℏ, ( )|f1 = ℏ ( )|f2 = a1 − a2 + ℏ,
StabC2(f1) = a2 − t+ ℏ, ( )|f1 = a2 − a1 + ℏ ( )|f2 = ℏ,
StabC2(f2) = t− a1, ( )|f1 = 0 ( )|f2 = a2 − a1,

while the elliptic stable envelopes and their fixed point restrictions are

StabC1(f1) =
ϑ(t/a1 · ℏ−1 ·z1/z2)ϑ(t/a2)

ϑ(z1/z2 · h−1)
,

( )|f1 = ϑ(a1/a2)
( )|f2 = 0,

StabC1(f2) =
ϑ(t/a2 · z1/z2)ϑ(a1/t · ℏ)

ϑ(z1/z2)
,

( )|f1 = ϑ(a1/a2 · z1/z2)ϑ(ℏ)/ϑ(z1/z2)
( )|f2 = ϑ(a1/a2 · ℏ),

StabC2(f1) =
ϑ(t/a1 · z1/z2)ϑ(a2/t · ℏ)

ϑ(z1/z2)
,

( )|f1 = ϑ(a2/a1 · ℏ)
( )|f2 = ϑ(a2/a1 · z1/z2)ϑ(ℏ)/ϑ(z1/z2),

StabC2(f2) =
ϑ(t/a2 · ℏ−1 ·z1/z2)ϑ(t/a1)

ϑ(z1/z2 · ℏ−1)
,

( )|f1 = 0
( )|f2 = ϑ(a2/a1).

The variable t is the Chern class of the tautological line bundle over P1, and a1, a2, ℏ are the
Chern roots of A×C×

ℏ . The variables z1, z2 (in the elliptic case) are called Kähler (or dynamical)
variables, ϑ is the odd Jacobi theta function written multiplicatively, ϑ(1) = 0. Restrictions to
the fixed points f1 and f2 are achieved by the substitutions t 7→ a1, t 7→ a2.

There are multiple roles stable envelopes play in geometry and related fields. Now we sketch
a few of these, and refer the reader to the introductions of [31, 1] for more.

First, stable envelopes “geometrize” quantum group representations [31]. Namely, tensor
products of fundamental representations of quantum groups are identified with cohomology
rings of moduli spaces by matching “eigenvectors” with the classes of fixed points. Under such
an identification, the coordinate-basis of the quantum group representation is matched with the
stable envelopes. We invite the reader to calculate the primary feature of this identification: the
matrix (StabC1(fj)|fi)−1(StabC2(fj)|fi) (in cohomology) is Yang’s R-matrix.

Second, when X is a cotangent bundle of a homogeneous space M , the ℏ = 1 substitution
in a cohomological stable envelope gives (±1 times) the so-called equivariant Chern-Schwartz-
McPherson (CSM) class of a Schubert cell in M [44, 3]. CSM classes are designed to generalize
the total Chern class of the tangent bundle for locally closed varieties with singularities, in a
“motivic” way. The M = P1 example above gives 1 + t − a2 and t − a1 as CSM classes of the
two Schubert cells C, {pt} ⊂ P1, whose sum is 1 + 2t− a1 − a2 = c(TP1). The K theoretic and
elliptic versions of CSM classes match the appropriate versions of stable envelopes, see [14, 2,
49, 29].

Third, to a torus fixed point of an appropriate holomorphic symplectic variety (let us assume
the fixed points are isolated) one associates a curve counting “vertex function”. Vertex functions
are power series in Kähler variables z, with coefficients in KT(X) that count “quasi-maps” in an
appropriate sense. These curve counting functions satisfy difference equations (of the type q-KZ)
in the equivariant a variables and so-called dynamical difference equations in the z variables.
The matrix (Stab(f)|g)f,g of fixed point restrictions of elliptic stable envelopes serves as the
monodromy matrix for the difference equations [1, 38, 40].

1.2. 3d mirror symmetry. The phenomenon called “mirror symmetry” has been a remarkable
motivation for algebraic geometers for decades. Its physical origin is the fact that certain d = 2,
N = (2, 2) quantum field theories can be “twisted” two different ways (topological A and B
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twists) to obtain topological quantum field theories, whose mathematical incarnations are then
expected to be related. Three dimensional theories have rich mathematical counterparts too,
see eg. [8, 41, 25]. It turns out that appropriate d = 3, N = 4 supersymmetric σ-models also
have two topological twists [21, 20, 4, 16, 9]. The occurring duality for mathematical objects
[34, 7, 26, 22] derived from the two TQFTs is called 3d mirror symmetry or symplectic duality.
For a recent survey on 3d mirror symmetry see [56].

One of the key predictions of 3d mirror symmetry concerns the curve counting functions
mentioned above. Namely, the Higgs branches X,X ! of 3d mirror dual theories (or equivalently,
the Higgs and Coulomb branches of the same theory) are expected to have the same curve
counting functions with a and z variables interchanged and ℏ inverted. As a consequence, or
essentially equivalently, the monodromies of their governing difference equations are expected to
be equal—after transposition, switching a ↔ z variables, and inverting ℏ. This latter property
is the topic of our paper:

(1)
Stab(f)|g(a, z, ℏ)
Stab(g)|g(a, z, ℏ)

= ±
Stab(g!)|f !(z, a, ℏ−1)

Stab(f !)|f !(z, a, ℏ−1)

for elliptic stable envelopes, and the appropriate choices of chamber and attractive bundle. (The
essence is the numerators; the “diagonal restrictions” in the denominators are explicit formulas
with geometric meaning, they could be omitted by a different normalization.) Note that, at the
very least, 3d mirror symmetry requires a bijection f ↔ f ! between the torus fixed points of X
and X !.

Equation (1) as the 3d mirror symmetry property for stable envelopes appeared in a lecture
of A. Okounkov [36], and then in the literature [48].

For example, the variety X = T ∗P1 is self dual with f !1 = f2, f
!
2 = f1. Consider the cham-

ber C1 and the elliptic Stab formulas above. Then (1) reduces to verifying that ϑ(a1/a2 ·
z1/z2)ϑ(h)/(ϑ(a1/a2)ϑ(z1/z2)) gets multiplied by −1 after substituting ai ↔ zi, ℏ↔ ℏ−1.

Other examples are much less obvious: the Nakajima varieties corresponding to the quivers

(2)

1 2 2 3 2 1

1 2 1 1

and

2 3 2 1

3 2 1 1

are also 3d mirror duals. They have complex dimensions 16 and 22, respectively. They have a 6-
and an 8-torus acting on them, respectively. Yet, both have exactly 1055 fixed points and with
the right choice of bijection between the fixed points (1) holds. (We will revisit the combinatorics
of this example in Section 1.3.) The pair of quivers we just discussed had to be chosen carefully:
not all quivers have a 3d mirror quiver—this phenomenon will be illuminated soon.

There are two infinite families of pairs of quiver varieties for which (1) is proved already. The
first class is

1 2 · · · n−2 n−1

n
versus

n−1 n−2 · · · 2 1

n
,

both isomorphic to the cotangent bundle of the full flag variety on Cn [46, 50]. The second class
is [48]

T ∗Gr(k, n) =
k

n

versus
1 2 · · · k k · · · k k k−1 · · · 1

1 1

for k ≤ n/2. On the right there are n − 2k + 1 copies of k on the top (if n = 2k then the two
bottom 1s collide to be a 2).

Why exactly these quivers are mirrors of each other? How to find the mirror of other quivers?
These questions will be answered next.
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1.3. Bow varieties and the Main Theorem. Bow varieties X(D) form a remarkable class
of smooth, holomorphic complex varieties that generalize Nakajima quiver varieties. They were
introduced by Cherkis as moduli spaces of unitary instantons on multi-Taub-NUT spaces [12,
11, 10]; and were given a quiver-like presentation by Nakajima and Takayama [35, 55], see also
[43]. We will use [45] as our general reference.

The combinatorial code of a bow variety is a“brane diagram” D = 0/1/3/3\1\0, that is,
a finite sequence of NS5 branes (/) and D5 branes (\), separated by integers (the dimension
vector, starting and ending with 0, often omitted). Extra flexibility is provided by a local surgery,

called Hanany-Witten (HW) transition d1/d2\d3
HW↔ d1\d1 + d3 − d2 + 1/d3, under which the

associated bow variety is unchanged. A brane diagram is balanced if the integers on the two
sides of any D5 brane are equal. Nakajima quiver varieties correspond to brane diagrams HW

equivalent to balanced ones, for example the D above: /1/3/3\1\
HW↔ /1\1/2\2/ =

1 2

1 1

.

Bow varieties come equipped with all the “usual suspects” of structures one wishes for in
enumerative geometry and geometric representation theory: tautological bundles, torus action
with finitely many fixed points, combinatorial codes of fixed points (called tie diagrams), and
combinatorial descriptions of fixed point restriction maps.

Another remarkable feature of brane diagrams is the existence of an involution D ↔ D!, a
“combinatorial 3d mirror symmetry”, obtained by simply swapping NS5 and D5 branes. For
example /1/2\2/2/3\3\3/2\2/1\1/ and \1\2/2\2\3/3/3\2/2\1/1\ are 3d mirror dual brane
diagrams, and in fact, they are Hanany-Witten equivalent to the pair of quivers in (2)!

There is a natural bijection between the combinatorial codes of the fixed points for D and
D! (simply looking at tie diagrams upside down), and in turn, a natural bijection between the
torus fixed points of X(D) and X(D!). The reader can now—correctly—guess our

Main Theorem. (Theorem 8.1 below.) The varieties X(D) and X(D!) satisfy 3d mirror
symmetry for elliptic stable envelopes in the sense of (1).

The theorem answers the questions in the last paragraph of Section 1.2. Moreover, it answers
why some quivers have no mirror quivers: all quiver varieties are bow varieties (this larger class
is closed for 3d mirror symmetry), but the dual of a quiver variety is not necessarily a quiver
variety.

1.4. Our proof. Ever since quantum field theories and computational evidence predicted 3d
mirror symmetry for stable envelopes, experts envisioned two strategies to prove it.

• A conceptual proof would be the geometric construction of a duality interface, a kind of
“two-sided stable envelope” on X(D)×X(D!)—as suggested by A. Okounkov [36].
• A computational proof would be achieved by developing formulas or recursions for the
stable envelopes, and proving (1) algebraically with the appropriate residue calculus
and/or trisecant identities. This strategy is used in the known special cases [48, 46, 50].

In a subsequent paper [6] we will prove a shuffle property, and in turn, an Elliptic Cohomological
Hall algebra structure of stable envelopes on bow varieties. As a result, explicit formulas for
stable envelopes are obtained. Nevertheless, even if we could organize the needed residue calculus
to prove (1) for the formulas, such a proof would not be illuminating or satisfactory.

Instead, in this paper we choose a different strategy: we analyze the geometric changes of a
bow variety as we replace a 5-brane of charge=w with w copies of 5-branes of charge=1. After
such “resolutions” of the 5-branes we arrive at a brane diagram with only charge=1 5-branes,
and the corresponding bow variety is the cotangent bundle of the full flag variety. For the latter
3d mirror symmetry is clear.
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Resolutions of 5-branes are remarkable operations, and we believe that their study is worth-
while independently of our proof of 3d mirror symmetry; let us explain why.

The resolution of a D5 brane leads to a closed embedding between bow varieties. Moreover,
this embedding respects a poset structure that is relevant in the definition of stable envelopes.
As a consequence we obtain a “one-term relation” (Corollary 6.14) between the stable envelopes
before and after the D5 resolution. This relation is the basis for the known “algebraic fusion of
R-matrices” (Section 6.6), hence we call our D5 brane resolution geometric fusion. Moreover,
the net effect of maximally resolving all D5 branes is a remarkable embedding of the bow variety
into a cotangent bundle of a full flag variety, cf. [30].

The resolution of an NS5 brane is a procedure analogous to a forgetful map from a many-
step flag variety to a fewer-step flag variety—but in the symplectic settings where the map is
replaced with a convolution diagram. Such a map/convolution yields a push-forward formula
for characteristic classes, and we obtain “many-term relations” (Proposition 7.12 and 7.13) that
compare stable envelopes before and after an NS5 resolution. Since an NS5 resolution is the 3d
mirror of a D5 resolution, we name the former a mirror geometric fusion, and we expect that
its study will lead to fusion-like statements for the dynamical Weyl group (3d mirror symmetry
is expected to swap the R-matrix action and the dynamical Weyl group action in the style of
“quantum bispectral Schur-Weyl duality” [54, 23, 24, 13]).

The remaining ingredient of our proof is an R-matrix argument (Section 5.9) which proves the
consistency of the stable envelope relations coming from geometric vs mirror geometric fusions.

Let us emphasize that our proof is geometric: we prove the 3d mirror symmetry of elliptic
stable envelopes without providing formulas for them. Therefore the formulas obtained by the
shuffle structure in the future paper [6] (cf. [5]) will automatically satisfy (1), even though that
equality is not obvious algebraically. As a consequence, our geometric proof yields an abundance
of theta-function identities: one for every pair of 0-1-matrices that have the same row and column
sums.

While the main result of the paper is the 3d mirror symmetry of elliptic stable envelopes
for bow varieties, we decided not to write a paper that only contains that proof in its most
compact form. Instead, we decided to provide a detailed and rigorous treatment of elliptic
stable envelopes on bow varieties, and to explore various aspects of the arising rich geometry.
Examples for these explorations include the tensor structure of bow varieties, relations among
their tautological bundles, a relevant quadratic form calculus, the study of geometric R-matrices,
the Sn action obtained by permuting the same kinds of 5-branes, as well as a discussion on what
can be saved for bow varieties from the powerful theory of equivariant localization.

Acknowledgments. The first author was supported as a part of NCCR SwissMAP, a National
Centre of Competence in Research, funded by the Swiss National Science Foundation (grant
number 205607) and grant 200021 196892 of the Swiss National Science Foundation. The second
author was supported by the Simons Foundation grant 5107838 as well as the NSF grants 2152309
and 2200867. We are grateful for useful discussions on the subject with A. Buch, G. Felder,
L. Rozansky, Y. Shou, A. Smirnov, A. Varchenko, and T. Wehrhan.

2. Brane diagrams, bow varieties, fixed points

In this section we recall the content of Sections 2 and 3 of [45] in a nutshell—yet, the reader
is advised to consult that paper as well as [35] for more details.

2.1. Brane diagrams. Combinatorial objects like D = /2\2/2\4/3/3/4\3/2\2\ will be called
(type A) brane diagrams. The red forward-leaning lines are called NS5 branes, denoted by Z.
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The blue backward-leaning lines are called D5 branes, denoted by A. The positions between 5-
branes are called D3 branes, denoted by X , and the integer sitting there is called its multiplicity
or dimension dX .

If all NS5 branes are to the left of all D5 branes, we call the diagram separated, if all NS5
branes are to the right of all D5 branes, we call the diagram co-separated.

The charge of an NS5 brane is defined as ch(Z) = (dZ+−dZ−)+ |{D5 branes left of Z}|. The
charge of a D5 brane is defined as ch(A) = (dA− − dA+) + |{NS5 branes right of A}|. Here, the
superscripts +,− refer to the D3 branes directly to the right and left. We define the local charge
(or “weight”) of 5-branes by w(Z) = |dZ+ − dZ− |, w(A) = |dA+ − dA− |. For an NS5 brane let
ℓ(Z) denote the number of D5 branes left of Z.

2.2. The bow variety. To a D3 brane we associate a complex vector space W of the given
dimension. To a D5 braneA we associate a one-dimensional space CA with the standard GL(CA)
action and the “three-way part”

MA =Hom(WA+ ,WA−)⊕ ℏHom(WA+ ,CA)⊕Hom(CA,WA−)

⊕ ℏEnd(WA−)⊕ ℏEnd(WA+),

whose elements will be denoted by (AA, bA, aA, BA, B
′
A), and NA = ℏHom(WA+ ,WA−). To an

NS5 brane Z we associate the “two-way part”

MZ = ℏHom(WZ+ ,WZ−)⊕Hom(WZ− ,WZ+),

whose elements will be denoted by (CZ , DZ). To a D3 brane X we associate NX = ℏEnd(WX ).
In these formulas, the ℏ factor means an action of an extra C× factor called C×

ℏ . Let

M =
⊕
A

MA⊕
⊕
Z

MZ , N =
⊕
A

NA⊕
⊕
X

NX .

We define a map µ : M→ N componentwise as follows.

• The NA-component of µ is BAAA −AAB
′
A + aAbA.

• The NX -components of µ depend on the diagram:
\-\ If X is in between two D5 branes then it is B′

X− −BX+ .
/-/ If X is in between two NS5 branes then it is CX+DX+ −DX−CX− .
/-\ If X− is an NS5 brane and X+ is a D5 brane then it is −DX−CX− −BX+ .
\-/ If X− is a D5 brane and X− is an NS5 brane then it is CX+DX+ +B′

X− .

Let M̃ consist of points of µ−1(0) ⊂M for which the stability conditions

(S1) if S ≤WA+ is a subspace with B′
A(S) ⊂ S, AA(S) = 0, bA(S) = 0 then S = 0,

(S2) if T ≤WA− is a subspace with BA(T ) ⊂ T , Im(AA) + Im(aA) ⊂ T then T =WA−

hold. Let G =
∏

X GL(WX ) and consider the character

(3) χ : G → C×, (gX )X 7→
∏
X ′

det(gX ′),

where the product runs for D3 branes X ′ such that (X ′)− is an NS5 brane (in picture /X’). Let

G act on M̃×C by g.(m,x) = (gm, χ−1(g)x). We say that m ∈ M̃ is stable (notation m ∈ M̃s)
if the orbit G(m,x) is closed and the stabilizer of (m,x) is finite for x ̸= 0. Define the bow

variety X(D) associated with the brane diagram D to be M̃s/G. By this definition X(D) is an
orbifold, but in fact the stabilizers of stable points turn out to be trivial.

The obtained variety X(D) is smooth, holomorphic symplectic. It comes with the action of
the torus T = A×C×

ℏ , where A = ×AGL(CA). The vector spaces WX associated with the D3
branes induce “tautological” bundles (of the given rank).
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2.3. Affinization and handsaw variety. Although the stability conditions (S1) and (S2) are

open, the variety M̃ is affine [55, Section 2]. As a consequence, bow varieties come with a
projective morphism

π : X(D)→ X0(D) := Spec(C[M̃]G)

to an affine variety.
Assume now that the bow diagram D is separated or co-separated. By neglecting the two-

way parts of the diagram, we get a map µHS : (⊕AMA)→ (⊕ANA)⊕ (⊕X NX). The subscript

refers to the shape of the associated quiver, which resembles a handsaw. Let M̃HS denote the
subvariety of µ−1

HS(0) satisfying the conditions (S1) and (S2). It is also affine and its quotient

HS(D) := Spec(C[M̃HS ]
∏

A GL(WA))

is called handsaw variety. As shown in [55, Prop. 2.9 and Cor. 2.21], the GD action on M̃ is

free and all its orbits are closed, so HS(D) is just the orbit space M̃HS/
∏

AGL(WA).

The natural projection M̃ → M̃HS descends to an affine morphism ρ : X0(D) → HS(D).
Altogether, if D is separated or co-separated, we have morphisms

(4) X(D) π−→ X0(D)
ρ−→ HS(D).

2.4. Hanany-Witten transition. The local surgery d1/d2\d3 ↔ d1\d1 + d3 − d2 + 1/d3 on
diagrams is called Hanany-Witten transition. It is a fact that under such transition the associated
bow varieties are isomorphic, with the change of K-theory classes of bundles, and parametrization

(5)

ξ1 ξ2 ξ3

CA

HW
ξ1 ξ1 + ξ3 − ξ2 + CA ξ3

CA ℏ−1

.

The charges of 5-branes are invariant under HW transition, and in fact, the vectors of NS5 and
D5 charges r and c are a complete invariant of a HW equivalence class. Any brane diagram can
be made separated of co-separated by a sequence of HW moves.

2.5. Torus fixed points. The T (or A) action on X(D) has finitely many fixed points. The
fixed points can be encoded combinatorially by tie diagrams, like this one

(6)

2 2 2 4 3 3 4 3 2 2

Z1 Z2A1 A5A4Z6

,

see details in [45]. Equivalently, fixed points can be encoded by binary contingency tables
(BCTs), which are 01 matrices with row and column sums the charge vectors. The BCT
corresponding to the tie diagram above, as well as the charge vectors r = (2, 3, 2, 1, 1, 2),
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c = (5, 2, 2, 0, 2), are

5 2 2 0 2

A1 A2 A3 A4 A5

2

1

1

2

3

2

Z6

Z5

Z4

Z3

Z2

Z1

1 0 0 0 1

1 1 0 0 1

1 0 1 0 0

0 0 1 0 0

1 0 0 0 0

1 1 0 0 0

.

In the whole paper, we assume that D is such that X(D) has at least one fixed point.

2.6. Fixed point restrictions. Throughout the paper we will be concerned with formulas in
four sets of variables:

• a variable ai for each D5 brane (“equivariant variables”);
• a variable zi for each NS5 brane (“Kähler variables”);

• variables tξi for i = 1, . . . , rk(ξ) (“topological variables”) for the bundles ξ;
• an extra variable ℏ.

The geometric meaning of these variables depends on the context, namely whether we are in
cohomology, K theory, elliptic cohomology, or if we are recording “factors of automorphy” of
elliptic functions. Yet, in all these settings ai are the relevant Chern roots of the factors of

A. The tξj are the Chern roots of the bundle ξ. The variable ℏ is the Chern root of the C×
ℏ .

In elliptic cohomology these are coordinates on factors of the elliptic cohomology scheme—cf.
Section 4. The zi variables are coordinates on other factors of the same scheme.

At torus fixed points, the tξj variables specialize to monomials in the ai and ℏ variables. The

combinatorics of this specialization is involved, see the “butterfly diagrams” of [45, Sec.4.3]. For
the fixed point in the figure above the specialization (written multiplicatively) is

t1j 7→ a1, a2; t2j 7→ a1, a2 ℏ−1; t3j 7→ a1, a2; t4j 7→ a1, a2 ℏ, a2, a2 ℏ−1;

t5j 7→ a2 ℏ, a2, a3 ℏ−2; t6j 7→ a2 ℏ, a3 ℏ−1, a3 ℏ−2; t7j 7→ a2 ℏ, a3, a3 ℏ−1, a5 ℏ−1;

t8j 7→ a2 ℏ, a3, a5 ℏ−1; t9j 7→ a5, a5 ℏ−1; t10j 7→ a5, a5 ℏ−1 .

Here we wrote tij for t
ξ
j for the i’th ξ bundle from the left. In notation we will write ( )|f for the

restriction map to the fixed point f ∈ X(D)T. When working in cohomology instead of K theory
or elliptic cohomology (or when we work with quadratic forms governing the quasi-periods of
elliptic functions) we need to read these specializations additively, e.g. a2 − ℏ instead of a2 ℏ−1.

3. More on bow varieties

In this section we present three new results on bow varieties.

3.1. Geometric tensor structure. Let us now consider more general torus actions. Namely,
let X(D, r, c) be a bow variety with charge vectors c = (ch(A))A∈D and r = (ch(Z))Z∈D and
consider a rank two torus A = C×

a′ ×C×
a′′ ⊂ A acting with a′ on a subset of the D5 branes in D,

and with a′′ on the remaining D5 branes.
Let D′ (resp. D′′) be the brane diagram obtained from D by erasing those D5 branes that are

not acted on by a′ (resp. a′′). Accordingly, the charge vector c induces a charge vector c′ (resp.
c′′ ) obtained from c by erasing those entries corresponding to the D5 branes in D′′ (resp. D′).
By construction, the vector c is recovered from c′ and c′′ by merging the two vectors together,
hence we write c = c′ ⊔ c′′.
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Theorem 3.1. We have

X(D, r, c)A =
⊔

r=r′+r′′

X(D′, r′, c′)×X(D′′, r′′, c′′).

Proof of Theorem 3.1. The proof is an adaptation of the analogous statement for quiver varieties
given in [31, Prop. 2.3.1], so we only sketch it. Recall that X(D, r, c) can be seen as the moduli
space of representations p ∈ RepQ(w) of a certain quiver Q with dimension w satisfying µ(p) = 0,
the open conditions (S1), (S2), and GIT stability.

Fix some x ∈ X(D, r, c)A and let p = (a, b, A,B,C,D) ∈ µ−1(0)s be a representation whose
class is x. Since the action of G =

∏
X GL(WX ) on µ

−1(0)s is free, we get a map

ϕ : A→ A×G

which is the identity on the first component and such that p is fixed by ϕ(A). The composition
A → A × G → G induces decompositions of the vector spaces WX = W ′

X ⊕ W ′′
X in weight

subspaces acted on by a′ and a′′, respectively. The decomposition of the remaining vertices, i.e.
the lower vertices in the three-way parts, is always trivial because by assumption they are either
acted on by a′ or a′′.

Since p is ϕ(A)-fixed, it decomposes as a direct sum of sub-representations p = p′ ⊕ p′′

respecting the weight decompositions. Since the lower vertices in the three-way parts are either
acted on by a′ or a′′, the point p′ (resp. p′′) is effectively a representation of the quiver Q′ (resp.
Q′′) that can be obtained from Q by erasing all the lower vertices with an action of a′′(resp.
a′) in the three-way parts together with all the arrows connected to them. The following is the
graphical illustration, with the assumption that CA carries an action of a′:

WA− WA+

CA

BA−

AA

bA

BA+

aA
=

W ′
A−

W ′
A+

CA

B′
A−

A′
A

b′A

B′
X+

a′
⊕

W ′′
A−

W ′′
A+

0

B′′
A−

A′′
A

0

B′′
A+

0

It is easy to check that p = p′ ⊕ p′′ satisfies (S1),(S2) and the GIT stability iff p′ and p′′

do. Similarly, p satisfies µ(p) = 0 iff µ(p′) = µ(p′′) = 0. Set G′ =
∏

X GL(W ′
X ) and G′′ =∏

X GL(W ′′
X ). Then we have

X(D, r, c)A =
⊔

w′ +w′′=w

(RepQ′(w′) ∩ µ−1(0)s)/G′ × (RepQ′′(w′′) ∩ µ−1(0)s)/G′′.

It remains to identify the two factors of the tensor product with the bow varieties in the state-
ment. Since any p′′ ∈ RepQ′(w′) ∩ µ−1(0)s satisfies (S1), (S2), and µ(p′′) = 0, the maps of the

form A′′
A as in the figure above are isomorphisms and B′′

A−
= A′′

AB
′′
A+

(A′′
A)

−1.

Overall, this means that the quiver Q′′ is obtained from Q by replacing all the three-way
parts with an C×

a′-action with a single edge and a loop, and the representations in RepQ′′(w′′)∩
µ−1(0)s assign isomorphisms to these edges. In other words, all these three-way parts can
be replaced with a factor of the form T ∗GL(W ′′

A−
) = T ∗GL(W ′′

A+
). Taking the symplectic

reduction by GL(W ′′
A−

) = GL(W ′′
A+

) is the same as neglecting such factors. This observation

provides the identification RepQ′′(w′′) ∩ µ−1(0)s = X(D, r′′, c′′) for some (r′′, c′′) determined by

w. A similar argument shows that RepQ′(w′) ∩ µ−1(0)s = X(D, r′, c′) for some (r′, c′). The
check that w′+w′′ = w is equivalent to r′ + r′′ = r and c′ ⊔ c′′ = c is left as an exercise. □
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By iteration of the previous proposition, one gets an explicit description of the fixed locus for
larger tori acting on the D5 branes, and eventually recovers the description of the A-fixed locus
discussed in Section 2.5.

Example 3.2. Consider the bow variety X(D, r, c) and the fixed point f ∈ X(D)A given by the
following tie diagram:

f =
2 2 2 4 3 3 4 3 2 2

Let A := C×
a′ × C×

a′′ ⊂ A be the torus acting with a′ on the first, third and fourth D5 brane in
D and with a′′ with the remaining two D5 branes. By Proposition 3.1, f gets identified with a
pair of fixed points f ′ × f ′′ ∈ X(D′, r′, c′) × X(D′′, r′′, c′′) for the appropriate charges r′, r′′, c′

and c′′.
Following the argument of the previous theorem, it is easy to check that the tie diagram of

f ′ (resp. f ′′) can be obtained from the one of f by removing the second and fifth (resp. first,
third, and fourth) branes together with all the ties attached to them:

f ′ =
1 1 1 1 2 2 1 0 0

f ′′ =
1 1 3 2 1 2 2

It is also instructive to verify the consistency of the charges, as well as the identities r = r′ + r′′

and c = c′ ⊔ c′′.

Remark 3.3. This theorem can be seen as the bow variety version of the so-called tensor
product structure of the fixed locus for quiver varieties [31, Section 2.3]. It plays a key role in
the interpretation of the cohomology of bow varieties as a module over the appropriate quantum
group. Indeed, let us define

X(D, c) :=
⊔
r

X(D, r, c).

Then we have X(D, c′)A = X(D, c′) ×X(D, c′′) and hence, passing to cohomology with coeffi-
cients in a field, we get

H∗
T(X(D, c)A) = HT′(X(D, c′))⊗k HT′′(X(D, c′′)),
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where k = HC×
ℏ
(∗). This description highlights the representation theoretic interpretation of

the charge vectors c and r. The vector c defines a quantum group representation, namely
H∗

T(X(D, c)), and r prescribes a specific weight space H∗
T(X(D, r, c)) ⊆ H∗

T(X(D, c)). The
parallel with Nakajima varieties MQ(v,w) is thus the following: the D5 charge vector c play
similar roles as the framing vector w, and the NS5 charge vector r plays similar role to the
dimension vector v.

3.2. Relations among tautological bundles. Consider the separated brane diagram

(7)
ξ1 ξ2 · · · ξm−1 ζ0 ζ1 ζ2 · · · ζn−1

Z1 Z2 Z3 Zm−1 Zm A1 A2 A3 An−1 An

.

Proposition 3.4. The ζk bundles are topologically trivial (with an action of T).

Proof. For a point in X(D) let vk = aAk
(1) be a vector in its fiber of ζk−1. The sections

(BAn)
i (vn) for i = 0, . . . , ch(An)−1 trivialize ζn−1. The AAn−1-images of these sections, together

with the sections
(
BAn−1

)i
(vn−1) for i = 0, . . . , ch(An)− 1 trivialize ζn−2, etc. □

Let us consider a diagram HW-equivalent with the separated one above, and let the portion
between Zk and Zk+1 be (that is, r = ℓ(Zk+1)− ℓ(Zk))

(8)

Zk Zk+1

. . .
. . . . . .

η0 η1 ηr−1 ηr
.

Proposition 3.5. Let us identify the varieties corresponding to diagrams (7) and (8) via HW
isomorphism. Then all r + 1 of the ηi bundles of Figure (8) can be written as ξk + Ni(a, ℏ) ∈
KT(X(D)), where Ni(a, ℏ) stands for a bundle that is topologically trivial (with an action of T).
The bundles left of Z1 and right of Zm in Figure (8) are of the type N(a, ℏ).

We used the letter N to indicate that these contributions will be “negligible” for us.

Proof. Assuming the statement for the diagram on the left and applying the HW transition

(9)

ξk +N ξk+1 +N ξk+1 +N

Zk ai ℏj

ξk +N η ξk+1 +N

ai ℏj−1 Zk

,

for η we obtain η = (ξk + N) + (ξk+1 + N) − (ξk+1 + N) + ai ℏj = ξk + N ∈ KT(X(D)) what
we wanted to prove (we used the same letter N for possibly different virtual bundles of type
N(a, h)). □

3.3. Quadratic forms. When dealing with equivariant elliptic cohomology we will consider a
certain quadratic form (up to an equivalence) associated with the space X(D). Part of this
quadratic form (“the α part”) comes from a virtual bundle over the space, and another (“dy-
namical”) part is an explicit formula. In this section, we present these two parts and prove that
their sum is HW invariant.
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3.3.1. The alpha part. Let D be a brane diagram. Consider the class α ∈ KT(X(D)) of the
virtual bundle

(10) ℏ

⊕
A

Hom(ξA
+
, ξA

−
)⊕Hom(CA, ξ

A−
)⊕

⊕
Z

Hom(ξZ
−
, ξZ

+

)⊖
⊕
ξ

Hom(ξ, ξ)

∨

where A, Z, ξ run over the D5, NS5 and D3 branes. Observe that the definition of α changes
under HW transition, because the ξ bundles change. Yet, the change is controlled.

Proposition 3.6. Consider the HW transition of (5) from left to right, and denote ξ′2 = ξ1 +
ξ3 + CA−ξ2. In KT(X(D)) we have

αafter − αbefore = Hom(ξ1,CA)− ℏHom(CA, ξ
′
2).

Proof. Straightforward (long) calculation using (5). □

Let us define an additive map Q : KT(X(D)) → Q(H2
T(X(D)), where the codomain is the

additive group of quadratic forms on H2
T(X(D)), by sending a line bundle L to c1(L)

2. We say
that two such quadratic forms are equivalent (in notation ≡) if they differ by a quadratic form
in Q(H2

T(∗)) (or in the zi variables to be considered later). That is, quadratic forms in ai and
ℏ variables are equivalent to 0, and in turn, the quadratic forms of the “negligible” terms of
Section 3.2 are equivalent to 0.

Corollary 3.7. Consider the situation of Proposition 3.6, and let t1i be the Chern roots of the
bundle ξ1. Then

Q(αafter)−Q(αbefore) ≡ −2 ℏ
∑
i

t1i.

Proof. According to Proposition 3.6, we have Q(αafter)−Q(αbefore) =
∑

i(a−t1i)2−
∑

j(t
′
2j−a+

ℏ)2. Using Proposition 3.5, this is equivalent to
∑

i(a− t1i)2−
∑

i(t1i− a+ ℏ)2 = −2 ℏ
∑

i(t1i−
a)−

∑
i ℏ

2, which is, by algebra, equivalent to the stated formula. □

3.3.2. The dynamical part. Let D be a brane diagram. Let ηk be one of the bundles in between
the NS5 branes Zk and Zk+1. Let us define the quadratic form

(11) QU = 2

m−1∑
k=1

(∑
i

tηki

)
(zk − zk+1 + (ℓ(Zk+1)− ch(Zk)) ℏ) .

We will only consider QU up to the equivalence ≡, hence the choice of ηk does not matter (cf.
Proposition 3.5).

Proposition 3.8. Consider the HW transition of (5) from left to right. We have

QUafter −QU before ≡ 2 ℏ
∑
i

t1i.

Proof. If the NS5 brane involved is Zk then the affected terms of QU are

2
∑
i

t1i(zk−1 − zk + (ℓ(Zk)− ch(Zk−1)) ℏ) + 2
∑
j

t3j(zk − zk+1 + (ℓ(Zk+1)− ch(Zk)) ℏ).

By inspection, we see that ℓ(Zafter
k ) = ℓ(Zbefore

k )+1 and ℓ(Zafter
k+1 ) = ℓ(Zbefore

k+1 ), while the charges
do not change under HW transition. Simple algebra finishes the proof. (When k = 1 or m then
one of the two terms above is missing, but the proof easily extends.) □

The net effect of Corollary 3.7 and Proposition 3.8 is

Theorem 3.9. The equivalence class of the quadratic form Q(α) +QU associated with a brane
diagram is invariant under Hanany-Witten transition.
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4. Elliptic cohomology

4.1. Definition. In this paper, we consider the G-equivariant elliptic cohomology associated
with an elliptic curve E = C×/qZ, cf. [17, 19] for a comprehensive discussion, and [37, App. A]
for a review in the context of stable envelopes. We will be only interested in its 0-th (covariant)
functor

EG(−) : G-spaces→ SchemesEG
,

where EG := EG(∗) is the elliptic cohomology of the one-point space.
We only need the case when G is either a rank n torus T or GL(n). Then ET = Cochar(T )⊗Z

E ∼= En and EGL(n) = E(n), the symmetrized rth Cartesian power of E.

4.2. Pullback. For convenience, we will denote the functorial morphism EG(f) : EG(X) →
EG(Y ) associated with a map f : X → Y again by f . In particular, we have an adjoint pair

f∗ : Qcoh(EG(Y ))→ Qcoh(EG(X)) f∗ : Qcoh(EG(X))→ Qcoh(EG(Y ))

which should not be confused with pushforward and pullback in elliptic cohomology. Indeed, let
F ∈ Qcoh(EG(X)) and consider the natural map F → f∗f

∗F coming from adjunction. Pushing
forward along the canonical maps X → ∗ ← Y , we get a map of OEG(∗)-modules

F → f∗F .
This is the pullback in elliptic cohomology. It is customary to denote it too by f∗. Notice that
it is not a functor but a morphism in the category Qcoh(EG(∗)).

4.3. Chern roots and Thom sheaves. In order to define pushforward, we first need to intro-
duce Chern classes and Thom sheaves. A G-equivariant complex vector bundle V → X of rank
r defines a map

c(V ) : EG(X)→ EGL(r)(∗) = E(r),

called elliptic characteristic class of V , see [19, Section 1.8] and [17, Section 5]. Its coordinates
in the target are called elliptic Chern roots. Associated with V is an invertible sheaf, the Thom
sheaf of V

Θ(V ) := c(V )∗(D).

Here, D is the divisor D = {0} + E(r−1) ⊂ E(r) formed by those tuples (t1, . . . , tr) ∈ E(r)

that contain 0. Since the divisor D is effective, the line bundle Θ(V ) admits a canonical global
section, which we denote by ϑ(V ). This notation reflects the fact that ϑ(V ) is the pullback by
c(V ) of the canonical section

r∏
i=1

ϑ(ti)

of the divisor D on E(r). It is easy to check that the assignment V 7→ Θ(V ) extends to a
functorial group homomorphism

Θ : KG(X) 7→ Pic(EG(X)) [V ] 7→ Θ(V ).

The Thom sheaf allows defining another important class of line bundles, which depends on
an extra parameter z living in a one-dimensional torus C×

z acting trivially on X. Namely, for
every V as above, we define

U(V, z) := Θ
(
(V − 1⊕rk(V ))(z − 1)

)
∈ Pic(EG×C×

z
(X)).

It admits the following canonical meromorphic section
r∏

i=1

δ(ti, z) =
r∏

i=1

ϑ(tiz)

ϑ(ti)ϑ(z)
,
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which plays a central role in ℏ-deformed characteristic classes in elliptic cohomology [42]. Next,
we list some properties of these bundles.

Lemma 4.1. We have

U(V, 1) ∼= O,
U(V, z1z2) ∼= U(V, z1)⊗ U(V, z2),
U(V1 ⊕ V2, z) ∼= U(V1, z)⊗ U(V2, z),

U(V1 ⊗ V2, z) ∼= U(V1, z)⊗rk(V2) ⊗ U(V2, z)⊗rk(V1),

Θ(Hom(V1, V2)− ℏHom(V2, V1)) ∼= U
(
V1, ℏ−rk(V2)

)
U
(
V2, ℏrk(V1)

)
⊗Θ(ℏ)−rk(V1)rk(V2).

For the proof and more details about U(V, z), see [37, App. A]. The choice of replacing z
with ℏ in the last equation is in view of the applications.

4.4. Pushforwards. Let f : X → Y be a proper complex oriented morphism of smooth varieties
and E be any vector bundle on EG(Y ). The pushforward in elliptic cohomology is a morphism

f⃝∗ : f∗(Θ(−Nf )⊗ f∗E)→ E ,
where Nf = f∗TY − TX ∈ KG(X) is the virtual normal bundle. More generally, if f is not
proper, then pushforward may only be defined on some subsheaf of the domain. By definition,
a section s of some sheaf G on EllT (X) is supported on some closed T -invariant subset W if its
restriction to X \W is zero. Its support supp(s) is the intersection of all such W . Then, the
pushforward of any complex oriented map f can be defined as

f⃝∗ : f∗(Θ(−Nf )c ⊗ f∗E)→ E
where Θ(−Nf )c is the subsheaf of Θ(−Nf ) of sections s such that f |supp(s) is proper [37].

For a closed embedding i : X ↪→ Y we have

(12) i∗ ◦ i⃝∗ : Θ(−Ni)⊗ i∗E → E γ 7→ ϑ(Ni) · γ.
In other words, the composition i∗ ◦ i⃝∗ is equal to multiplication by the elliptic Euler class of
the normal bundle Ni.

The pushforward in elliptic cohomology is functorial, in the sense that given two proper
morphisms of smooth varieties f : X → Y and g : Y → Z and a line bundle E on EG(Z), the
following diagram commutes

(13)

(g ◦ f)∗(Θ(−Ng◦f )⊗ (g ◦ f)∗E) E

g∗ (f∗(Θ(−Nf )⊗ f∗(Θ(−Ng)⊗ g∗E)) g∗(Θ(−Ng)⊗ g∗E).

(g◦f)⃝∗

g∗(f⃝∗ )

g⃝∗

The identity arrow in the diagram is induced by the projection formula and the isomorphism

Θ(−Ng◦f ) = Θ(−Nf − f∗Ng) ∼= Θ(−Nf )⊗ f∗Θ(−Ng).

With a slight abuse of notation, we will write (g ◦ f)⃝∗ = g⃝∗ f⃝∗ .
The pushforward is defined like in ordinary equivariant cohomology, namely as the composi-

tion of the Thom isomorphism with the Pontryagin-Thom collapse map. From the naturality of
the Thom isomorphism, it follows that if two proper complex-oriented morphisms f and F fit
in a Cartesian diagram

X1 X2

Y1 Y2

F

g

f

G
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such that dim(X1) − dim(Y1) = dim(X2) − dim(Y2), then G
∗f⃝∗ = F⃝∗ g

∗. The reader is invited
to compare the line bundles entering these maps’ definitions.

We conclude the section by stating the powerful localization theorem. To ease its formulation,
we omit the sheaves entering in the definition of the pushforwards.

Proposition 4.2. Let p : X → Y be a proper complex-oriented morphism of smooth T -varieties
with finite fixed loci. If the class α is in the image of the localized pushforward i⃝∗ associated
with i : XT ↪→ X, then for every g ∈ Y T

(p⃝∗ (α))|g = ϑ(TgY )
∑

f∈p−1(g)T

α|f
ϑ(TfX)

holds in the localized theory (the “localized theory” is obtained by inverting the equivariant vari-
ables of T , i.e. by tensoring with the sheaf of meromorphic functions over ET (∗)).

Proof. It suffices to assume that α = i⃝∗ (β) with β supported on some f ∈ XT . Then the
proposition readily follows from the functoriality of the pushforward and (12). □

4.5. Action by correspondences. For any line bundle L on ET (X), its dual is defined as
L▽ := L−1⊗Θ(TX) [37]. Notice that if p : X → ∗ is proper, then there is a well-defined pairing

L▽ ⊗ L = Θ(TX)
p⃝∗−−→ OET (∗).

Let Li be a line bundle on ET (Xi) for i = 1, 2 and consider the maps

X1 X1 ×X2 X2.
p1 p2

For us, a correspondence α in elliptic cohomology is a global section of

L▽1 ⊠ L2 ∈ Pic(ET (X1 ×X2))

that is proper over X2, i.e. such that p2|supp(α) is proper. The upshot of the properness assump-
tion is that we can push forward along p2 to get an operator

α : L1 → L2 s 7→ (p2)⃝∗ (α · p∗1(s)).

4.6. Convolution of correspondences. Let Xi for i = 1, 2, 3 be three T -spaces and Li be
line bundles on ET (Xi). Consider the diagram

X1 ×X2 ×X2 ×X3 X1 ×X2 ×X3 X1 ×X3.
∆ p13

Let α12 ∈ H0(L▽1 ⊠ L2) and α23 ∈ H0(L▽2 ⊠ L3).

Lemma 4.3. Assume that α23 is proper over X3. Then the convolution

(14) α23 ◦ α12 := (p13)⃝∗ (∆
∗(α12 ⊗ α23))

is well-defined and is supported over

(15) { (x1, x3) ∈ X1 ×X3 | ∃x2 ∈ X2 s.t. (x1, x2) ∈ supp(α12), (x2, x3) ∈ supp(α23) }.

Proof. The class ∆∗(α12 ⊗ α23) is supported on

∆−1(supp(α12)× supp(α23)) ⊆ X1 × supp(α23).

Since the map supp(α23)→ X3 is proper by assumption, the composition

∆−1(supp(α12)× supp(α23)) ↪→ X1 ×X2 ×X3 → X1 ×X3

is also proper. Thus, the pushforward in the definition of α23 ◦ α12 is well defined. Let now V13
be the set (15) and notice that

V13 = p13
(
∆−1(supp(α12)× supp(α23))

)
.
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We need to show that α12 ◦ α23|X1×X3\V13
= 0. Consider the Cartesian diagram

p−1
13 (X1 ×X3 \ V13) X1 ×X2 ×X3

X1 ×X3 \ V13 X1 ×X3.

p13 p13

By compatibility of pushforward and pullback in Cartesian squares, we have

α23 ◦ α12

∣∣∣
X1×X3\V13

= (p13)⃝∗

(
∆∗(α12 ⊗ α23)

∣∣∣
p−1
13 (X1×X3\V13)

)
= 0.

Here, the last step follows from the observation that

p−1
13 (X1×X3 \ V13) = X1×X2×X3 \ p−1

13 (V13) ⊆ X1×X2×X3 \∆−1(supp(α12)× supp(α23))),

hence ∆∗(α12 ⊗ α23)|p−1
13 (X1×X3\V13)

= 0. □

Remark 4.4. A standard argument shows that if α12 ◦ α23 is proper over X1, and hence its

associated operator is well defined, then the diagram L1 L2 L3
α12

α23◦α12

α23 commutes.

5. Elliptic stable envelopes

In this section, we recall the general definition of elliptic stable envelopes. For more details,
see [1, 37].

5.1. Attracting loci. Let X be a smooth quasi-projective variety equipped with the action of
a torus T . Let A ⊂ T be a subtorus. The A-weights in the normal bundle of XA in X are
finite and produce a wall arrangement W in LieR(A) = Cochar(A)⊗Z R, the real Lie algebra of
A. A chamber C is a connected component in LieR(A) \W . A choice of chamber determines a
collection of affine bundles

(16) AttC(F ) = {x ∈ X | lim
z→0

σ(z) · x ∈ F } for any σ ∈ C

attached to fixed components in XA. These are called attracting sets. Associated with them is
a partial ordering (“generalized Bruhat order”) on the set of connected components, defined as
the transitive closure of the relation

AttC(F ) ∩ F ′ ̸= 0 =⇒ F ≥ F ′.

Consider the triple of T -invariant subspaces

Att≤C (F ) :=
⋃

F ′≤F

F ×AttC(F
′), X≥F = X \

⋃
F ′<F

AttC(F
′), X>F = X \

⋃
F ′≤F

AttC(F
′).

Notice that X>F ⊆ X≥F and the inclusion j : F × AttC(F ) ↪→ F × X≥F is well defined and
closed.

The space Att≤C (F ) is a singular closed subspace of F × X. It contains the so-called full

attracting set AttfC(F ), which is also T -invariant and is defined as the set of pairs (f, x) ∈ F ×X
connected via a chain of closures of attracting orbits. If all the fixed components are singletons,

then AttfC(F ) = Att≤C (F ).
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5.2. Stable envelopes: basics. The A-equivariant elliptic stable envelopes [1, 37] of X are
sections of certain line bundles depending on the choice of a chamber C and of an attractive line
bundle LX . The latter is a line bundle on the scheme ET (X) satisfying

(17) degA(i
∗
FLX) = degA(Θ(N−

F/X)),

for all connected components F ⊆ XA. Here iF : F ↪→ X is the inclusion. For a general definition
of degree in this context, we refer to [37, App. B.3]. Later, we will give a characterization for
bow varieties.

A constructive way to produce an attractive line bundle is to first find a polarization, i.e. a
class T 1/2X ∈ KT (X) that satisfies

TX = T 1/2X + (T 1/2X)∨.

in KA(X).

Proposition 5.1 ([37, Prop. 2.4, 2.6]). Let T 1/2X be a polarization and let U ∈ Pic(ET (X)) be

any line bundle such that degA(U) = 0. Then the line bundle LX := Θ(T 1/2X)⊗U is attractive.

Let LA,F = i∗FLX⊗Θ(−N−
X/F ). The elliptic stable envelope of F will be a section of the sheaf

(18) (LA,F )
▽ ⊠ LX(∞∆)

on ET (F ×X). The notation ∞∆ stands for a singular behavior of the stable envelope on the
resonant locus ∆ ⊂ ET (∗), see [37]. In the case of bow varieties, the resonant locus will be
non-degenerate, which means that stable envelopes will be simply sections of the line bundles
L▽A,F ⊠ LX with poles in the Kähler variables z and in ℏ.

Remark 5.2. We say that two line bundles in Pic(ET (X)) are equivalent (in notation ≡) if they
are isomorphic up to a twist by a line bundle G pulled back from ET (∗). This is the geometric
counterpart of the equivalence relation of Section 3.3.1. Because of the definition of (LA,F )

▽,
the isomorphism class of L▽A,F ⊠ LX only depends on the equivalence class of LX .

From now on, we say that LX is good if it differs from an attractive line bundle by a twist of
some G as above. A natural situation where good line bundles show up is when T 1/2X = α+ β
for some β ∈ KT (∗). Then Proposition 5.1 implies that

LX = Θ(α+ β)⊗ U = Θ(α)⊗Θ(β)⊗ U
is attractive, but it might be more convenient to use the good line bundle LX = Θ(α)⊗ U .

For any good line bundle LX , the restriction (LA,F )
▽ ⊠ LX |F×X≥F is isomorphic to Θ(Nj),

where Nj is the normal bundle to the closed immersion j : F × AttC(F ) ↪→ F ×X≥F . Conse-
quently, there is a well defined pushforward map

j⃝∗ : OET (F×AttC(F )) → LX
∣∣∣
F×X≥F

.

The image of the constant 1 section is, by definition, the class [AttC(F )].

Definition 5.3. Let LX be a good line bundle for a given choice of chamber C. The elliptic stable
envelope StabC(F ) for LX at the fixed component F ⊂ XA is a section of (LA,F )

▽ ⊠ LX(∞∆)

which is supported on AttfC(F ) and restricts to [AttC(F )] on F ×X≥F .

Theorem 5.4 (Main result of [37]). For a fixed LX , the stable envelopes exist and are unique.

Moreover, the support condition on AttfC(F ) is uniquely determined by a weaker condition,

namely support on Att≤C (F ).

We conclude the section with two important remarks.
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Remark 5.5. From Definition 5.3 and Theorem 5.4, we see that the stable envelopes are
uniquely determined by the following two axioms:

(1) The support axiom: the restriction of StabC(F ) to F ×X>F = F ×X \Att≤C (F ) is zero.
(2) The diagonal axiom: the restriction of StabC(F ) on F ×X≥F is equal to [AttC(F )].

These axioms are often exploited to prove statements about the stable envelopes.
Also notice that if we further restrict StabC(F ) to F ×F ⊂ F ×X≥F , we get [AttC(F )]|F×F =

ϑ(N−
X/F )[∆], where [∆] is the fundamental class of the diagonal.

Remark 5.6. Assuming that the composition AttfC(F ) ↪→ F × X → X is proper, the stable
envelope can be thought of as a map rather than a section. Indeed, the properness assumption
implies that StabC(F ) defines a map1

StabC(F ) : LA,F → LX .

via convolution, cf. Section 4.5.

5.3. Extended elliptic cohomology of bow varieties. Let X be a bow variety and consider
the action of a torus T = A× C×

ℏ ⊆ T for some A ⊆ A.
As discussed in the previous section, the existence of stable envelopes is implied by the

existence of a good line bundle LX . Even if such a line bundle exists, the stable envelopes
are in general sections of L▽A,F ⊠ LX with an arbitrary singular behavior on the resonant locus

∞∆ ⊂ ET(X), which might be exceedingly big. Consequently, it is important to bound ∞∆ to
the complement of a dense open set. Just like for Nakajima varieties, we will achieve this for
bow varieties at the cost of enlarging the coefficient space ET(∗) of the cohomology theory by
pulling back all bundles and sections to

(19) BT,T! := EA×C×
ℏ ×A!(∗) = ET(∗)× EA!(∗).

Here, A! = Cm is the torus of Kähler (or dynamical) variables (z1, . . . zm) attached to the
m NS5 branes of the bow variety X. Thus, for a bow variety with n D5 branes and m NS5
branes, we have BT,T!

∼= Eℏ×En×Em, and the equivariant and Kähler parameters are naturally

attached to the appropriate 5-branes (we chose their numbering from left to right):

a1 a2 a3 a4 a5z1 z2 z3 z4 z5 z6

.

Like for Nakajima varieties [1, 37], the elliptic stable envelopes of bow varieties defined on the
extended space (19) will only have poles jointly in the Kähler variables z and ℏ.

5.4. Stable envelopes of bow varieties: definition. Let X be an arbitrary bow variety with
m NS5 branes, ordered from left to right, and T = A×C×

ℏ be the usual torus acting on it. Let
also ηk be one (any) of the bundles in between the NS5 branes Zk and Zk+1, cf. (8).

Recall the line bundles introduced in Section 4.3. We define

(20) LX := Θ(α)⊗ U ∈ Pic(ET×A!(X)),

where α ∈ KT(X) is the class (10) and

U :=

m−1⊗
k=1

U
(
ηk,

zk
zk+1

ℏℓ(Zk+1)−ch(Zk)

)
,

1The invariance of the section StabC(F ) under twists of the attractive line bundle LX by some line bundle G as
in Remark 5.2 translates in the freedom of twisting the associated map by the same G.
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Definition 5.7. Let A ⊆ A and F a connected component of XA. The stable envelope StabC(F )
is the unique section of L▽A,F ⊠ LX that satisfies the axioms of Remark 5.5.

In the next proposition we show that this definition is independent of the choice of the ηk
bundle in the definition of U , and the following theorem claims the existence, uniqueness, and
holomorphicity property of StabC(F ).

Notice that LX is tautological, in the sense that it is pulled back by the equivariant Chern
class morphism

c : ET×T!(X)→ BT,T! ×
m∏
k=1

E(rk(ηk)),

cf. Section 4.3. Recall that complex line bundles L(Q, v) on an abelian variety of the form
E = Cn /Γ are classified in terms of a quadratic form Q ∈ Matn×n(Z) and a point v in the dual
variety E∨ = Pic0(E), see [15, Section 5.1]. In this language, we have

(21) LX ∼= c∗L(Q(α) +QU, 0),

where Q(α) + QU is the a quadratic form introduced in Section 3.3. Hence, checking whether
a particular tautological formula is the section of the required bundle L▽A,F ⊠ LX reduces to a

quadratic form calculus, see examples in Section 5.5, cf. [6].
Recall the equivalence relation ≡ and the notion of good line bundle introduced in Remark 5.2.

Proposition 5.8.

(1) The equivalence class of LX is independent of the choices of ηk.
(2) The Hanany-Witten isomorphism X1

∼= X2 induces an equivalence LX1 ≡ LX2.
(3) The line bundle (20) is good for the action of any torus A ⊂ A.

Proof. The first two claims follow from (21), Proposition 3.5, and Theorem 3.9. We now prove
the third one. Since any bow variety is isomorphic to a separated one via the Hanany-Witten
transition, point (1) implies that we can assume that X is separated.

As shown in [53, Section 4.4.2], for X separated there exists a class β ∈ KC×
ℏ
(∗) such that

α+ β satisfies

(22) TX = α+ β + ℏ(α+ β)∨

in KT(X), and hence is a polarization for any A ⊂ A. Hence, as observed in Remark 5.2, the line
bundle Θ(α) is good. Moreover, it is easy to see that degA(i

∗
FU) = 0 for any fixed component

F ∈ XA. Indeed, the A-degree is equal to the part of the quadratic form associated with i∗FU
with degree two in the equivariant parameters of A. Since these parameters can only appear by
restricting the Chern roots tηki , which have degree one in (11), the degree two part of i∗FU in the
A-parameters must be zero. Hence, LX = Θ(α)⊗ U is also good. □

Point (1) of Proposition 5.8 implies that the line bundles L▽A,F ⊠ LX are independent of the
choices of the classes ηk, up to isomorphism.

Theorem 5.9. Stable envelopes for a bow variety exist for any A ⊆ A and are unique. Moreover,
they are sections

StabC(F ) ∈ Γ(L▽A,F ⊠ LX)mer

meromorphic in the variables z and ℏ and holomorphic in all the remaining ones.

Proof. The theorem now follows from Okounkov’s general theory. The first claim follows from
Theorem 5.4 applied to our chosen good line bundle LX . The second one follows from Propo-
sition 2.6 and Lemma 2.7 in [37] together with the fact that the A-weights of the restrictions
ηk|F of the tautological bundles entering the definition of U uniquely determine F among the
A-fixed components [45, Section 4.6]. □
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As a straightforward consequence of item (2) of Proposition 5.8 and uniqueness of stable
envelopes, we also obtain

Corollary 5.10. Under the isomorphism X1
∼= X2 induced by a Hanany-Witten transition, the

stable envelopes of X1 and X2 are identified.

5.5. Stable envelopes for T ∗Pn. Let n ∈ N and consider the brane diagrams

D = /1/n\n-1\...\2\1\ and D′ = \1\2\...\n-1\n/1/.

The associated variety in both cases is T ∗Pn−1.
Let fk ∈ X(D) be the fixed point whose diagram has ties connecting Z1 with Ak, as well as

Z2 with Al for all l ̸= k. Let f ′k ∈ X(D′) be the fixed point whose diagram has ties connecting
Z2 with Ak, as well as Z1 with Al for all l ̸= k. Using the shorthand notation t and t′ for the
Chern class of the leftmost and rightmost (line) bundles over X(D) and X(D′) we have that the
restriction maps to fk and f ′k are t 7→ ak ℏ−1, t′ 7→ ak ℏ respectively.

Proposition 5.11. We have

Stab(fk) =

k−1∏
i=1

θ
(ai
t

)
·
θ
(

t
ak

z1
z2

ℏk−1
)

θ
(
z1
z2

ℏk−2
) ·

n∏
i=k+1

θ

(
t

ai
ℏ
)
,

Stab(f ′k) =
k−1∏
i=1

θ
(ai
t
ℏ2
)
·
θ
(

t
ak

z1
z2

ℏk−3
)

θ
(
z1
z2

ℏk−2
) ·

n∏
i=k+1

θ

(
t

ai
ℏ−1

)
.

These are, in fact, not new theorems, they are equivalent to [1, Section 3.4] and [15, Section
5.5]. To convince the reader about the correctness of the conventions, let us verify that the given
formulas are sections of the required line bundles. The definitions of Section 3.3 for X(D) and
X(D′) give

α ≡
n∑

i=1

t

ai
ℏ, QU = 2t(z1 − z2 − ℏ), N<

f/X =
k−1∑
i=1

ai
ak

ℏ+
n∑

i=k+1

ak
ai
,

α′ ≡
n∑

i=1

ai
t
ℏ2, QU ′ = 2t(z1 − z2 + (n− 1) ℏ), N<

f ′
k/X

=

k−1∑
i=1

ai
ak

ℏ+
n∑

i=k+1

ak
ai
.

Hence, the quadratic forms of Stab(fk) and Stab(f ′k) are required to be

(23)
n∑

i=1

(t− ai + ℏ)2 −
n∑

i=1

(ak − ai)2 + 2(t− ak + ℏ)(z1 − z2 − ℏ)

+

k−1∑
i=1

(ai − ak + ℏ)2 +
n∑

i=k+1

(ak − ai)2,

(24)

n∑
i=1

(ai − t+ 2 ℏ)2 −
n∑

i=1

(ai − ak + h)2 + 2(t− ak − ℏ)(z1 − z2 + (n− 1) ℏ)

+
k−1∑
i=1

(ai − ak + ℏ)2 +
n∑

i=k+1

(ak − ai)2,
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respectively. The quadratic forms of the formulas in the text of the proposition are

k−1∑
i=1

(ai − t)2 + (t− ak + z1 − z2 + (k − 1) ℏ)2 − (z1 − z2 + (k − 2) ℏ)2 +
n∑

i=k+1

(t− ai + ℏ)2,

k−1∑
i=1

(ai − t+ 2 ℏ)2 + (t− ak + z1 − z2 + (k − 3) ℏ)2 − (z1 − z2 + (k − 2) ℏ)2 +
n∑

i=k+1

(t− ai − ℏ)2.

Straightforward calculation shows that these are equal to (23) and (24), respectively.

5.6. Stable envelopes as morphisms. It is sometimes useful to interpret stable envelopes as
morphisms rather than sections. This is obtained by looking at StabC(F ) as a correspondence
on F ×X, cf. Section 4.5. However, we first need the following properness result.

Lemma 5.12. The composition AttfC(F ) ↪→ F ×X → X is proper.

Proof. The argument is the same as the one in the proof of [31, Prop. 3.5.1]. The key point
is that any bow variety X admits an A-equivariant proper morphism π : X → X0 with X0

affine—see Section 2.3. □

Since StabC(F ) is supported on AttfC(F ), which we now know to be proper over F , we can
apply the construction of Section 4.5 to obtain a morphism of OBT,T! ,mer-modules

StabC(F ) : LA,F → LX .

As before, the subscript mer stands for meromorphic sections in the variables z and ℏ.

5.7. Composition of stable envelopes. Let X be a bow variety with at least two D5 branes
and fix a chamber

C = {aσ(1) < · · · < aσ(n)}
for the action of A. A choice of partition n = n′ + n′′ gives rise to a partition of the set of D5
branes of X into two disjoint subsets, acted on by the subtori

A′ = { (aσ(1), . . . aσ(n′) | ai ∈ C× } ⊂ A A′′ = { (aσ(n′+1), . . . aσ(n) | ai ∈ C× } ⊂ A .

Consider also the rank two subtorus

A0 = { (a′, a′′) | a′, a′′ ∈ C× } ⊂ A

acting on the D5 branes Aσ(1), . . . ,Aσ(n′) with a
′ and on the remaining D5 branes Aσ(n′+1), . . . ,

Aσ(n) with a′′. By Theorem 3.1 and Example 3.2, for any fixed point f ∈ XA we have a
commutative diagram

f ′ × f ′′ X ′ ×X ′′

f X

where X ′ × X ′′ is some A0-fixed component in X and f ′ ∈ (X ′)A
′
(resp. f ′′ ∈ (X ′′)A

′′
). The

chamber C induces two chambers

C′ = {aσ(1) < · · · < aσ(n′)} and C′′ = {aσ(n′+1) < · · · < aσ(n)}

for the actions of A′ and A′′. Notice that the stable envelope

StabX
′×X′′

C (f) = StabX
′

C′ (f ′)⊠ StabX
′′

C′′ (f ′′)

depends on two sets of Kähler variables z′ and z′′ attached to X ′ and X ′′ respectively.
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Consider now the chamber C0 = {a′ < a′′} for A0 and the stable envelope

StabXC0
(X1 ×X2).

Like StabXC (f), it only depends on one set of Kähler parameters. The following statement is the
bow variety version of the so-called triangle lemma of [31, Lemma 3.6.1] and [1, Prop. 3.3]. It
states one of the fundamental properties of stable envelopes.

Proposition 5.13. We have

StabXC (f)(z) = StabXC0
(X ′ ×X ′′)(z) ◦

(
StabX

′
C′ (f ′)(z)⊠ StabX

′′
C′′ (f ′′)(zℏ−r′)

)
Here, r′ is the NS5 charge vector of X ′ and the symbol ◦ denotes the convolution product (14).

Because of the need to compare the line bundles, the proof is somewhat long and technical,
so we defer it to the end of the section.

5.8. Fixed point restrictions of stable envelopes. Let X be a bow variety with n D5 branes
and m NS5 branes. We now focus on the action of the torus A acting on all n D5 branes. As
discussed in Section 2.5, the fixed locus XA is finite. We index the fixed points consistently with
the partial order defined in Section 5.1, namely, fi ≤ fj implies i ≤ j.

The stable envelope restrictions

(SC)ij := StabC(fj)
∣∣∣
fi

are sections of some bundle on the abelian variety

BT,T! = En × Em × Eℏ,

and hence can be seen as functions in the variables (a, z, ℏ) with prescribed quasi-periods. We
collect all these restrictions in the stable envelope matrix SC. By Remark 5.5, it follows that SC
is an upper triangular matrix of the form

SC =


ϑ(N−

f1
) (SC)12 (SC)13 . . . (SC)1k

ϑ(N−
f2
) (SC)23 . . . (SC)2k

ϑ(N−
f3
) . . . (SC)3k

. . .
...

ϑ(N−
fk
)

 .

Its diagonal entries ϑ(N−
fi
) are the elliptic Euler classes of the negative parts of the normal

bundles Nfi of fi in X. In particular, they only depend on the variables (a, ℏ). On the other
hand, the nontrivial coefficients in the strictly upper triangular part will generally depend on
all three types of variables (a, z, ℏ). Since all the diagonal entries are non-zero, the matrix SC is
invertible. We now describe its inverse explicitly.

Let ϑ(TX)−1 denote the diagonal matrix whose entry (ϑ(TX)−1)ii is equal to 1/ϑ(TfiX).
Since the fixed points fi are isolated, none of the A-weights of TfiX is zero; hence, this matrix
is well defined.

Proposition 5.14. Let Copp be the chamber opposite to C. Then

(SC(a, z, ℏ))−1 =
(
SCopp(a, z−1 ℏr, ℏ)

)T
ϑ(TX)−1.

Here, z−1 ℏr means z−1
i hri for all i = 1, . . . ,m and (−)T stands for transposition.

Notice that the Bruhat order induced by Copp is opposite to that induced by C. Hence the
matrix SCopp is lower triangular, and both sides of the equation above are upper triangular.
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Proof. The proof is an adaptation of [1, Prop. 3.4]. Consider the composition

M :=
(
SCopp(a, z−1 ℏr, ℏ)

)T
ϑ(TX)−1SC(a, z, ℏ).

Since the opposite chamber swaps positive and negative weights and ϑ(TfX) = ϑ(N+
f )ϑ(N−

f ),

it is immediate to check that the diagonal entries are equal to 1. Let now i ̸= j. By the support
axiom, Mij = 0 unless fi > fj , so it suffices to consider this case. Since the chambers are
opposite to each other, the class

(25) M̃ = ∆∗(StabCopp(fi)(z
−1hr)⊠ StabC(fj)(z))

is proper over the point, cf. [31, Theorem 4.4.1]. A direct computation similar (but easier) to

the one in the proof of Proposition 5.13 shows that the pushforward p⃝∗ (M̃) associated with
p : X → ∗ is well defined, and hence gives a section of a line bundle over BT,T! that is regular in

the variables a. Moreover one can check that for any generic point (z, ℏ) ∈ ET! the restriction
of this line bundle to the abelian variety

EA(∗)× {z} × {ℏ} ⊂ BT,T!

is nontrivial and of degree zero. Since such a line bundle has no nonzero global sections, we have

p⃝∗ (M̃) = 0. On the other hand, Remark A.2 assures that the hypothesis of Proposition 4.2 is

satisfied, so we can use the latter to compute p⃝∗ (M̃) = 02. The result is exactly Mij . Overall,
this argument shows that Mij = δij , as required.

We remark that the shift of the Kähler parameters by ℏr is equivalent to passing to the
opposite class ℏα∨ in the line bundle L = Θ(α) ⊗ U entering in the definition of StabCopp(fi).
This opposite class is needed to compensate the A-weights coming from ϑ(TX)−1 and StabC(fj)
to get a degree zero line bundle. □

5.9. R-matrices. Fix a bow variety X and let C and C′ be two chambers for the A-action. We
define the “geometric R matrix” as

RC,C′ := (SC)
−1 ◦ SC′ .

It is a matrix whose entries can be seen either as meromorphic sections of line bundles over
BT,T! or as functions in the variables (a, z, ℏ). Its definition can be rephrased to the so-called
R-matrix relation for the stable envelopes:

(26) StabC′(f)
∣∣∣
h
=
∑
g∈XA

(
RC,C′

)
gf

StabC(g)
∣∣∣
h

∀f, h ∈ XA.

We will need a sharper statement. In the next proposition, we show that the equations above
“integrate” to the whole (localized) elliptic cohomology scheme of X to give

(27) StabC′(f) =
∑
g

(
RC,C′

)
gf

StabC(g) ∀f ∈ XA.

The need for localizing, i.e. inverting the equivariant parameters, is due to the R-matrix, which
is meromorphic in these parameters.

Proposition 5.15. Equation (27) hods for any bow variety X, fixed point f ∈ XA and pair of
chambers C,C′.

2The proofs in Appendix A are based on results developed later in the paper. However, none of those results rely
on Proposition 5.14, so there is no circular argument.
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Proof. Using the definition of RX
C′,C, it is easy to see that both sides are meromorphic sections

of the same line bundle. Then (26) would immediately imply (27) if the localization map i∗

associated with the inclusion XA ↪→ X were injective. Among the bow varieties, this is known
for type-A quiver varieties but not in general. However, since the class TX|XA has no trivial
A-weights, the map i∗i⃝∗ = ϑ(TX|XA)· is injective. Therefore, i∗ is always injective on the image
of i⃝∗ . Thus, it would suffice to know that the stable envelopes (and hence both sides of (27))
are in the image of the pushforward i⃝∗ . This latter is the content of Remark A.2. □

Remark 5.16. In section 6.6, we will give a different argument that also provides an explicit
formula for the entries (RC′,C)gf in terms of those of partial flag varieties.

Assume now that the two chambers C and C′ are separated by a single wall, i.e.

C = {ai1 < · · · < aik < aik+1
< · · · < ain},

C′ = {ai1 < · · · < aik+1
< aik < · · · < ain}.

Let A ⊂ A be the subtorus given by the equation aik = aik+1
. By multiple applications of

Theorem 3.1, the components of the A-fixed locus of X = X(D, r, c) are of the form

k−1∏
j=1

X(D(ij), r(ij), c(ij))×X(D(ik,ik+1), r(ik) + r(ik+1)), c(ik) ⊔ c(ik+1))×
n∏

j=k+2

X(D(ij), r(ij), c(ij)),

where
∑
r(ij) = r and

⊔
c(ij) = c. The diagrams D(ij) are obtained from D by erasing all D5

branes but Z ij , while D(ik,ik+1) is obtained by erasing all of them except Z ik and Z ik+1
. Notice

that all the varieties in the product except the central one, which we denote by F , are singletons.
Nevertheless, it is useful to keep them in the notation.

On every A-fixed component F there is a residual action of A /A and the chambers C and C′

induce the only two chambers C+ = {aik < aik+1
} and C− = {aik+1

< aik} of A /A. Set

R(ik,ik+1) = RC+,C− .

Combining Proposition 5.13 and Proposition 5.15, we deduce the following refined statement:

Corollary 5.17. Given two chambers C′ and C′ separated by the wall aik = aik+1
and two fixed

points f, g ∈ FA /A, we have

StabXC′(f)(z) =
∑

g∈FA /A

(
R(ik,ik+1)

)
gf

(z ℏ−r(<k)
)StabXC (g)(z)

where r(<k) =
∑k−1

j=1 r
(ij).

As a result, by wall crossing, every R-matrix can be written as a product of simpler matrices
of the form R(i,j). An important special case is when the bow variety has exactly three D5
branes and we consider the chambers

C = {a1 < a2 < a3} C′ = {a3 < a2 < a1}.
To describe this situation effectively, it is best to switch to additive notation.

Corollary 5.18. Crossing walls from C to C′ in the two possible ways, we get

R(1,2)(z − r(3) ℏ)R(1,3)(z)R(2,3)(z − r(1) ℏ) = R(1,2)(z)R(1,3)(z − r(2) ℏ)R(2,3)(z).

Hence, the matrices R(i,j) solve the dynamical Yang-Baxter equation.

A direct consequence of the definition of the R-matrix and of Proposition 5.14 is

Corollary 5.19. The R-matrix RC,Copp is symmetric up to a shift, that is

(RC,Copp)fg (a, z, ℏ) = (RC,Copp)gf (a, z
−1 ℏr, ℏ).
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5.10. Disregarding non-essential 5-branes. Let X be a bow variety with m NS5 branes and
n D5 branes. In this section, we argue that the stable envelopes are essentially unaffected by
the presence of D5 branes with charge 0 or m, or by the presence of NS5 branes of charge 0 or
n.

A D5 brane A has charge 0 (resp. m) if and only if in the separated (resp. co-separated)
representative of its HW equivalence class its local charge is w(A) = 0. Dually, an NS5 brane Z
has charge 0 (resp. n) if and only if in the separated (resp. co-separated) representative of its
HW equivalence class its local charge is w(Z) = 0. Since by Corollary 5.10 the HW isomorphism
identifies the stable envelopes, it suffices to restrict ourselves to the separated or co-separated
settings.

Let us begin with NS5 branes. The insertion of an NS5 brane Z satisfying Z = 0 in a separated
or co-separated brane diagram induces an isomorphism of the associated bow varieties, and hence
an equality of stable envelopes, up to the appropriate identification of the Kähler parameters.
This is a degenerate case of the more general results discussed in Section 7. There, we will
build a correspondence interpolating an arbitrary separated or co-separated bow variety with
the one obtained by replacing an NS5 brane Z with a pair of adjacent NS5 banes of weight w(Z ′)
and w(Z ′′) such that w(Z ′) + w(Z ′′) = w(Z). If w(Z ′) = 0 or w(Z ′′) = 0, the correspondence
reduces to the aforementioned isomorphism. At the level of elliptic stable envelopes, Theorem 7.9
shows that this isomorphism induces an identification of the stable envelopes. Notice that this
argument implies that the stable envelopes do not depend on the Kähler parameters attached
to a brane Z with w(Z) = 0.

We now move to D5 branes. Let now X be a separated or co-separated bow variety with at
least one D5 brane A such that w(A) = 0 and consider the one-dimensional subtorus A0 ⊂ A
acting on A. By 3.1, the bow variety Y whose brane diagram is obtained from the one of X by
removing A can be seen as a A0-fixed subvariety of X (the other bow variety in the fiber product
is a singleton). Actually, since w(A) = 0, Y is the unique A0-fixed component, and hence all the
A-fixed points are contained in X together with all the A-equivariant curves connecting them.
This forces the stable envelopes of X and Y to be essentially the same.

Namely, let C be a chamber for the action of A on X, and let C0 be the induced chamber on
A0. By the same argument used in the proof of Proposition 5.13, we obtain

(28) StabC(f)
∣∣∣
g
=
(
StabC(Y ) ◦ StabC/CA

(f)
) ∣∣∣

Y

∣∣∣
g
= Θ(N−

Y/X)
∣∣∣
g
StabC/CA

(f)
∣∣∣
g
.

That is, the fixed point restrictions of stable envelopes are equal, up to a rescaling by Θ(N−
Y/X)|g.

Since our mirror symmetry statement only involves ratios of stable envelope restrictions, it
is sufficient to prove mirror symmetry of stable envelopes for bow varieties with no charge zero
NS5 branes.

5.11. Proof of Proposition 5.13.

Proof. The topological part of the proof is standard, so we only sketch it. The original references
are [31, Lemma 3.6.1] and [1, Prop. 3.3]. Abbreviate F = X ′ ×X ′′. Assume temporarily that
the convolution is well defined and both sides are sections of the same line bundle. Then, Lemma
4.3 and Lemma 5.12 imply that the convolution is supported on

{ (f, x) ∈ {f} ×X | ∃ f ′ ∈ FA s.t. (f, f ′) ∈ AttF,fC (f), (f ′, x) ∈ AttX,f
C0

(f ′) }.

Using an equivariant embedding of X in a projective variety, one can check that the set above

is contained in AttX,f
C (f). This implies that the convolution product of the stable envelopes

satisfies the support axiom for StabXC (f). Similarly, one argues that the diagonal axiom is also
satisfied.
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To complete the proof, it remains to check that the convolution is well-defined and the line
bundles match. We perform this check in full detail. The topological condition for the convo-
lution, namely properness of the support of StabXC0

(X1 ×X2)(z) over X1 ×X2, directly follows
from Lemma 5.12 (with F = X1 ×X2), so it only remains to look at the line bundles.

Set F = X1 ×X2 and let τ denote the map z 7→ (z, z ℏ−r′). Consider the classes

αF,f := StabX
′

C′ (f ′)⊠ StabX
′′

C′′ (f ′′) ∈ Γ(L▽A′,f ′ ⊠ L▽A′′,f ′′)⊠ (LX′ ⊠ LX′′))mer

αX,F := StabXC0
(X1 ×X2) ∈ Γ(L▽A0,F ⊠ LX)mer

αf,X := StabXC (f) ∈ Γ(L▽A,f ⊠ LX)mer

The proposition claims that αX,F ◦ τ∗αF,f = αX,f and by definition of convolution we need to
prove that

(29) τ∗((L▽A′,f ′ ⊠ L▽A′′,f ′′)⊠
(
τ∗(LX′ ⊠ LX′′)⊗ L▽A0,F

)
⊠ LX ∼= L▽A,f ⊠Θ(TF )⊠ LX

on ET×T!(f × F ×X). Effectively, the left-hand side is the tensor product of the line bundles
of τ∗αF,f and αF,X while the right-hand side is the line bundle of αX,f , tensored with Θ(TF ).

First, we reduce to the case when X is separated. Let X1 be an arbitrary bow variety and
X2 be the separated bow variety isomorphic to X1 via Hanany-Witten isomorphism. Since the
latter is A-equivariant, we have a commutative diagram

f ′1 × f ′′1 X ′
1 ×X ′′

1 X1

f ′2 × f ′′2 X ′
2 ×X ′′

2 X2

∼ ∼

in which the vertical arrows are all Hanany-Witten isomorphisms.
By Corollary 5.10, these isomorphisms identify the stable envelopes; hence, the same holds for

their line bundles. Since the charge r′ is invariant under Hanany-Witten transitions, equation
(29) holds for X1 iff it holds for its separated counterpart X2. Thus, it suffices to prove (29)
assuming that X is separated.

We claim that

(30) τ∗(LX′ ⊠ LX′′)⊗ (LA0,F )
−1 = G,

for some G is pulled back from BT,T! . Assuming this for a moment and restricting to f = f1×f2,
it is straightforward to deduce that

τ∗
(
L▽A′,f ′ ⊠ L▽A′′,f ′′

)
⊗ LA,f = G−1

Combining the two equations above, (29) follows. Thus it remains to prove (30). Since X is
separated, Proposition 3.4 implies that

αX ≡ ℏ

(
m−1⊕
i=1

Hom(ξi+1, ξi)−Hom(ξi, ξi)

)
Here, m is the number of NS5 branes, and the tautological bundles are ordered from left to
right. As usual, ≡ denotes equality up to some class in KT(∗). Since X is separated, we also
have

UX =

m−1⊗
i=1

U
(
ξi,

zi
zi+1

ℏrk(ξi−1)−rk(ξi)

)
.

Similarly, the class αX′ and the line bundle UX′ (resp. αX′′ and UX′′) are obtained by replacing
ξi with ξ

′
i (resp. ξ

′′
i ) in the formulas above. Also notice that ξi|F = ξ′i ⊕ ξ′′i for every i.
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Since F = X ′ ×X ′′ is A0-fixed, we get

α|F ≡ αX′ + αX′′ + αX |+F + αX |−F ,
where +α|+F and α|−F denote the attracting and repelling components of α with respect to the
chamber C0. Similarly, equation (22) implies that

N−
X/F = +αX |−F + ℏ(αX |+F )

∨.

From this analysis we deduce that τ∗(LX′ ⊠ LX′′)⊗ (LA0,F )
−1 =

Θ(αX′ + αX′′)⊗ τ∗(UX′ ⊠ UX′′)⊗
(
Θ(αX)⊗ UX ⊗Θ(−NX/F )

) ∣∣∣−1

F

≡ Θ(ℏ(α|+F )
∨ − α|+F )⊗ τ

∗(UX′ ⊠ UX′′)⊗ UX
∣∣∣−1

F
.(31)

Observing that

ℏ(α|+F )
∨ ≡

m−1⊕
i=1

Hom(ξ′′i , ξ
′
i+1)−Hom(ξ′′i , ξ

′
i)

and applying the last claim of Lemma 4.1 multiple times, we have

Θ(ℏ(α|+F )
∨ − α|+F ) ≡

m−1⊗
i=1

U
(
ξ′i, ℏrk(ξ

′′
i−1)−rk(ξ′′i )

)
⊗ U

(
ξ′i, ℏ−rk(ξ′′i+1)+rk(ξ′i)

)
.

On the other hand, using the second claim of the same lemma, we get

UX
∣∣∣−1

F

∼=
m−1⊗
i=1

U
(
ξ′i,
zi+1

zi
ℏ−rk(ξi−1)+rk(ξi)

)
⊗ U

(
ξ′′i ,

zi+1

zi
ℏ−rk(ξi−1)+rk(ξi)

)
.

Finally, using r′i = rk(ξ′i)− rk(ξ′i−1) we get

τ∗(UX′ ⊠UX′′) =
m−1⊗
i=1

U
(
ξ′i,

zi
zi+1

ℏrk(ξ
′
i−1)−rk(ξ′i)

)
⊗U

(
ξ′′i ,

zi
zi+1

ℏrk(ξ
′′
i−1)−rk(ξ′′i )+rk(ξ′i−1)+rk(ξ′i+1)

)
.

Plugging in these expressions in (31) and applying the first part of Lemma 4.1, we deduce that
τ∗(LX′ ⊠ LX′′)⊗ (LA0,F )

−1 ≡ O, which is equivalent to (30). □

6. D5 Resolutions

6.1. D5 resolutions for bow varieties. Let D be a separated or co-separated brane diagram.

Let D̃ be the brane diagram obtained by replacing a single D5 brane A of local charge w =
w(A) ≥ 2 in D by a pair of consecutive NS5 branes A′ and A′′ of local charges w′ = w(A′) ≥ 1

and w′′ = w(A′′) ≥ 1 such that w = w′+w′′. We call D̃ a D5 resolution of the brane diagram D,
and the branes A′ and A′′ resolving branes. Notice that if D is separated (resp. co-separated),

then D̃ is also separated (resp. co-separated).

Let now X̃ and X be the bow varieties associated with D̃ and D. We say that X̃ is a D5
resolution of the bow variety X3. The ultimate goal of this section is to compare the stable

envelopes of X̃ and X. To this end, we construct a distinguished embedding j : X ↪→ X̃ and
study its equivariant geometry.

Recall from Section 2 that the definition of a bow variety X involves a space of quiver rep-
resentations M and a gauge group G. Both M and G depend on the brane diagram D. In

order to define the embedding j : X ↪→ X̃, we first define a map M → M̃ at the level of quiver

representations and study its compatibility with the actions of the groups G and G̃. Recall

3We only use the word “resolution” as a metaphor. No construction in this paper is a “resolution of singularities”
in its mathematical meaning.
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that these spaces of representations are defined as the direct sum of certain fundamental blocks

associated with the 5-branes in the brane diagrams. This observation implies that M and M̃
only differ in those components that are associated with A and its resolutions A′ and A′′. As

a consequence, we set M → M̃ to be the identity on most summands of the spaces of quiver
representation, except on MA →MA′ ⊕MA′′ , where the map is given by the assignment

WA− WA+

CA

B− B+

b

A

a
=⇒

WA′
−

WA′
+
=WA′′

−
WA′′

+

CA′ CA′′

B′
− B′

+=B′′
−

b′

A′

B′′
+

b′′

A′′

a′ a′′

in which

WA′
−
=WA− , WA′′

+
=WA+ , WA′

+
=WA′′

−
=


WA+ ⊕ C⊕ · · · ⊕ C︸ ︷︷ ︸

w′′

if D is separated

WA− ⊕ C⊕ · · · ⊕ C︸ ︷︷ ︸
w′

if D is co-separated,

and the linear maps are described in Table 1.

Table 1. Definition of the map M→ M̃.

if D is separated if D is co-separated

B′
− = B− B′

− = B−

B′′
+ = B′′

+ B′′
+ = B′′

+

B′
+ = B′′

− =


B+ 0 . . .

b 0 0 . . .

0 −1 0 0 . . .

. . . 0 −1 . . . 0

. . . 0 −1 0

 B′
+ = B′′

− =


B+ a 0 . . .

0 0 1 0 . . .

. . . 0 0 1 0

. . . 0
. . . 1

. . . 0 0


A′ =

(
A −a −(−B−)

1a . . . −(−B−)
w′′ −1a

)
A′ =

(
1 0 0 . . . 0

)
A′′ =

(
1 0 0 . . . 0

)T
A′′ =

(
A b bB− . . . b(B−)

w′ −1
)T

a′ = (−B−)
w′′
a a′ = a

a′′ =
(
0 1 0 . . . 0

)T
a′′ =

(
0 0 . . . 0 1

)T
b′ =

(
0 0 . . . 0 −1

)
b′ =

(
0 1 0 . . . 0

)
b′′ = b b′′ = bBw′

+



BOW VARIETIES: STABLE ENVELOPES AND THEIR 3D MIRROR SYMMETRY 29

Example 6.1. Resolutions of separated varieties of the form w = w′+w′′ with w′′ = 1 are

particularly easy to understand. In this case, the map M→ M̃ is induced by the assignment

WA− WA+

CA

B− B+

b

A

a
=⇒

WA− WA+ WA+

C

CA′ CA′′

B− B+

b

A

B+

b

−a

−1

⊕

−B−a

−1

.

In the right diagram, only the nonzero components of the linear maps are described. For instance,
the matrix description of the map B′

+ acting on WA′
+
= WA+ ⊕ C consists of four blocks, but

only the two nonzero ones, namely B+ and −b are shown in the picture. It is instructive to
check that the moment map conditions on the two sides are equivalent.

Similarly, consider the resolution of a co-separated variety of the form w = w′+w′′, but now

with w′ = 1. The map M→ M̃ is induced by

WA− WA+

CA

B− B+

b

A

a
=⇒

WA− WA+ WA−

C

CA′ CA′′

B− B+ B+

A

b

bB+

a ⊕

a
.

As before, only the nonzero components of the maps are displayed.

Remark 6.2. Assume that WA− −WA+ > 0, i.e. that we are in the separated setting. As
shown in [35, Prop. 3.2], every three-way part satisfying B−A − AB+ + ab = 0 as well as the
conditions (S1) and (S2) is isomorphic to GL(WA−)×ZA, where ZA ⊂ gl(WA−) is closed. This

isomorphism sends a tuple (A,B−, B+, a, b) to the so-called Hurtubise normal form (g, η)4. In
particular, the matrix g is given by(

A −a −(−B−)
1a . . . −(−B−)

w−1a
)
,

where w = |WA− −WA+ |. In this language, the assignment in Table 1 gives a map

GL(WA−)× ZA → GL(WA′
−
)× ZA′ ×GL(WA′′

−
)× ZA′′ .

It is easy to see that the projection of this map to the first factor is just the identity map
id : GL(WA−)→ GL(WA′

−
=WA−) while the projection on the third factor is constant (and its

image is the identity matrix in GL(WA′′
−
). The co-separated case is completely analogous.

Let T = A×C×
ℏ (resp. T̃ = Ã × C×

ℏ ) be the torus acting on X (resp. X̃). Define φ : T → T̃
as the identity on most components, except

(32) C×
A × C×

ℏ → C×
A′ × C×

A′′ × C×
ℏ (a, ℏ) 7→

{
(a ℏ−w′′

, a, ℏ) if D is separated

(a, a ℏw′
, ℏ) if D is co-separated.

4In the notation of [35], the matrix g is −u−1.
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Proposition 6.3. Let D be a separated bow diagram and let D̃ be a D5 resolution. The map

M→ M̃ defined above descends to a regular closed embedding j : X ↪→ X̃. Moreover, the map j

is equivariant along φ : T→ T̃.

Remark 6.4. The map M → M̃ is not equivariant along φ with respect to the usual actions

of T on M and of T̃ on M̃. Neverthereless, the induced map X → X̃ will be equivariant along

φ. To see this, assume first that D is separated and twist the action of T̃ on M̃ by prescribing
additional weights on WA′

+
=WA′′

−
as follows:

WA′
+
=WA′′

−
=WA+ ⊕ Ca⊕Caℏ−1 ⊕ · · · ⊕ Caℏ−(w′′ −1)︸ ︷︷ ︸

w′′

.

As a result, this twisted action is obtained as the composition of an embedding T̃ ↪→ T̃ × G̃ of

the form id×f with the standard action of T̃×G̃ on M̃. It is easy to check that the map M→ M̃
does become equivariant along φ with respect to this twisted action on M̃. But this implies that

j : X ↪→ X̃, which will be constructed from M→ M̃ by taking quotients by the gauge groups G

and G̃, is equivariant along φ with respect to the usual actions. The co-separated case is similar
and is left to the reader.

Proof of proposition 6.3. Firstly, notice that the map M → M̃ is clearly a regular closed em-

bedding, equivariant along the map G ↪→ G̃ that is the identity on most components except on
GL(WA+)→ GL(WA′′

−
)×GL(WA′′

+
), where it is given by

GL(WA+)
∆−→ GL(WA+)×GL(WA+) = GL(WA′′

+
)×GL(WA′′

+
) ⊂ GL(WA′′

−
)×GL(WA′′

+
).

Notice that G is the maximal subgroup of G̃ preserving M ⊂ M̃. The map M→ M̃ is compatible
with the moment map equations on both sides. In other words, a tuple (a, b, A,B,C,D) ∈ M
solves the moment map equation on M iff its image under M → M̃ solves the moment map

equation on M̃. This is trivial for almost all components of the moment map of Section 2.2,
except for those valued in NA′ ⊕NA′′ , in which case it can be easily checked using Table 1.
Compatibility with the moment map means that we get a pullback diagram

µ−1(0) µ̃−1(0)

M M̃

and hence that the inclusion µ−1(0) ↪→ µ̃−1

D̃
(0) is also a closed embedding.

Assume temporarily that this map strictly respects (semi)stability, i.e. that we also have a
pullback diagram

Ms M̃
s

M M̃

.

Then it follows that µ−1(0)s ↪→ µ̃−1(0)s is a closed embedding, which must also be regular
because the (semi)stable loci are smooth. Taking quotients, we conclude that the induced map

j : X(D) = µ−1(0)s/G ↪→ µ̃−1(0)s/G̃ = X(D̃)

satisfies the same properties. The fact that the induced map is still a closed embedding even

though the torus G̃ is larger than G follows from Remark 6.2.
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In conclusion, it remains to prove that the diagram above associated with the map M ↪→ M̃
commutes and is a pullback. We call such a property of the map M ↪→ M̃ property (P). We
argue by induction on the weight w′′ of the decomposition w = w′+w′′. Assume temporarily
that property (P) holds whenever 1 ≤ w′′ ≤ k and let w′′ = k + 1. Consider the additional
decomposition w = w′+w′′

1 +w′′
2 with w′′

1,w
′′
2 ̸= 0. This, in particular, implies that w′′

1,w
′′
2 ≤ k.

For the time being, redefine Mw′ +w′′
1 +w′′

2
:= M and Mw′,w′′

1 +w′′
2
:= M̃. The partition w =

w′+w′′
1 +w′′

2 invites to consider also the bow varieties Mw′ +w′′
1 ,w

′′
2
and Mw′,w′′

1 ,w
′′
2
, with obvious

notation. For instance, Mw′,w′′
1 ,w

′′
2
is the resolution of Mw′,w′′

1 +w′′
2
by further splitting the brane

with charge w′′
1 +w′′

2. A direct computation shows that the diagram

Mw′ +w′′
1 +w′′

2
Mw′,w′′

1 +w′′
2

Mw′ +w′′
1 ,w

′′
2

Mw′,w′′
1 ,w

′′
2

is commutative (indeed, the map Mw′ +w′′ ↪→ Mw′ +w′′ for a general partition w = w′+w′′

is uniquely determined by the cases discussed in Example 6.1 and the requirement that the
diagram above commutes). Since by the inductive hypothesis property (P) holds for the two
vertical arrows and for the bottom arrow, it holds for the top arrow as well. This proves the
inductive step. Therefore, we are left to show the base case, namely that property (P) holds
for the map Mw′ +1 ↪→ Mw′,1. We need to show that the three stability conditions (S1), (S2)
and GIT stability hold on the left-hand side of the diagrams in Example 6.1 iff they hold on its
right-hand side. We will show this assuming that X is a separated bow variety. The co-separated
case is analogous.

We start with (S1) and (S2). On the rightmost three-way part in the right-hand side of
Example 6.1, these conditions are trivial, hence it suffices to show that (S1) and (S2) on the two
triangles

WA− WA+

CA

B− B+

b

A

a

WA− WA+

C

CA′

B− B+

b

A

−a

−1

⊕

−B−a

are equivalent.
Let p1 : WA+ ⊕ C→ WA+ and p2 : WA+ ⊕ C→ C be the two projections. By definition, the

right diagram satisfies (S1) iff there is no nonzero subspace S ⊂WA+⊕C such that A◦p1(S) = 0,
−a ◦ p2(S) = 0, −id ◦ p2(S) = 0, B+(S) ⊂ p1(S) and b ◦ p1(S) ⊂ p2(S). Condition id ◦ p2(S) = 0
implies that p1(S) = S must be contained in WA+ ⊂ WA+ ⊕ C. Hence (S1) on the right-hand
side holds iff there exists no nonzero subspace S ⊂ WA+ such that A(S) = 0, B+(S) ⊂ S, and
b(S) = 0. But this is exactly condition (S1) on the left three-way part.

Verifying condition (S2) is analogous. Namely the three-way part on the right satisfies (S2)
iff there exist no proper subspace T ⊂WA− such that Im(A) + Im(−a) + Im(−B− ◦ a) ⊂ T and
B−(T ) ⊂ T . But B−(T ) ⊂ T implies that Im(−B− ◦ a) ⊂ T , hence the former is equivalent to
Im(A) + Im(a) ⊂ T and B−(T ) ⊂ T , which is nothing but (S1) for the left three-way part.

Finally, we check GIT stability. By [35, Section 2.4.2], a tuple (ã, b̃, Ã, B̃, C̃, D̃) ∈ Mc′,1 is

stable iff there exists no proper graded subspace S̃ ⊂ W = ⊕X̃WX̃ invariant under Ã, B̃, C̃, D̃
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such that Im(ã) ⊂ S̃ and A induces isomorphisms WA+/S̃A+ →WA−/S̃A−. Consider the image
under Mw′ +1 ↪→Mw′,1 of a tuple (a, b, A,B,C,D) ∈Mw′ +1. As shown in Example 6.1, the map

Ã : WA+ → WA+ ⊕ C is the identity on the first component and the zero map on the second
one; hence Ã induces an isomorphism on the quotients by S̃ iff its component inside WA+⊕C is
of the form SA+ ⊕C, with SA+ ⊆WA+. As a consequence, the component of Ã from WA+ ⊕C
to WA− is of the form (A, a) induces an isomorphism in the quotient iff Im(a) ⊂ SA− and A
induces an isomorphism WA+/SA+ →WA−/SA−. But these conditions are exactly the stability
conditions on (a, b, A,B,C,D) ∈Mw′ +1, proving equivalence.

The equivariance of j : X → X̃ along φ : T→ T̃ was already discussed in Remark 6.4 □

Recall the morphisms (4). The proof above is based on the observation that M → M̃ is
compatible with all the conditions that we impose on these two spaces to construct the corre-
sponding bow varieties, namely µ = 0, the open conditions (S1) and (S2) and GIT stability.
Forgetting the latter, we deduce the following corollary.

Corollary 6.5. There exists a commutative diagram

X X̃

X0 X̃0

HS H̃S

j

π π̃

ρ ρ̃

in which all horizontal maps are closed immersions. Moreover, both squares are Cartesian.

Corollary 6.6. Any bow variety X can be embedded in the cotangent bundle of a partial flag
variety. More precisely, if X(D) is separated or co-separated and has no D5 branes with local

charge equal to zero, then it can be embedded in the bow variety X(D̃) whose brane diagram D̃
is obtained from D by replacing each D5 brane A with w(A) consecutive D5 branes with local
charge equal to one.

Proof. The second statement directly follows from Proposition 6.3 together with the fact that a
bow variety whose D5 branes all have local charge equal to one is isomorphic to the cotangent
bundle of some partial flag variety.

Let n be the number of D5 branes. To prove the first statement, first notice that adding an
extra NS5 brane with charge n in the middle of a separated bow diagram (i.e. on the right of
the last NS5 brane and on the left of the first D5 brane) induces an isomorphism of bow varieties
and increases all the D5 charges by one. Indeed, one can easily check this by switching to the
co-separated setting via Hanany-Witten, where the isomorphism becomes apparent.

We can now prove the first statement. Any bow variety is isomorphic, via Hanany-Witten,
to a separated bow variety, and by the observation above we can assume that all the D5 local
charges are strictly positive; hence the claim follows from the special case considered above.

□

Example 6.7. The following diagrams describe a separated bow variety on the left, and
its maximal resolution, on the right. Each D5 brane with local charge wi > 0 is replaced
by wi D5 branes with local charges all equal to one. The resulting variety is isomorphic,
via Hanany-Witten, to the contangent bundle of the partial flag variety T ∗Flλ, where λ =
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(w1,w1+w2,w1+w2+w3,w1+w2+w3+w4).

w1 w2 w3 w4 w1 w2 w3 w1 w2 w3 w4

︸︷︷︸
w1

︸︷︷︸
w2

︸︷︷︸
w3

1111 1111 1111

6.2. The equivariant geometry of D5 resolutions. We begin this section by showing that

the map j : X ↪→ X̃ is compatible with the description of the fixed locus from Section 3.1.

Let X be a separated or co-separated bow variety, and let X̃ be a resolution of the brane A.
Set w = w(A), w′ = w(A′) and w′′ = w(A′′) (hence w = w′+w′′). The torus A ⊂ T acts, via

φ : T→ T̃, on the resolution X̃.
Consider a rank two torus A = C×

a′ × C×
a′′ ⊂ A acting with a′ on a subset of the D5 branes

in D and with a′′ on the remaining D5 branes. Without loss of generality, we assume that A is
acted on by a′. Recall that the A-fixed components of X are of the form X ′ × X ′′ for certain
bow varieties X ′ and X ′′ described in Theorem 3.1. In particular, X ′ contains the D5 branes
acted on by a′ and X ′′ the remaining ones. Moreover, the local charge of A in X ′ is still w.

Let j′ : X ′ ↪→ X̃ ′ be the resolution of the brane A in X ′ with decomposition w = w′+w′′.
We have

Lemma 6.8. The unique A-fixed component in X̃ containing X ′×X ′′ is X̃ ′×X ′′ and we have
a pullback diagram

X ′ ×X ′′ X̃ ′ ×X ′′

X X̃

j′×id

j

.

In addition, all the maps are T-equivariant.

Proof. All the morphisms in the diagram descend from maps at the level of quiver representa-
tion. All these maps are explicitly defined there, so commutativity and being a pullback are
straightforward checks. But then the same must hold at the level of bow varieties. □

Lemma 6.9. Let F be an A-fixed component of X̃ such that F ∩X ̸= ∅.
(1) If X is separated (resp. co-separated), then F is equivariantly isomorphic to the bow

variety /1/2/3/.../w′+w′′\w′′\ (resp. \w′\w′+w′′/.../3/2/1/).

(2) Under this isomorphism, the residual action of Ã/A on F is identified with the canonical

action of Ã/A ∼= (C×)2 on /1/2/3/.../w′+w′′\w′′\ (resp. \w′\w′+w′′/.../3/2/1/).
(3) The intersection F ∩X is a singleton f ∈ XA.

(4) Each fixed point f = F ∩X admits exactly
(
w′ +w′′

w′

)
resolutions, i.e. fixed points f̃ ∈ F Ã.

Note that point (1) implies that all fixed points F satisfying F ∩X ̸= ∅ are isomorphic to the
mirror dual of the cotangent bundle of a Grassmannian. We will exploit this fact when proving
our main theorem: mirror symmetry of stable envelopes.

Proof. The proof follows by iteration of the previous lemma by noticing that all but one of the
terms in the fiber products of bow varieties are singletons, so we can neglect them. □

Remark 6.10. Since XA is finite, Lemma 6.9 defines a one-to-one correspondence between the

fixed points f ∈ XA and the components F ∈ X̃A containing them. This correspondence can be

nicely interpreted via tie diagrams. The residual action of Ã/A on F admits exactly
(
w′ +w′′

w′

)
fixed points, the resolutions of f . Pick an arbitrary resolution f̃ ∈ F Ã and draw its tie diagram.
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Then the tie diagram of f can be obtained by merging the resolving branes while keeping all
the ties attached to them. Here is an example:

f̃ = f =
.

To conclude the remark, we stress that none of the Ã/A fixed points in F coincide with f =
F ∩X.

We now study the interplay between the embedding j : X ↪→ X̃ and the geometry of the

equivariant curves inX and X̃. Any equivariant embeddingX ↪→ Y constrains the full attracting
set of X by the one of its ambient space Y . However, in general, the full attracting set of Y
is smaller than the intersection of the full attracting set of X with Y . In the next lemma, we

argue that for the resolutions X ↪→ X̃ we actually have equality.

Lemma 6.11.

(1) Let f ∈ XA and let F ⊆ X̃A be the unique component containing f . Then AttX̃,f
C (F ) ∩

(F ×X) = AttX,f
C (f).

(2) Let instead G ⊆ X̃A be a fixed component such that G ∩X = ∅. Then Attf,X̃C (G) ∩ (G×
X) = ∅.

Proof. Let σ : C× → A be a generic subgroup in C. The full attracting set AttX̃,f
C (F ) ⊂ F × X̃

consists of pairs (y, x) of points belonging to a chain of closures of attracting σ-orbits. Thus, we
have

AttX̃,f
C (F ) ∩ (F ×X) =

⋃
f ′∈XA

(y,f ′)∈AttX̃,f
C (F )

y ×AttXC (f ′).

By definition, (y, f ′) ∈ AttX̃,f
C (F ) iff there exists a chain of closures of attracting σ-orbits in X̃

with endpoints y and f ′. Notice that each of these orbit closures is the image of a morphism

P1 → X̃. On the other hand, we have

AttX,f
C (f) =

⋃
f ′∈XA

(f,f ′)∈AttX,f
C (f)

f ×AttXC (f ′),

where now (f, f ′) ∈ AttX,f
C (f) iff there exists a chain of closures of attracting σ-orbits in X with

endpoints f and f ′. Therefore, it suffices to show that if a chain of orbit closures in X̃ connects

y ∈ F ⊆ X̃ to f ′ ∈ XA, all the orbits actually lie in X (this in particular forces y = f because
by Lemma 6.9 we have f = F ∩X). Assume the contrary; then there exists at least one orbit

closure P1 → X̃ within such a chain that intersects both X and X̃ \X. But then Corollary 6.5

implies that the composition P1 → X̃
π̃−→ X̃0 is non-constant. Since X̃0 is affine, this gives a

contradiction. The proof of (2) is analogous. □

6.3. D5 fusion of stable envelopes. Let X be separated or co-separated. In this section,
we investigate the relation between the stable envelopes of the bow variety X and those of a

resolution X̃.
Let j : X ↪→ X̃ be the embedding introduced in the previous section. It is equivariant along

the morphism φ : T→ T̃ defined in equation (32). Although the unique A-fixed point f = X∩F
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contained in the A-fixed component F ⊂ X̃ does not coincide with any of the Ã/A-fixed points

in F , we will now argue that f admits a distinguished resolution f̃♯ ∈ F Ã.

As discussed in Remark 6.10, the tie diagrams of the Ã/A-fixed points in F are obtained
from the tie diagram of f by distributing the w ties connected to A between the two resolving
branes A′ and A′′ according to the decomposition w = w′+w′′. This operation produces all the(
w′ +w′′

w′

)
fixed points in F . The number of tie-crossings in these diagrams ranges from zero to

w′w′′.
If X is separated, we denote by f̃♯ ∈ F Ã the unique fixed point whose tie diagram has no

crossings. If X is co-separated, we denote by f̃♯ ∈ F Ã the unique fixed point whose tie diagram
has w′w′′ crossings, as illustrated below.

(33)

f =
a

w′+w′′
{

separated

D5 res.
f̃♯ =

a′ a′′

w′{

w′′{

f =
a }

w′+w′′

co-separated

D5 res.
f̃♯ =

a′ a′′

}w′

}w′′

The rationale for this choice of representative lies in the following lemma.

Lemma 6.12. Let ξ be a tautological bundle of X̃. Then j∗ξ
∣∣∣
f
= ξ
∣∣∣
f̃♯

as representations of T.

As a consequence, the diagram

KT̃(X̃)taut KT̃(f̃♯)

KT(X)taut KT(f)

j∗◦φ∗ φ∗

associated with fixed point localization at f̃♯ and f and the change of group map φ : T → T̃ is
commutative.

Proof. The proof follows from the combinatorics of the fixed point restrictions developed in [45,
Section 4.4]. □

By construction, the K-theory class Nj of the normal bundle of the embedding j : X ↪→ X̃
can be expressed uniquely in terms of the tautological bundles on the D5 part of the separated
or co-separated brane diagram. By Proposition 3.4, it follows that Nj is topologically trivial
and hence decomposes in attractive, repelling, and fixed directions:

Nj = N+
j +N0

j +N−
j ∈ KT(∗).

With this observation, we are ready to state the main result of this section.
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Theorem 6.13. Fix some f ∈ XA and a chamber C for the A-action on X. Let F be the unique

A-fixed component of X̃ containing f and C̃ be any chamber for Ã restricting to C on A. Then

φ∗
(
StabF

C̃/C
(f̃)(z ℏ±γ(f))

∣∣∣
f̃♯

)
Θ(N−

j )StabXC (f) = j∗φ∗StabX̃
C̃
(f̃) ∀f̃ ∈ F Ã.

Here, γ(f) is a multi-index whose entries γ(f)i denote the number of ties of f connecting the
i-th NS5 brane to the D5 branes left to the resolved D5 brane. The sign of the shift by γ(f) is
negative in the separated case and positive in the co-separated one.

Corollary 6.14. Assuming that C̃/C = {a′ > a′′} and choosing f̃ = f̃♯, we get

(34)

w′′∏
s=1

ϑ(ℏs)Θ(N−
j )StabXC (f) = j∗φ∗StabX̃

C̃
(f̃♯).

Proof of Theorem 6.13. Consider the action on X̃ of the torus A ⊂ T induced by the map

φ : T → T̃. We divide the proof into two steps. In the first one, we compare StabXC (f) to

StabX̃C (F ). These are, respectively, sections of certain line bundles on the elliptic cohomologies

of f ×X and F × X̃. Consider the pair of maps

f ×X F ×X F × X̃i j

and notice that the inclusion i is closed, hence proper. We claim that

(35) ϑ(N−
j )i⃝∗

(
StabXC (f)

)
=
(
StabX̃C (F )

) ∣∣∣
F×X

.

Firstly, we show that both sides are sections of the same line bundle. Recall that StabXC (f) is a

section of the line bundle L▽A,X ⊠LX on ET(f ×X) and StabX̃C (F ) is a section of the line bundle

L▽
A,X̃

⊠L
X̃

on ET(F × X̃)—see Section 5.4. Since the D5 resolution only affects the D5 part of

the bow diagram and all the tautological bundles associated with the latter are trivial, it follows
that i∗L

X̃
= LX ⊗ G, where G is pulled back from Pic(ET(∗)). Hence

i∗L▽A,X̃ = L▽A,X ⊗Θ(TF )⊗Θ(N−
j )⊗ G−1.

Thus, the composition

i∗L▽A,X ⊗ G−1 = i∗(i
∗L▽

A,X̃
⊗Θ(−TF )⊗Θ(−N−

j )) Θ(−N−
j )⊗ i∗L▽

A,X̃
L▽
A,X̃

i⃝∗ ·ϑ(N−
j )

is well defined and sends StabXC (f) to a section of (L▽
A,X̃

⊠ L
X̃
)|F×X , as required by (35).

Let now U := F ×X≥f , where

X≥f = X \
⋃
g<f

AttC(g).

In order to prove (35), it suffices to show that both sides of the equation are supported on

AttfC(f) ⊂ F × X and have the same restriction on U . Indeed, the claim then follows from
Aganagic-Okounkov’s argument for the uniqueness of elliptic stable envelopes [1, Section 3.5],
which also applies in this situation without modifications.

We first check the support condition. Since StabXC (f) is supported on Attf,XC (f) ⊂ f × X,

the pushforward ϑ(N−
j )i⃝∗Stab

X
C (f) is supported on AttfC(f) ⊂ F × X. On the other hand,

StabX̃C (F ) is supported on Attf,X̃C (F ) ⊂ F×X̃, hence the restriction StabX̃C (F )|F×X is supported
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on Attf,X̃C (F ) ∩ (F ×X). But part (1) of Lemma (6.11) implies that the latter is also equal to

Attf,XC (f).
We now compare the restrictions to U . Since we now know that both sides of (35) are

supported on

Attf,XC (f) = f ×
⋃
g≤f

AttC(g) ⊂ F ×X,

it follows that their restrictions to U are supported on f ×AttC(f), which is closed in U . Hence,
the long exact sequence in elliptic cohomology implies that the restrictions to U of the two sides
of (35) are in the image of pushforward associated with the inclusion

f ×AttC(f) ↪→ U,

and thus they are both multiples of the fundamental class [AttC(f)]. Therefore, to conclude that
they are the same class, it suffices to check that they restrict in the same way on f × f . But
this follows from Remark 5.5 together with the fact that N−

f/X̃
= N−

f/X ⊕N
−
j .

This observation concludes the first step. In the second step, we deduce the statement of the
theorem. We will make use of the following three commutative diagrams

f̃ × F ×X f̃ × F × X̃

f̃ ×X f̃ × X̃

p13 p̃13

f̃ × F ×X f̃ × F × F ×X

f̃ × F × X̃ f̃ × F × F × X̃

∆

∆̃

f̃ × f ×X f̃ × F ×X

f̃ × F × f ×X f̃ × F × F ×X.

∆f

k

∆

id×i

All the maps are obvious, and the diagrams are Cartesian (although we don’t need this property
for the second one). By Proposition 5.13, we have

(36) StabX̃
C̃
(f̃) = (p̃13)⃝∗ ∆̃

∗
(
StabX̃C (F )(z)⊠ StabF

C̃/C
(f̃)(z ℏ±γ(f))

)
.

Recall that although the map p13 is not proper in general, its restriction to the support of

∆̃∗
(
StabX̃C (f)⊠ StabX̃

C̃/C
(f̃)(z ℏ±γ(f))

)
is proper, so the pushforward in elliptic cohomology is well defined. This argument justifies all
the pushforwards in this proof.

We now begin the computation that will complete the proof. All the steps below will be done

in T-equivariant elliptic cohomology. The T-equivariance on X̃ is induced by φ : T → T̃. For
the sake of clarity, we drop the pullback φ∗, and we also denote by τ the shift z 7→ z ℏ±γ(f). We
compute

StabX̃
C̃
(f̃)
∣∣∣
f̃×X

=
(
(p̃13)⃝∗ ∆̃

∗
(
StabX̃C (F )⊠ τ∗StabF

C̃/C
(f̃)
)) ∣∣∣

f̃×X

= (p13)⃝∗

(
∆̃∗
(
StabX̃C (F )⊠ τ∗StabF

C̃/C
(f̃)
) ∣∣∣

f̃×F×X

)
= (p13)⃝∗

(
∆∗
(
StabX̃C (F )

∣∣∣
F×X

⊠ τ∗StabF
C̃/C

(f̃)

))
.

In the first step, we applied equation (36). In the second one, we used the compatibility of
pushforward and pullback induced by the first Cartesian diagram above. Finally, in the last
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line, we exchanged the order of the restrictions, as prescribed by the second diagram above.
Applying (35), we can continue our computation as follows

StabX̃
C̃
(f̃)
∣∣∣
f̃×X

= (p13)⃝∗

(
∆∗
(
Θ(N−

j )i⃝∗
(
StabXC (f)

)
⊠ τ∗StabF

C̃/C
(f̃)
))

= Θ(N−
j )(p13)⃝∗

(
∆∗
(
i⃝∗
(
StabXC (f)

)
⊠ τ∗StabF

C̃/C
(f̃)
))

= Θ(N−
j )(p13)⃝∗∆

∗(i× id)⃝∗
(
StabXC (f)⊠ τ∗StabF

C̃/C
(f̃)
)

= Θ(N−
j )(p13)⃝∗k⃝∗∆

∗
f

(
StabXC (f)⊠ τ∗StabF

C̃/C
(f̃)
)

= Θ(N−
j )∆∗

f

(
StabXC (f)⊠ τ∗StabF

C̃/C
(f̃)
)
.

In the second step, we used the fact that Θ(N−
j ) only depends on the equivariant variables

(because N−
j is topologically trivial) and hence can be pulled outside the chain of maps. In

the fourth step, we used the compatibility of pushforward and pullback induced by the third
Cartesian diagram above. Finally, in the last step we used the equality (p13)⃝∗k⃝∗ = (p13 ◦ k)⃝∗ =
id⃝∗ = id.

Reintroducing the dropped pullback φ∗, we get the formula

j∗φ∗StabX̃
C̃
(f̃) = Θ(N−

j )∆∗
f

(
StabXC (f)⊠ φ∗τ∗StabF

C̃/C
(f)
)

= Θ(N−
j )φ∗

(
StabF

C̃/C
(f̃)(z ℏ±γ(f))

) ∣∣∣
f
StabXC (f).

To conclude the proof, it suffices to observe that, in virtue of Lemma 6.12 together with the fact
that the line bundles defining the stable envelopes are tautological, restricting to f after pulling
back by φ∗ is the same as pulling back and restricting to f̃♯. □

6.4. More fusion formulas. Let X be separated or co-separated and let X̃ be the resolution
of its i-th D5 brane A with local charge decomposition w = w′+w′′. Corollary 6.14 implies, via
localization and triangularity of the stable envelopes, the following statements, which relate the

fixed point localizations of the stable envelopes of X and X̃. The coefficients of these formulas
are functions of the coefficients of the R-matrix of the bow varieties /1/2/3/.../w′+w′′\w′′\
and \w′\w′+w′′/.../3/2/1/, in the separated and co-separated case, respectively. Remark-
ably, these fusion-like statements for stable envelopes will turn out be mirror dual to the NS5
resolutions that we develop in the next chapter.

Proposition 6.15. Assume X is separated. Let f, g ∈ XA and let f̃♯, g̃♯ ∈ F Ã ⊂ X̃Ã be their
distinguished resolutions. We have

StabXC (f)
∣∣∣
g

StabXC (g)
∣∣∣
g

(a, z, ℏ) =

∑
f̃∈F Ã

Rf̃ ,f̃♯

Rg̃♯,g̃♯

(ai ℏ−w′′
i , ai, ℏ, zℏ−γ(f))

StabX̃
C̃
(f̃)
∣∣∣
g̃♯

StabX̃
C̃
(g̃♯)

∣∣∣
g̃♯

(a1, . . . , ai ℏ−w′′
, ai, . . . , an, z, ℏ).

Here, C and C̃ are the standard chambers and R is the R-matrix

R(a′i, a
′′
i , ℏ, z) = R{a′i<a′′i }{a′i>a′′i }(a

′
i, a

′′
i , z, ℏ).
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of the bow variety F = /1/2/3/.../w′+w′′\w′′\ and γi(f) is the number of ties of f connecting
the i-th NS5 brane to the D5 branes left to the resolved D5 brane.

Proposition 6.16. Assume X is co-separated. Let f, g ∈ XA and let f̃♯, g̃♯ ∈ F Ã ⊂ X̃Ã be their
distinguished resolutions. We have

StabXC (f)
∣∣∣
g

StabXC (g)
∣∣∣
g

(a, z, ℏ) =

∑
f̃∈F Ã

Rf̃ ,f̃♯

Rg̃♯,g̃♯

(ai, ai ℏw
′
i , ℏ, zℏγ(f))

StabX̃
C̃
(f̃)
∣∣∣
g̃♯

StabX̃
C̃
(g̃♯)

∣∣∣
g̃♯

(a1, . . . , ai, ai ℏw
′
, . . . , am, z, ℏ).

Here, C and C̃ are the standard chambers and R is the R-matrix

R(a′i, a
′′
i , ℏ, z) = R{a′i<a′′i }{a′i>a′′i }(a

′
i, a

′′
i , z, ℏ)

of the bow variety F = \w′\w′+w′′/.../3/2/1/ and γi(f) is the number of ties of f connecting
the i-th NS5 brane to D5 branes left to the resolved D5 brane.

Proof. The proof of both propositions follows from Corollary 6.14, the definition of R-matrix
(26), and the fact that g̃♯ is maximal in the order induced by {a′i < a′′i } (hence only the diagonal
term at the denominator survives). □

Remark 6.17. As observed in Remark 6.10, there are exactly
(
w′ +w′′

w′

)
fixed points f̃ in F . As

a consequence, the Propositions above equate the normalized stable envelopes of X with a linear

combination of stable envelopes of X̃ involving
(
w′ +w′′

w′

)
terms. Moreover, since the R-matrix

R(a, b, ℏ, z) of F only depends on the ratio a/b, the coefficients in these formulas depend only
on z and ℏ.

6.5. Symmetric group action. In this section, we assume that all bow varieties are separated
or co-separated. Consider the transition interchanging two adjacent D5 branes in such a way
that their (local) charges do not change:

d1

Ai

d2

Ai+1

d3 d1

Ai+1

d′2

Ai

d3
for d2 + d′2 = d1 + d3.

This transition defines an action of the symmetric group Sn on the set of bow varieties with n
D5 branes via its standard generators σi,i+1 of Sn. This Sn-action is compatible with the equi-
variant geometry of the bow varieties, in the sense that there exists a one-to-one correspondence
between the torus fixed points of X and σ ·X for every σ ∈ Sn. For the action of the generator
σi,i+1, the correspondence swaps the ties arising from the interchanged branes:

B

C

D

A

σi,i+1

action

B

C

D

A

.
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Given some fixed point f in X, we denote by σ ·f the corresponding fixed point in σ ·X. Notice
that, even if X = σ ·X, the fixed points f and σ · f generally do not coincide.

The subset of bow varieties fixed by the Sn action consists of those bow varieties whose D5
branes all have the same local charge. Among these, those whose local charges are equal to one
are the cotangent bundles of partial flag varieties:

/km/.../k1/n\n− 1\...\2\1\ ∼= T ∗Fl(k1, . . . , km;n).

The shuffling of the D5 branes of T ∗Fl(k1, . . . , km;n) has a clear geometric meaning: it coincides
with the standard action of Sn ⊂ GL(n) on the variety. This action descends to a nontrivial
symmetry of the stable envelopes of T ∗Fl and hence, via Theorem 6.13, to a relation between
the stable envelopes of any pair of bow varieties X and σ ·X.

Proposition 6.18. Let C = {a1 < · · · < an} be the standard chamber of a bow variety X with
n D5 branes. Consider the following action of the symmetric group on the set of equivariant
parameters

σ · (a1, . . . an) = (aσ(1), . . . , aσ(n))

and, accordingly, on the chambers

σ · C = {aσ(1) < · · · < aσ(n)}.
Then the formula

(37)
StabC(f)

∣∣∣
g

StabC(g)
∣∣∣
g

(a, z, ℏ) =
Stabσ·C(σ · f)

∣∣∣
σ·g

Stabσ·C(σ · g)
∣∣∣
σ·g

(σ · a, z, ℏ)

holds for all f, g ∈ XA and σ ∈ Sn.

Proof. Assume first that X ∼= T ∗Fl(k1, . . . , km;n). The action of Sn ⊂ GL(n) on X descends to
an action on its elliptic cohomology. Notice that Sn also acts on the maximal torus A ⊂ GL(n)
by conjugation, and we have

σ · (a1, . . . , an) = (aσ(1), . . . , aσ(n)).

Since a weight χ(a) is C-positive iff χ(σ · a) is σ · C-positive, then
Stabσ·C(σ · f)(σ · a, z, ℏ) = StabC(f)(a, z, ℏ)

for all f, g ∈ XA and σ ∈ Sn. This proves the proposition if X ∼= T ∗Fl(k1, . . . , km;n)5. For a
general bow variety X with no branes A such that w(A) = 0, the result follows by considering its

maximal D5 resolution X̃ (which is the cotangent bundle of a partial flag variety) and applying
Theorem 6.13 on both sides of (37). Finally, for a general bow variety (possibly with branes
such that w(A) = 0), the result follows from (28). □

6.6. Fusion of R-matrices. Let X be separated or co-separated with D5 resolution X̃. Con-

sider the usual actions of A on X and Ã on X̃. In this section, we exploit Theorem 6.13 to relate

the R-matrices of X and X̃.
By Theorem 6.13, for every chamber C of A there exist a chamber C̃ of Ã and classes βi(z, ℏ)

such that

βiStab
X
C (f) = j∗φ∗StabX̃

C̃
(f̃i) ∀f̃i ∈ F Ã/A.

Here, F is the fixed component of X̃A containing f , and the pullback by φ encodes a shift of the
equivariant parameters. Notice that φ is independent of the chambers while βi only depends

5Alternatively, one can check this statement using the explicit formulas for the stable envelopes of partial flag
varieties provided by [5, 6].
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on the quotient C̃/C. By Corollary 6.14, we we can always choose a chamber C̃ for Ã and a

fixed-point f̃♯ ∈ X̃Ã such that β♯ ̸= 0. Consider now two chambers C and C′ for the action of A
on X and choose resolutions C̃ and C̃′ such that C̃/C = C̃′/C′ and β♯ ̸= 0.

Proposition 6.19. The following formula holds:

(
RC′,C

)
gf

=
∑
i

φ∗(R
C̃′,C̃)g̃if̃♯

βi
β♯
.

Example 6.20. Assume that X is a separated bow variety X with m NS5 branes and two D5
branes with (local) charges w1 and w2. Then the cohomologyH∗

T(X
A) is a weight subspace of the

quantum group representation Λw1 Cm(a1)⊗Λw2 Cm(a2) (cf. Remark 3.3). The actual weight is
determined by the NS5 charges of X. In this case, there are only two chambers C = {a2 < a1}
and C′ = {a1 < a2}, so we set Rw1,w2 := RC′,C.

Now consider the D5 resolution of the first brane of X with charge decomposition w1 =

w′
1+w′′

1. The resulting variety X̃ has m NS5 branes and three D5 branes of charges w′
1, w

′′
1,

and w2. Its cohomology H∗
T̃
(X̃Ã) is a subspace of Λw′

1 Cm(a′1) ⊗ Λw′′
1 Cm(a′′1) ⊗ Λw2 Cm(a2).

For the R-matrix R
C̃′,C̃ in Proposition 6.19, we can choose R

C̃′,C̃ = R{a′1<a′′1<a2},{a2<a′1<a′′1}. Via

wall-crossing, we get

R
C̃′,C̃(a

′
1, a

′′
1, a2) = R

(23)
w′′

1 ,w2
(a′′1, a2)R

(13)
w′

1,w2
(a′1, a2)

on Λw′
1 Cm(a′1)⊗Λw′′

1 Cm(a′′1)⊗Λw2 Cm(a2). Here, the superscripts indicate the factors on which

the operators act: for example, R
(23)
w′′

1 ,w2
= 1 ⊗ Rw′′

1 ,w2
. Since the pullback φ simply forces the

change of variables (a′1, a
′′
1) = (a1h

−w′′
1 , a1), Proposition 6.19 describes the matrix elements of

Rw1,w2(a1, a2) as a linear combination of matrix elements of

R
(23)
w′′

1 ,w2
(a1, a2)R

(13)
w′

1,w2
(a1h

−w′′
1 , a2).

Moreover, not all the matrix elements appear, but only those corresponding to the fixed points

of X̃Ã resolving the fixed points in XA in the sense of Lemma 6.9. It is easy to check that these
elements correspond to those basis elements of Λw′

1 Cm⊗Λw′′
1 Cm⊗Λw2 Cm that are not in the

kernel of the canonical map

Λw′
1 Cm⊗Λw′′

1 Cm⊗Λw2 Cm ∧⊗1−−−→ Λw1 Cm⊗Λw2 Cm

wedging the first two tensor components. Altogether, these observations reveal that Proposition
6.19 provides an elliptic generalization of the famous fusion formula for R-matrices introduced
in the ’80s [28]. This point of view also offer a representation theoretic interpretation of the
results of this section: they describe the geometry behind the fusion procedure for R-matrices.

Proof of Proposition 6.19. It suffices to prove that

(38) StabXC (f) =
∑
g

αgfStab
X
C′(g), αgf =

∑
i

φ∗(R
C̃′,C̃)g̃if̃♯

βi
β♯
.
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Indeed, localizing at fixed points and using (26), one deduces that αgf must coincide with(
RC′,C

)
gf
. By the R-matrix relation for X̃, we get

StabXC (f) =
1

β♯
j∗φ∗StabX̃

C̃
(f̃♯)

=
1

β♯
j∗φ∗

∑
g̃i∈X̃Ã

(R
C̃′,C̃)g̃if̃♯Stab

X̃
C̃′(g̃i)

=
1

β♯
j∗φ∗

∑
G∩X ̸=∅
g̃i∈GÃ

(R
C̃′,C̃)g̃if̃♯Stab

X̃
C̃′(g̃i) +

1

β♯
j∗φ∗

∑
G∩X=∅
g̃i∈GÃ

(R
C̃′,C̃)g̃if̃♯Stab

X̃
C̃′(g̃i).

Here, the spaces G are the A-fixed components of X̃A. Triangularity of stable envelopes together
with part (2) of Lemma 6.11 imply that all the terms of the second summation vanish after
restricting to X, i.e. after applying j∗. Hence, applying Theorem 6.13 backward, we get

StabXC (f) =
∑
g̃i

φ∗(R
C̃′,C̃)g̃if̃♯

1

β♯
j∗φ∗

(
StabX̃

C̃′(g̃i)
)

=
∑
g̃i

φ∗(R
C̃′,C̃)g̃if̃♯

βi
β♯

StabXC′(g)

=
∑
g

(∑
i

φ∗(R
C̃′,C̃)g̃if̃♯

βi
β♯

)
StabXC′(g).

□

7. NS5 Resolutions

7.1. NS5 resolutions for bow varieties. Let D be a separated or co-separated brane diagram.
Let D be the brane diagram obtained by replacing a single NS5 brane Z of weight w = w(Z) in D
by a pair of consecutive NS5 branes Z ′ and Z ′′ of weights w′ = w(Z ′) ≥ 0 and w′′ = w(Z ′′) ≥ 0
such that w = w′+w′′. We call D an NS5 resolution of the brane diagram D, and the branes
Z ′ and Z ′′ resolving branes. Notice that if D is separated (resp. co-separated), then D is also
separated (resp. co-separated).

Let now X and X be the bow varieties associated with D and D, respectively. We say
that X is a NS5 resolution of the bow variety X. The main goal if this section is to build a
correspondence

X ← L→ X

and exploit it to compare the stable envelopes of X and X. As for the D5 resolutions introduced
in the previous section, we first work at the level of the spaces of representations M and M and
consider the additional actions of the gauge groups G and G. By definition, the space M differs
fromM by replacing the two-way part associated with the brane Z with two consecutive two-way
parts associated with Z ′ and Z ′′:

WZ− WZ+

D

C◦
=⇒ WZ− =WZ′

−
WZ′

+
=WZ′′

−
WZ′′

+
=WZ+

D′ D′′

C′
◦ C′′

◦

.

As usual, the circles in the arrows indicate rescaling by ℏ. We now introduce an “in between”
space L, defined as the space of representations obtained from M by the replacement described
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below. If D is a separated diagram, we substitute

(39) WZ− WZ+

D

C◦
=⇒ WZ− =WZ′

−
WZ′

+
=WZ′′

−
WZ′′

+
=WZ+

D

C′ C′′
◦

.

The absence of the ℏ-action on C ′ is not a typo. Instead, if D is co-separated, we substitute

(40) WZ− WZ+

D

C◦
=⇒ WZ− =WZ′

−
WZ′

+
=WZ′′

−
WZ′′

+
=WZ+

D′ D′′

C◦

.

The asymmetry in this construction, namely the choice of “resolving” the map C rather than
D or vice versa, is forced by our choice of stability condition.

Since the three-way parts of the quiver defining L are the same as those defining M and M,
the torus A naturally acts on L. We extend this to an action of A×C×

ℏ × G by declaring that

G acts on all the maps by conjugation and C×
ℏ acts with weight one on the maps C and C ′ as

prescribed by the circles in the diagrams above.
The three spaces discussed above are related by means of a diagram of the form

(41) M L M .

If D is separated, the left pointing map supplements the assignments D′ = C ′′D and D′′ =
DC ′, while the right one supplements C = C ′C ′′. If instead D is co-separated, the left map
supplements the assignments C ′ = CD′′ and C ′′ = D′C, while the right one supplements
D = D′′D′.

Remark 7.1. In the co-separated case, both maps in (41) are clearly G× A×C×
ℏ -equivariant.

In the separated case instead, the right-pointing map in (41) does not respect the action of C×
ℏ .

However, the map does become equivariant if we prescribe an additional weight one C×
ℏ action on

the vertices left of the resolving brane Z ′. But since G acts on all these vertices, all the quotient
maps will be unaffected by this change of C×

ℏ action, and hence will be T = A×C×
ℏ -equivariant.

Next, we introduce a moment map µL : L→ N by forcing commutativity of

L N

M

µL

µ
.

Explicitly, in the separated (resp. co-separated) case, µL is obtained from µ by replacing the
map C in (39) with C ′′C ′ (resp. D in (40) with D′D′′).

As for bow varieties, we say that a tuple (a, b, A,B,C,D) ∈ L is stable if all its three-way
parts (which are unaffected by the modifications (39) and (40)) satisfy the conditions (S1), (S2),
and if there exists no proper (a, b, A,B,C,D)-invariant graded subspace S ⊂ ⊕iWi such that
Im(A) ⊂ S and AA induces isomorphisms WA+/SA+ → WA−/SA− for all D5 branes A. We
define

L := µ−1
L (0)s/G.
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Proposition 7.2. The maps (41) descend to morphisms

(42) X L X.
j p

Moreover, both maps are T-equivariant, j is a closed immersion, and p is a proper. Moreover,
if X is separated (resp. co-separated) then the fibers of p are isomorphic to the Grassmannian
Gr(w′,w′+w′′) (resp. Gr(w′′,w′+w′′)).

Proof. Firstly, we show that the diagram

µ̄−1(0)s µ−1
L (0)s µ−1(0)s

µ̄−1(0) µ−1
L (0) µ−1(0)

is well defined (and hence commutative). Well definiteness of µ−1
L (L) → µ−1(0) follows imme-

diately from the definition of µL, while the one of µ−1
L (L) → µ̄−1(0) follows from an explicit

computation. Similarly, the well-definiteness of the top line easily follows from the definition of
stability on L. Taking quotients of the top line by G and G, we get the sought-after maps j and
p.

We now show that p is proper. We only prove it in the separated case since the co-separated
one is entirely analogous. Assume first that all the D5 local charges of X are equal to one, so that
the latter can be expressed via the brane diagram X = /k1/.../km/k\k − 1\...\1\. Here,
w = ki−1−ki for some i ≥ 0. The NS5 resolutionX associated with the splitting w = w′+w′′ cor-
responds to the diagram /k1/.../k

′
i/ki/.../km/k\k − 1\...\1\, where k′i = ki−1 + w′. Iden-

tifying X and X with the varieties T ∗Fl(k1, . . . , ki, . . . , km; k) and T ∗Fl(k1, . . . , k
′
i, ki, . . . km; k),

respectively, one sees that the map p : L→ X fits in the pullback diagram

L T ∗Fl(k1, . . . , ki, . . . km; k)

Fl(k1, . . . , k
′
i, ki, . . . km; k) Fl(k1, . . . , ki, . . . km; k)

p

p0

where the bottom horizontal map is the zero section, and the left vertical map is the canonical
forgetful map between the two flag varieties. Since the latter is proper and its fiber is isomorphic
to Gr(w′,w′+w′′), the same holds for p. This proves the claim when all the D5 local charges of
X are one.

Next, assume that none of the D5 local charges is zero and let X ↪→ X̃ be the maximal

resolution of the D5 branes. By definition, all the D5 branes of X̃ have charge one. Notice that

the NS5 parts of the bow diagrams X and X̃ coincide. Let X̃ be the resolution of the brane Z
in the bow diagram of X̃. Then the maps X ← L→ X fit in the pullback diagrams

(43)

X L X

X̃ L̃ X̃.

j p

j̃ p̃

In particular, since we already know that p̃ is proper with fibers isomorphic to Gr(w′,w′+w′′),
the same holds for p.

Overall, it remains to consider the case when at least one D5 charge is zero. Let n be the
number of D5 branes. Adding an extra NS5 brane with charge n in the middle of the separated
bow diagram (i.e. on the right of the last NS5 brane) induces an isomorphism of bow varieties
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and increases all the D5 charges by one. Indeed, one can easily check this by switching to
the co-separated setting via Hanany-Witten, where the isomorphism becomes apparent. By
construction, this isomorphism is compatible with p (and also with j), so we are done.

We now prove that j is a closed immersion. By the argument above, it suffices to assume that
all the D5 local charges are strictly positive. Moreover, since the left square in diagram (43) is
Cartesian, it suffices to assume that all the D5 charges are one and hence identify X and X with
T ∗Fl(k1, . . . , ki, . . . , km; k) and T ∗Fl(k1, . . . , k

′
i, ki, . . . km; k), respectively. Seen as the Springer

resolution of a nilpotent orbit closure, T ∗Fl(k1, . . . , km; k) admits the following description:

T ∗Fl(k1, . . . , km; k) = { (F •, ϕ) | ϕ(F l) ⊂ F l−1 ∀l = 1, . . . ,m } ⊂ Fl(k1, . . . , km; k)× glk.

Here F • = {0 ⊂ F 1 ⊆ F 2 ⊆ · · · ⊆ Fm ⊆ Ck} is a flag in Ck. Explicitly, the identification
between T ∗Fl(km, . . . , k1; k) and the separated bow variety X = /k1/.../km/k\k − 1\...\1\,
whose brane diagram has the form6

Ck1 Ck2 Ck3 Ckm−1 Ckm Ck

D1

C1

D2

C2

Dm−1

Cm−1

Dm

Cm

+ three way parts

is given by the assignments Fm+1−k = ker(Ck ◦Ck+1 ◦ · · · ◦Cm ◦ g−1) and ϕ = g ◦Dm ◦Cm ◦ g−1.
Here, g ∈ GL(k) can be expressed in terms of the maps A and a in the three-way part, and
GL(k) acts on it from the left. Using the diagrammatic description of L from (39), it is easy to
check that the diagram

T ∗Fl Fl× glk

L Fl× glk glk

T ∗Fl Fl× glk

p

j

p0×id

is commutative, and the upper square is Cartesian. By Springer theory, the compositions T ∗Fl→
glk and T ∗Fl → glk are onto two nilpotent orbit closures Z1 and Z2. By surjectivity of p and
commutativity of the diagram above, it follows that Z1 ⊂ Z2. Thus we have a well-defined
diagram

(44)
L T ∗Fl

Z1 Z2

j

which, as a consequence of the diagram above, is Cartesian. But Z1 is closed in glk and hence
also in Z2; thus Z1 ↪→ Z2 is a closed immersion, and the same is true for j.

Finally, equivariance follows from Remark 7.1. □

Set L0 = Spec(C[µ−1
L (0)]G) and consider the canonical map L→ L0. In analogy with Corol-

lary 6.5, the maps j and p nicely descend to the affine bow varieties:

6Notice that by our choice of stability conditions, our partial flag varieties Fl parametrize quotients, not injective
maps.
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Corollary 7.3. There exists a commutative diagram

X L X

X0 L0 X0.

π̄

j p

π

Moreover, the left square is Cartesian.

Proof. Since p and j are defined at the level of quiver representations, they induce maps X0 ←
L0 → X0 making the two squares commute. The fact that L0 → X0 is an isomorphism follows
from [27, Section 2]. It remains to check that the left square is Cartesian. As in the proof
of Proposition 7.2, we can assume that all the D5 local charges of X are strictly positive. By
resolving all D5 branes like in diagram (43) and applying Corollary 6.5, we can reduce ourselves
to the case X = T ∗Fl. In this case, the nilpotent orbit closure Z resolved by the Springer
resolution T ∗Fl→ Z is just the image of π : X = T ∗Fl→ X0

7; hence the claim follows from the
Cartesian diagram (44). □

7.2. The equivariant geometry of NS5 resolutions. In Proposition 7.2 we identified the
fibers of the map π : L → X with Grassmannians. We begin this section by refining our
analysis of these fibers. For a given separated bow variety X and NS5 resolution X such that
w = w′+w′′, we set Y := /w′/w′+w′′\...\3\2\1\. If instead X is co-separated, we set
Y = \1\2\3\...\w′+w′′/w′′/. The following Lemma can be thought of as the NS5 version of
Lemma 6.9.

Lemma 7.4.

(1) Let f ∈ XA. The C×
ℏ -fixed locus Y ℏ of the bow variety Y fits in the following pullback

diagram:

Y ℏ L

{f} X.

p

(2) Any fixed point f ∈ XA admits exactly
(
w′ +w′′

w′′

)
resolutions, i.e. fixed points f̄ ∈ XA ∩L

such that p(f̄) = f .
(3) For any fixed point f ∈ XA, we have TX − TL = TY − TY ℏ in KT(Y

ℏ).

Proof. The first point follows from the quiver descriptions of L, X, and of the fixed points
f ∈ XA in [45, Section 4.3].

Consider the Grassmannian fibration p : L→ X. Since p is equivariant, the fiber over an arbi-
trary A-fixed point f ∈ XA is preserved by the A-action and a subtorus of rank w′+w′′ acts on
it non-trivially. Under the identification p−1(f) = Gr(w′,w′+w′′) (or p−1(f) = Gr(w′′,w′+w′′)
in the co-separated case), this action coincides with the standard action of the maximal torus
of GL(w′+w′′) on the framing. As a consequence, the number of fixed points in L over f ∈ XA

is equal to
(
w′ +w′′

w′′

)
.

We now prove the last point. All the computations will be implicitly in the ring KT(Y
ℏ).

By the first point of the lemma, we have TY ℏ = TL − TX. Since the symplectic form of Y
is rescaled by ℏ, we have TY − TY ℏ = ℏ(TY ℏ)∨, hence TY − TY ℏ = ℏ(TL − TX)∨. Thus, it
suffices to prove that

(45) TX − TL = ℏ(TL− TX)∨.

7AlthoughX0 is itself a nilpotent orbit closure, the map π : X → X0 may not be surjective [52]. Hence, π(X) ⊊ X0

in general.
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Graphically, we have

TL− TX =

 ζ1 ζ2 ζ3
◦

− ζ2

− ζ1 ζ3
◦

and

TX−TL =

(
ℏ−1 ζ1 ζ2 ζ3

◦ ◦
− ζ2◦

)
−

 ζ1 ζ2 ζ3
◦

− ζ2

 .

The shift of ζ1 by ℏ−1 follows from Remark 7.1. Recalling that the circles stand for action by ℏ
and that (−)∨ reverses the arrows, checking (45) becomes a straightforward computation. □

Remark 7.5. The action of T on Y ℏ induced by diagram (1) is a twist of the standard action
on Y seen as a bow variety. Indeed, if X is separated (resp. co-separated), then T acts on the
i-th brane of Y with weight equal to aih

−γi (resp. aih
γi(f)), where γi(f) is equal to the number

of ties in the tie diagram of f ∈ XA that are connected to the NS5 branes left to the resolved
NS5 brane Z. This again follows from the explicit description of f ∈ XA given in [45, Section
4.3].

Remark 7.6. By part (2) of Lemma 7.4, the resolutions of f ∈ XA are in one-to-one cor-
respondence with fixed points in Y . In terms of tie diagrams, the correspondence sends the
tie diagram of f̄ ∈ X to the tie diagram of Y = /w′/w′+w′′\...\3\2\1\ (resp. Y =
\1\2\3\...\w′+w′′/w′′/) obtained by erasing all the branes and ties not connected to Z ′

or Z ′′. By slightly abusing notation, we will still denote the resulting fixed point in Y by f̄ .

In the next lemma, we compare the full attracting sets of X and X.

Lemma 7.7. Let f ∈ XA and let f̄ ∈ XA
be any resolution of f . Then

p
(
AttX,f

C (f̄) ∩ (L× f̄)
)
⊆ AttX,f

C (f).

Proof. Since the map p is A-equivariant, it suffices to prove that AttX,f
C (f̄)∩(L× f̄) ⊆ AttL,fC (f̄).

But this follows from the same argument of Lemma 6.11 with Corollary 6.5 replaced by Corollary
7.3. □

7.3. NS5 fusion of stable envelopes. As stated in Lemma 7.4, an arbitrary fixed point

f ∈ XA admits exactly
(
w′ +w′′

w′

)
possible resolutions f̄ ∈ XA

. Among these, we denote by f̄♯
the smallest one with respect to the order determined by the chamber C. In this section, we

relate the stable envelope StabXC (f) of f in X to the stable envelope StabX
C
(f̄♯) of f̄♯ in X via

pull-push along the correspondence (42). According to the general philosophy of elliptic stable
envelopes, the equality holds up to a shift of the Kähler parameters, which we now introduce.

Consider the morphism ψ : T! → T!
that is the identity on most components except

C×
Z × C×

ℏ → C×
Z′ × C×

Z′′ × C×
ℏ (z, ℏ) 7→

{
(z, z ℏ−w′

, ℏ) if D is separated

(z ℏw′′
, z, ℏ) if D is co-separated.

Lemma 7.8. Let Np be the virtual normal bundle of p : L→ X. Then we have

p∗
(
L▽A,f ⊠ LX

)
⊗Θ(−Np) = j∗ψ∗

(
L▽A,f̄♯ ⊠ LX

)
for every f ∈ XA.
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We defer the proof of this lemma to the end of this section. It implies that the following chain
of maps of OBT,T!

-modules is well defined:

p∗

(
ψ∗L▽A,f̄♯ ⊠ LX

)
p∗

(
j∗ψ∗L▽A,f̄♯ ⊠ LX

)
L▽A,f ⊠ LX .

j∗ p⃝∗

We now state the main result of this section.

Theorem 7.9. Let f ∈ XA and let f̄♯ ∈ p−1(f)A be the minimal fixed point with respect to the
attracting order determined by C. Then the following formula holds

p⃝∗ (j
∗ψ∗StabC(f̄♯)) = StabC(f).

Remark 7.10. The maps j and p define a closed embedding L ↪→ X × X and it is easy
to check that L ⊆ X × X is Lagrangian with symplectic form ω̄ − ω. Indeed, checking that
dim(L) = 1/2(dim(X) + dim(X)) is straightforward from our quiver description and isotropy
follows from an easy computation using the fact that the symplectic form of a two-way part like
the one left-hand side of (39) is given by tr(dD ∧ dC).

From this symplectic point of view, the cohomological limit of Proposition 7.2 can be nicely
interpreted in terms of Lagrangian correspondences. Indeed, the cohomological stable envelope
StabC(f) can be seen as a Lagrangian cycle [StabC(f)] ∈ HBM

T (f × X) and the cohomological
limit of Proposition 7.2 says that

(46) [StabC(f)] = [L] ∗ [StabC(f̄♯)]

upon identifying f̄♯ with f . The operation on the right-hand side is the convolution product in
Borel-Moore homology, cf. Section 3.2.5 of [31, Section 3.2.5].

Proof of Theorem 7.9. By Lemma 7.8, p⃝∗ (j
∗Z∗StabC(f̄♯)) is a section of the correct line bundle

so it suffices to check the axioms of Section 5.2. Recall the notation introduced in (5.1) and
consider the solid diagram

X
>f̄♯ p−1(X>f ) X>f

X L X

ī>

j>

k>

p>

i>

j p

in which the right square is simply the pullback. We first prove the support axiom, i.e. that

i∗>p⃝∗ (j
∗ψ∗StabC(f̄♯)) = 0.

Assume temporarily that p−1(X>f ) ⊆ X
>f̄♯ , i.e. that the dashed inclusion in the diagram

exsists. Then compatibility of pushforward and pullback in Cartesian squares implies that

i∗>p⃝∗ (j
∗ψ∗StabC(f̄♯)) = p>⃝∗k

∗
>(j

∗ψ∗StabC(f̄♯)) = p>⃝∗ j
∗
>ī

∗
>ψ

∗StabC(f̄♯)) = p>⃝∗ j
∗
>ψ

∗ī∗>StabC(f̄♯) = 0

In the last step, we used the support axiom for StabC(f̄♯). It remains to show that p−1(X>f ) ⊆
X

>f̄♯ or, equivalently, that

(47) p
(
AttX,f

C (f̄♯) ∩ L
)
⊆ AttX,f

C (f).

But this is exactly Lemma 7.7.
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Consider now the solid commutative diagram

AttXC (f̄♯) AttLC (f̄♯) AttXC (f)

X
≥f̄♯ p−1(X≥f ) X≥f

X L X.

lX lL

pAtt

lX

ī≥

j≥

k≥

p≥

i≥

j p

It remains to prove the diagonal axiom, i.e. that

(48) i∗≥p⃝∗ (j
∗ψ∗StabC(f̄♯)) = [AttXC (f)].

The same argument used for j> shows that the dashed map j≥ is well defined. From the proof

of Lemma 7.7, it follows that AttLC (f̄♯) = AttXC (f̄♯) ∩ L. Hence, the top left square is Cartesian.

Clearly, also the bottom right square is Cartesian. We now claim that pAtt is an isomorphism.
It suffices to work locally at f̄♯ and show that the map

DpAtt : Tf̄♯Att
L
C (f̄♯)→ TfAtt

X
C (f)→ 0

is an isomorphism. Since by assumption f̄♯ is C-minimal among the fixed points in the fiber
p−1(f) ∼= Gr(w′,w′+w′′) (or p−1(f) ∼= Gr(w′′,w′+w′′) in the co-separated case), it follows that
Tf̄♯(p

−1(f)) has no positive weights, and hence

dim(Tf̄♯Att
L
C (f̄♯)) = dim(TfAtt

X
C (f)).

This proves the claim. We can now prove the diagonal axiom. As before, we have

i∗≥p⃝∗ (j
∗ψ∗StabC(f̄♯)) = p≥⃝∗k

∗
≥(j

∗ψ∗StabC(f̄♯)) = p≥⃝∗ j
∗
≥ī

∗
≥ψ

∗StabC(f̄♯)) = p≥⃝∗ j
∗
≥ψ

∗ī∗≥StabC(f̄♯).

By the diagonal axiom for StabC(f̄♯), we get

p≥⃝∗ j
∗
≥ψ

∗ī∗≥StabC(f̄♯) = p≥⃝∗ j
∗
≥ψ

∗[AttXC (f̄♯)] = p≥⃝∗ j
∗
≥[Att

X
C (f̄♯)].

Now recall that [AttXC (f̄♯)] = lX1
⃝∗ (1) and the top left diagram is Cartesian, hence

p≥⃝∗ j
∗
≥[Att

X
C (f̄♯)] = p≥⃝∗ j

∗
≥l

X
⃝∗ (1) = p≥⃝∗ l

L
⃝∗ (1) = lX⃝∗ p

Att
⃝∗ (1) = lX⃝∗ (1) = [AttXC (f)].

In the penultimate we used the fact that pAtt is an isomoprhism, so pAtt
⃝∗ = id. Combining the

three lines of equations above, we deduce (48). This completes the proof. □

Remark 7.11. Assume for simplicity thatX is separated. The localization formula (Proposition
4.2) implies that

p⃝∗ (j
∗ψ∗StabC(f̄♯))

∣∣∣
f
=
∑
f̄

StabC(f̄♯)
∣∣∣
f̄

ϑ(Np)
∣∣∣
f̄

(z′ = z, z′′ = z ℏ−w′
).

Since f̄♯ is C-minimal, only the diagonal term on the right-hand side is nonzero; hence we get

p⃝∗ (j
∗ψ∗StabC(f̄♯))

∣∣∣
f
=

StabC(f̄♯)
∣∣∣
f̄♯

ϑ(Np)
∣∣∣
f̄♯

(z′ = z, z′′ = z ℏ−w′
) =

ϑ(N−
f̄♯
)

ϑ(Np,f̄♯)
.
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Again by minimality of f̄♯, we deduce that N−
f̄♯

= Np,f̄♯ ⊕N
−
f and hence

p⃝∗ (j
∗ψ∗StabC(f̄♯))

∣∣∣
f
=

ϑ(N−
f̄♯
)

ϑ(Np,f̄♯)
= ϑ(N−

f ),

as required by Remark 5.5.

We conclude this section with the proof of Lemma 7.8.

Proof of Lemma 7.8. As usual, we prove the theorem assuming that X is separated since the
co-separated case is completely analogous. We need to show that

j∗ψ∗
(
L▽A,f̄♯ ⊠ LX

)
⊗ p∗

(
L▽A,f ⊠ LX

)−1
= Θ(Np).

Recall that for any bow variety X and isolated fixed point i : {f} ↪→ X, we have

LX = Θ(αX)⊗UX L▽A,f = i∗L−1
X ⊗Θ(−N−

f/X)

and the dependence on the Kähler parameters is only encoded in UX and UX . Since by as-
sumption f̄♯ is smallest in the attracting order determined by the chamber C, it follows that

N−
f̄♯/X

−N−
f/X = Np|f̄♯ .

Hence, to prove the claim, it suffices to show that

p∗Θ(αX)−1 ⊗ j∗Θ(αX) = Θ(Np)⊗ G1(49)

p∗U −1
X ⊗ ψ∗j∗UX = G2,(50)

where G1 and G2 are line bundles pulled back from the base BT,T! . All the computations will be
local around the resolution, so we relabel the various ingredients for convenience:

X =

w− w′ w′′ w+

z− z′ z′′ z+

X =

w− w w+

z− z z+
.

We now analyze the virtual normal bundle Np to the map p : L 7→ X. By (39) and the definition
of p, we obtain the following diagrammatic description for Np:

Np = TL− TX =

 ζ1 ζ2 ζ3
◦

− ζ2

− ζ1 ζ3
◦

.

Here, ζ1, ζ2, and ζ1 are the three tautological bundles on the vertices of the right-hand side of
(39), and the decoration of the arrows by a circle indicates a weight one action of ℏ. Similarly,
we have

j∗αX − p
∗αX =

(
ℏ−1 ζ1 ζ2 ζ3

◦ ◦
− ζ2◦

)
− ζ1 ζ3.

◦

The twist of ζ1 by ℏ−1 follows from Remark 7.1. Overall, it follows that

j∗αX − p
∗αX = Np + (ℏEnd(ξ2)− End(ξ2)) .

But then Lemma 4.1 implies (49) with G1 = Θ(ℏEnd(ξ2)− End(ξ2)).
We now check (50). By definition,

p∗UX = · · · ⊗ U
(
ζ1,

z−

z
ℏ−w−

)
⊗ U

(
ζ3,

z

z+
ℏ−w

)
⊗ . . .
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where the dots stand for the other terms not depending on z. On the other hand

j∗UX = · · · ⊗ U
(
ζ1 ⊗ ℏ−1,

z−

z′
ℏ−w−

)
⊗ U

(
ζ2,

z′

z′′
ℏ−w′

)
⊗ U

(
ζ3,

z′′

z+
ℏ−w′′

)
⊗ . . .

where now the dots stand for the other terms not depending on z′ and z′′. The twist of ζ1 by
ℏ−1 has the same explanation as before. Applying ψ∗, i.e. setting z′ = z and z′′ = zℏ−w′

and
using the identity w = w′+w′′, we get

ψ∗j∗UX = · · · ⊗ U
(
ζ1 ⊗ ℏ−1,

z−

z
ℏ−w−

)
⊗ U (ζ2, 1)⊗ U

(
ζ3,

z

z+
ℏ−w

)
⊗ . . .

= · · · ⊗ U
(
ζ1 ⊗ ℏ−1,

z−

z
ℏ−w−

)
⊗ U

(
ζ3,

z

z+
ℏ−w

)
⊗ . . . .

In the second step, we have used the fact that U(V, 1) ∼= O for all V . Therefore, applying
Lemma 4.1, we get

p∗U −1
X ⊗ ψ∗j∗UX = · · · ⊗ U

(
ℏ−1,

z−

z
ℏ−w−

)⊗rk(ζ1)

⊗ . . . .

Notice that U
(
ℏ−1, z

+

z ℏ−k+
)

only depends on the Kähler variables and ℏ, hence it is pulled

back from the base BT,T! . Similarly, Remark 7.1 implies that the dots on the right are trivial

bundles while those on the left are products of terms of the form U(ℏ−1, zi/zi+1ℏ−w(Zi))⊗li for
some li ∈ N. Hence the latter are also pulled back from BT,T! . This completes the proof of (50)

(with G2 given by the product of all these pullbacks) and hence of the lemma. The co-separated
case is completely analogous and even slightly easier because of the absence of the twists by ℏ−1

of certain tautological bundles like the bundle ζ1 above. □

7.4. More explicit formulas. Let X be separated or co-separated and let X be the resolution
of its i-th NS5 brane Z with local charge decomposition w = w′+w′′. Localizing at fixed
points and using the localization formula for the pushforward, we now produce explicit formulas
relating the fixed point restrictions of the stable envelopes of X and X.

Recall that if X is separated, we set Y := /w′/w′+w′′\...\3\2\1\. If instead X is co-
separated, we set Y = \1\2\3\...\w′+w′′/w′′/. As discussed in Lemma 7.4, fibers of p : L→
X over fixed points are canonically isomorphic to Y ℏ. As a consequence, whenever a fixed point

f ∈ XA is chosen, we can identify its resolutions f̄ ∈ XA ∩ L with the A-fixed points in Y (or
in Y ℏ, since Y A = Y T). For an explicit description of this correspondence via tie diagrams, see
Remark 7.6.

Proposition 7.12. Assume that X is separated. Then

StabXC (f)
∣∣∣
g

StabXC (g)
∣∣∣
g

(a, z, ℏ)

=
∑
ḡ∈Y A

ϑ(N−
ḡ/Y )

ϑ(Nḡ/Y ℏ)
(a ℏ−γ(g))

StabXC (f̄♯)
∣∣∣
ḡ

StabXC (ḡ)
∣∣∣
ḡ

(a, z1, . . . , z
′
i = zi, z

′′
i = zi ℏ−w′

, . . . , zm, ℏ).

Here Y = /w′/w′+w′′\...\3\2\1\ and Nḡ/Y ℏ is the restriction to ḡ of the tangent class TY ℏ ∈
KT(Y

ℏ). The multi-index γ(g) indicates the shift introduced in Remark 7.5.
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Proposition 7.13. Assume that X is co-separated. Then

StabXC (f)
∣∣∣
g

StabXC (g)
∣∣∣
g

(a, z, ℏ)

=
∑
ḡ∈Y A

ϑ(N−
ḡ/Y )

ϑ(Nḡ/Y ℏ)
(a ℏγ(g))

StabXC (f̄♯)
∣∣∣
ḡ

StabXC (ḡ)
∣∣∣
ḡ

(a, z1, . . . , z
′
i = zi ℏw

′′
, z′′i = zi, . . . , zm, ℏ).

Here Y = \1\2\3\...\w′+w′′/w′′/ and Nḡ/Y ℏ is the restriction to ḡ of the tangent class

TY ℏ ∈ KT(Y
ℏ). The multi-index γ(g) indicates the shift introduced in Remark 7.5.

Proof. We only prove the separated case as the co-separated one is analogous. Applying the
localization formula (Proposition 4.2) to Theorem 7.9, we get

StabXC (f)
∣∣∣
g
(a, z, ℏ) =

∑
ḡ

1

ϑ(Nḡ/Y ℏ)
(a ℏ−γ(g))StabXC (f̄♯)

∣∣∣
ḡ
(a, z1, . . . , z

′
i = zi, z

′′
i = zi ℏ−w′

, . . . , zm, ℏ).

Thus, it remains to prove that

ϑ(N−
ḡ/Y )Stab

X
C (g)

∣∣∣
g
= StabXC (ḡ)

∣∣∣
ḡ
.

But this follows from point (3) of Lemma 7.4 and the diagonal axiom of the stable envelopes
(cf. Remark 5.5).

□

Remark 7.14. The coefficients appearing in these formulas are ratios of topological classes
associated with the bow varieties /w′/w′+w′′\...\3\2\1\ and \1\2\3\...\w′+w′′/w′′/, in
the separated and co-separated case, respectively. Remarkably, these varieties are dual to those
appearing in the results of Section 6.4. This is not a lucky coincidence, and the key step in the
proof of mirror symmetry will be showing that the coefficients above are identified under mirror
symmetry with the coefficients appearing in the D5 resolutions of stable envelopes from Section
6.4.

This duality between D5 and NS5 resolutions can also be detected at the level of the resolving
fixed points. If C is the standard chamber C = {a1 < a2 < · · · < an}, then the fixed point f̄♯
appearing in the formulas above can be described as follows:

f =
z

}
w′+w′′

separated

NS5 res.
f̄♯ =

z′ z′′

}w′

}w′′

f =
z

w′+w′′
{

co-separated

NS5 res.
f̄♯ =

z′ z′′

w′{

w′′{
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Namely, if X is separated (resp. co-separated), then the tie diagram of f̃♯ is obtained from the
one of f by making all the ties connected to the resolving branes Z ′ and Z ′′ cross (resp. by
avoiding all the crosses).

Comparing these pictures with (33) and recalling that mirror symmetry swaps separated and
co-separated bow varieties, it becomes clear that if C is the standard chamber, then we have
(f̄♯)

! = f̃♯.

8. 3d Mirror Symmetry of Stable envelopes

8.1. Mirror Symmetry statement. In this section, we consider the stable envelopes of arbi-
trary bow varieties with m NS5 branes and n D5 branes. For a fixed point f ∈ XA, let the sign
εX(f) be defined as (−1) to the power of

n∑
i=1

m∑
j=1

∑
k>i
l>j

bijbkl,

where bij are the entries of the BCT table of f introduced in Section 2.4. Notice that since the
BCT tables only depend on X and f up to Hanany-Witten isomorphism, the same is true for
εX(f). It is instructive to check that if X is separated, then the sign ε(f) is (−1) to the power
of the number of tie crossings in the tie diagram of f .

We can finally state the main theorem of this paper.

Theorem 8.1. Mirror symmetry for stable envelopes of bow varieties holds, i.e.

(51)
StabX(f)|g
StabX(g)|g

(a, z, ℏ) = εX(f)εX(g)
StabX

!
(g!)|f !

StabX
!
(f !)|f !

(z, a, ℏ−1)

for any bow variety X and fixed points f, g ∈ XA.

Since all the elements of (51) are invariant under Hanany-Witten isomorphism, our strategy
for the proof is to first reduce to the case of separated X and then to argue by induction utilizing
the following two lemmas.

Lemma 8.2. Let X be separated and Z be an NS5 brane of X with local charge w = w(Z) > 1.
Set w′′ = 1 and let X be the NS5 resolution of Z associated with the splitting w = w′+w′′. If
Theorem 8.1 holds for X, then it also holds for X.

Lemma 8.3. Let X be separated and let A be a D5 brane of X with local charge w = w(A) > 1.

Set w′ = 1 and let X̃ be the D5 resolution of A associated with the splitting w = w′+w′′. If

Theorem 8.1 holds for X̃, then it also holds for X.

As it will become clear from their proofs, it is reasonable to expect both lemmas above to
hold without the assumptions w′′ = 1 or w′ = 1. However, these assumptions greatly simplify
certain computations, so we restrict ourselves to these special cases. We will prove these lemmas
in the next section. Before that, let us explain why they imply Theorem 8.1.

Proof of Theorem 8.1. Since both the stable envelopes and the sign εX(f) are invariant under
Hanany-Witten isomorphism, we can assume that X is separated. Moreover, we claim that it
suffices to assume that all the local charges (both D5 and NS5) of X are strictly positive. Indeed,
as shown in Section 5.10, the ratios of stable envelopes are unaffected by the insertions of charge
zero branes. Likewise, inserting a D5 (resp. NS5) brane in the brane diagram of X corresponds
to adding a column (resp. a row) of zeros in the BCT tables of its fixed points. Consequently,
the signs εX(f) and εX(g) are also unaffected by charge zero 5-branes. This proves the claim.
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Overall, we can assume that X is separated and all its local charges are strictly positive. We
argue by induction on the number N(X) of 5-branes B with local charge w(B) > 1. The case
N(X) = 0 is the base of our induction. In this case, we have X ∼= T ∗Fld ∼= X !, where d is the
dimension of the unique D3 brane of X in between a D5 and an NS5 brane, and Theorem 8.1 is
already proved in [47].

Assume now that the theorem holds for all X such that N(X) ≤ M for some non-negative
M and fix any X such that N(X) = M + 1. This means that there exists at least one 5-brane
B in X with local charge w = w(B) > 1. If B = Z (resp. B = A), then applying Lemma 8.2
(resp. Lemma 8.3) w−1 times, it follows that the theorem holds for X if it holds for the variety

X(w−1) obtained from X by replacing B with w consecutive 5-branes of the same type with local
charges all equal to one. But N(X(w−1)) = N(X)− 1 =M , so by the inductive hypothesis the

theorem holds for X(w−1) and hence also for X.
□

8.2. Proofs of Lemma 8.2 and Lemma 8.3.

Proof of Lemma 8.2. We first describe the strategy og the proof. Let m and n be, respectively,
the number of NS5 and D5 branes of the separated bow variety X. The strategy for the proof
is the following. Consider the NS5 resolution X of the brane Z in X and the D5 resolution

(̃X !) of the brane A = Z ! in X !. Clearly, we have (X)! = (̃X !). By Proposition 7.12, we
express the left-hand side of (51) as a linear combination of stable envelopes of X. Similarly, by
Proposition 6.16, we express the right-hand side as a linear combination of the stable envelopes

of (̃X !) = (X)!. Since we assume that mirror symmetry holds for X, to conclude that it also
holds for X it suffices to show that the coefficients in these two linear combinations match after
the changes of variables prescribed by mirror symmetry. This comparison of the coefficients is
done by means of an explicit computation.

After this overview of our argument’s structure, we now spell it out in detail. For the sake of
notation, say that Z is the k-th NS5 brane in X. Then X and X are

X =

z1 z2 zk zm−1 zm a1 a2 a3 an−1 an

w

X =

z1 z2 z′k z′′k zm−1 zm a1 a2 a3 an−1 an

w′ w′′

.

Fix f ∈ XA and recall that by assumption w′′ = 1 and hence w′ = w−1. As stated in Lemma

7.4 (2), associated with f are
(
w′ +w′′

w′

)
= w resolutions f̄ . The latter can be both identified

with the fixed points in Y = /w−1/w\...\3\2\1\ or with certain fixed points in X by means
of the embedding Y ℏ ↪→ X. For any i = 1, . . . ,w, let us denote by fi the resolution of f
that, under the identification Y ∼= T ∗Gr(w−1,w), corresponds to the hyperplane dual to the
i-th coordinate plane in Cw8. In the language of tie diagrams, fi is the unique tie diagram of
/w−1/w\...\3\2\1\ connecting the rightmost NS5 brane to the i-th D5 brane (counting from
left to right). Notice that this ordering is consistent with our choice of chamber because we have

(52) f1 < f2 < · · · < fw−1 < fw,

8Writing f̄i instead of fi would be more consistent with our previous notation, but would also make the present
proof notationally too heavy.
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both in Y and in X. In particular, the minimal resolution f̄♯ introduced in Theorem 7.9 coincides

with fw (see also Remark 7.14). By Proposition 7.12, the stable envelopes of X andX are related
as follows

(53)
StabX(f)

∣∣∣
g

StabX(g)
∣∣∣
g

(a, z, ℏ)

=
w∑
i=1

di(a ℏ−γ(g), ℏ)
StabX(fw)

∣∣∣
gi

StabX(gi)
∣∣∣
gi

(a, z1, . . . , z
′
i = zk, z

′′
k = zk ℏ1−w, . . . , zm, ℏ),

where

di(a, ℏ) =
ϑ(N−

gi/Y
)

ϑ(Ngi/Y ℏ)
(a, ℏ)

is an elliptic class of Y ∼= T ∗Gr(w−1,w).
Let us now look at the dual side. As noticed above, we have (X)! ∼= X̃ !, where X̃ ! is the D5

resolution of the i-th D5 brane in X !:

X ! =

z1 z2 zi zm−1 zm a1 a2 an−1 an

w

X̃ ! = (X)! =

z1 z2 zi
′ zi

′′ zm−1 zm a1 a2 an−1 an

w′ w′′

.

Notice that here the variables z play the role of the equivariant parameters, while a the one
of the Kähler parameters. Recall that the torus A! acting on X ! (the space of the variables

z) is a proper subtorus of the torus Ã! acting on X̃ !. Fix some f ! ∈ (X !)A
!
. Like in the NS5

case discussed above, by Lemma 6.9 we associate with f ! its resolutions (̃f !). The latter can be

identified both with the Ã!-fixed points in F = \w−1\w/.../3/2/1/ or with certain Ã!-fixed

points in X̃ ! by means of the embedding F ↪→ X̃ !.
The first key observation for the proof is that F = Y !, where Y is the bow variety introduced

above. Mirror symmetry of fixed points for the pair (Y, Y ! = F ) implies that we have a one-to-

one correspondence between NS5 resolutions of f ∈ XA and D5 resolutions of f ! ∈ (X !)A
!
. We

label the resolutions of f according to mirror symmetry, i.e. we set f !i := (fi)
! for i = 1 . . . ,w.

The distinguished resolution (̃f !)♯ from Lemma 6.12 is identified with f !w. With this notation,
Proposition 6.16 states that

(54)
StabX

!
(g!)
∣∣∣
f !

StabX
!
(f !)

∣∣∣
f !

(z, a, ℏ−1)

=

w∑
i=1

ci(a ℏ−γ(g), ℏ−1)

StabX̃
!
(g!i)
∣∣∣
f !
w

StabX̃
!
(f !w)

∣∣∣
f !
w

(z1, . . . , z
′
k = zk, z

′′
k = zk ℏ1−w, . . . , zm, a, ℏ−1),
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where

(55) ci(a, ℏ−1) =

(
R

C̃/C,C̃∨/C

)
g!i,g

!
w(

R
C̃/C,C̃∨/C

)
g!w,g!w

(zk, zk ℏ1−w, a, ℏ−1)

is a ratio of R-matrix coefficients of the bow variety F = \w−1\w/.../3/2/1/. Notice that
since the R-matrix only depends on the ratio zk ℏ1−w /zk = ℏ1−w of the equivariant parameters,
the dependence on zk is only apparent.

All the ingredients have finally been set. Applying the assumption of the lemma, i.e. mirror

symmetry for stable envelopes of the pair (X, (X)! = X̃ !), to each of the summands on the
right-hand side of (54), we deduce that the left hand side of (51), i.e. the class

εX(f)εX(g)
StabX

!
(g!)
∣∣∣
f !

StabX
!
(f !)

∣∣∣
f !

(z, a, ℏ−1),

is equal to

w∑
i=1

εX(f)εX(g)

εX(fw)εX(gi)
ci(a ℏ−γ(g), ℏ−1)

StabX(fw)
∣∣∣
gi

StabX(gi)
∣∣∣
gi

(a, z1, . . . , z
′
i = zk, z

′′
k = zk ℏ1−w, . . . , zm, ℏ).

Comparing this last formula with (53), we deduce that to complete the proof of the lemma it
suffices to show that the coefficients of these two resolutions are mirror dual, i.e. that

(56)
εX(f)εX(g)

εX(fw)εX(gi)
ci(a, ℏ−1) = di(a, ℏ)

for all i = 1, . . . ,w. We check equation (56) via an explicit computation of both sides, performed
in the next three lemmas. Namely, in Lemma 8.4 we compute di(a, ℏ), in Lemma 8.5 we compute
ci(a, ℏ−1), and in the last lemma we show that these two classes exactly differ by the sign
εX(f)εX(g)
εX(fw)εX(gi)

. □

Lemma 8.4. Consider the bow variety Y = /w−1/w\...\3\2\1\. We have

di(a, ℏ) =
w∏

j=i+1

ϑ
(
ai ℏ
aj

)
ϑ
(
aj
ai

) .
Proof. By definition

di(a, ℏ) =
ϑ(N−

gi/Y
)

ϑ(Ngi/Y ℏ)
(a, ℏ),

hence the proof directly follows from the tautological description of the tangent space TY of the
bow variety Y [45, Section 3.2]. Alternatively, one can use one of the standard descriptions of
the tangent space of T ∗Gr(w−1,w) ∼= Y . □

Lemma 8.5. Consider the bow variety Y ! = F = \w−1\w/.../3/2/1/. As before, denote by
z′ and z′′ its equivariant parameters and by a its Kähler parameters. Let R := R{z′<z′′},{z′>z′′}
be its R-matrix. We have

Rg!i,g
!
w

Rg!w,g!w

(z′, z′′, a, ℏ) =
StabF{z′>z′′}(g

!
i)
∣∣∣
g!w

StabF{z′>z′′}(g
!
w)
∣∣∣
g!w

(z′, z′′, a−1, ℏ).
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Computing the right-hand side, we deduce that

ci(a, ℏ−1) = (−1)w−i
w∏

j=i+1

ϑ
(
ai ℏ
aj

)
ϑ
(
aj
ai

) .
Proof. Firstly, notice that all the NS5 charges ri of F are equal to one. Thus, applying Corollary
5.19 and keeping in mind that now a is the Kähler parameter, we get

Rg!i,g
!
w

Rg!w,g!w

(z′, z′′, a, ℏ) =
Rg!w,g!i

Rg!w,g!w

(z′, z′′, a−1, ℏ).

By definition of R-matrix, we have

StabF{z′>z′′}(g
!
i)
∣∣∣
g!w

=
w∑

j=1

StabF{z′<z′′}(g
!
j)
∣∣∣
g!w
Rg!j ,g

!
i

for all i, j = 1, . . . ,w. Since g!w is maximal9 with respect to the partial order determined by
{z′ < z′′}, only the diagonal term on the right-hand side survives; hence, we get

StabF{z′>z′′}(g
!
i)
∣∣∣
g!w

= StabF{z′<z′′}(g
!
w)
∣∣∣
g!w
Rg!w,g!i

,

from which the first statement follows.
In order to deduce the second statement from the first one, we first apply Proposition 6.18 to

get

Rg!i,g
!
w

Rg!1,g
!
w

(z′, z′′, a, ℏ) =
StabF

∨

{z′<z′′}(hi)
∣∣∣
hw

StabF
∨

{z′<z′′}(hw)
∣∣∣
hw

(z′′, z′, a−1, ℏ).

Here, F∨ is the bow variety \1\w−1/.../3/2/1/ and hi := (g!i)
∨. In terms of tie diagrams, the

point hi corresponds to the unique tie diagram of \1\w−1/.../3/2/1/ connecting the leftmost
D5 brane to the i-th NS5 brane on the right.

At this point, one could directly compute the right-hand side using a tautological presentation
of the stable envelopes [6], but we choose a different strategy that simplifies the computation.
Notice that F∨ is dual to the bow variety (F∨)! = /1/w\...\3\2\1\ ∼= T ∗Pw−1 (which should
not be confused with Y ∼= /w−1/w\...\3\2\1\ ∼= T ∗Gr(w−1,w)). Since 3d mirror symmetry
for stable envelopes of T ∗Pw−1 is known10 [46], we can invoke it to deduce that

Rg!i,g
!
w

Rg!w,g!w

(z′, z′′, a, ℏ) = ε(F∨)!(h
!
i)ε(F∨)!(h

!
w)

Stab(F
∨)!(h!w)

∣∣∣
h!
i

Stab(F
∨)(h!i)

∣∣∣
h!
i

(a−1, z′′, z′, ℏ−1).

As usual, the standard chamber is understood, and h!i := (hi)
!. In particular, the fixed point

h!i is the i-th coordinate plane in Pw−1 ⊂ T ∗Pw−1. Recalling the definition of ci(a, ℏ−1) from
equation (55), we finally have
(57)

ci(a, ℏ−1) =
Rg!i,g

!
w

Rg!w,g!w

(z, z ℏ1−w, a, ℏ−1) = ε(F∨)!(h
!
i)ε(F∨)!(h

!
w)

Stab(F
∨)!(h!w)

∣∣∣
h!
i

Stab(F
∨)(h!i)

∣∣∣
h!
i

(a−1, z ℏ1−w, z, ℏ).

9Notice that the mirror dual of g!w, namely the fixed point gw ∈ Y A, is instead minimal in the order introduced in
(52). This is in agreement with the fact that mirror symmetry inverts the poset structure of the dual fixed loci.
10Mirror symmetry of X = T ∗Gr(k, n) and its dual X ! was, before this article, the only known case beyond the
self duality of the cotangent bundle of the full flag variety.
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This formula is particularly advantageous because it expresses the left-hand side in terms of
the stable envelopes of T ∗Pw−1, the easiest stable envelopes to compute. They are explic-
itly described in Section 5.5. Let us first compute the right-hand side without the change
of variables. For this, notice that the tie diagram of h!i connects the leftmost NS5 brane in
/1/w\...\3\2\1\ ∼= T ∗Pw−1 with the i-th D5 brane from the left. By Proposition 5.11 and
the combinatorics of the fixed point restrictions, also described in Section 5.5, we get

Stab(F
∨)!(h!w)

∣∣∣
h!
i

Stab(F
∨)(h!i)

∣∣∣
h!
i

(a1, . . . , aw, z1, z2, ℏ) =

∏w−1
i=1 ϑ

(
ai ℏ
ak

)
∏k−1

i=1 ϑ
(
ai ℏ
ak

)∏w
i=k+1 ϑ

(
ak
ai

) ϑ
(

ak
aw

z1
z2

ℏw−2
)

ϑ
(
z2
z1

ℏw−2
)

=

∏k−1
i=1 ϑ

(
ai ℏ
ak

)
ϑ(h)

∏w−1
i=k+1 ϑ

(
ai ℏ
ak

)
∏k−1

i=1 ϑ
(
ai ℏ
ak

)∏w
i=k+1 ϑ

(
ak
ai

) ϑ
(

ak
aw

z2
z1

ℏw−2
)

ϑ
(
z1
z2

ℏw−2
)

=
w∏

i=k+1

ϑ
(
ai ℏ
ak

)
ϑ
(
ak
ai

)
 ϑ(h)

ϑ
(
aw ℏ
ak

) ϑ
(

ak
aw

z1
z2

ℏw−2
)

ϑ
(
z2
z1

ℏw−2
) .

Forcing now the substitutions above and recalling that ϑ(x−1) = −ϑ(x), we get

Stab(F
∨)!(h!w)

∣∣∣
h!
i

Stab(F
∨)(h!i)

∣∣∣
h!
i

(a−1, z ℏ1−w, z, ℏ) =
w∏

i=k+1

ϑ
(
ak ℏ
ai

)
ϑ
(

ai
ak

)
 ϑ(h)

ϑ
(
ak ℏ
aw

) ϑ
(

aw
ak ℏ

)
ϑ
(
ℏ−1
)

=
w∏

i=k+1

ϑ
(
ak ℏ
ai

)
ϑ
(

ai
ak

) .
By this last formula and equation (57), to conclude the proof it suffices to show that

ε(F∨)!(h
!
i)ε(F∨)!(h

!
w) = (−1)w−i.

But this immediately follows from the characterization of εX(−) for a separated brane diagram,
given at the beginning of Section 8.1, and the fact that the tie diagram of h!i has exactly w−i
tie crossings. □

Lemma 8.6. We have
εX(f)εX(g)

εX(fw)εX(gi)
= (−1)w−i.

As a consequence, equation (56) holds.

Proof. Both X and X are separated, so we can compute the left-hand side in terms of tie
crossings. We claim that εX(gi)/εX(g) = εY (gi), where Y = /w−1/w\...\3\2\1\. Indeed,
the tie crossings at the numerator differ from the ones at the denominator by those additional
crossings that are generated by the resolution of the NS5 brane. But these are effectively the
crossings of gi seen as a fixed point in Y .

Now recall that gi is the unique fixed point whose tie diagram in /w−1/w\...\3\2\1\
connects the rightmost NS5 brane with the i-th D5 brane. This implies that εY (gi) = (−1)i−1.
Hence, we get

εX(f)εX(g)

εX(fw)εX(gi)
= (−1)1−i(−1)1−w = (−1)2−w−i = (−1)w−i.

The second claim simply follows by comparing the explicit formulas of Lemmas 8.4 and 8.5. □
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These computations conclude the proof of Lemma 8.2. The proof of its sibling statement,
Lemma 8.3, is completely analogous, so we only sketch it.

Proof of Lemma 8.3. Lemma 8.2 was about the comparison of the NS5 resolution for the stable
envelopes of X with the D5 resolution for the stable envelopes of X !. Here we do the opposite,
i.e. we consider a D5 resolution of type w′+w′′ = w with w′ = 1 for some D5 brane A in X
and the homologous NS5 resolution of the dual brane Z = A! in X !. Like before, we consider
the associated resolutions of the stable envelopes on the two dual sides. The latter are given
by Lemma 6.15 on the D5 side and Lemma 7.13 on the NS5 side (i.e. the dual side). We
then apply the assumption of the lemma, i.e. 3d mirror symmetry of stable envelopes for the

pair (X̃,X ! = (X̃)!) on one of the two resolutions (for instance on the D5 side, like before)
and compare the resulting formulas. To show that these two formulas are the same, and hence
deduce the statement of the lemma, it suffices to compare the coefficients. Like before, the
latter can be computed explicitly. As for Lemma 8.4, the computation of the NS5 coefficients is
straightforward. On the D5 side, one proceeds like in Lemma 8.5 to reduce the coefficients to a
ratio of stable envelopes of T ∗Pw−1, now described as a co-separated bow variety, and uses the
explicit formula in Proposition 5.11 to complete the computation. □

Appendix A. Equivariant localization for bow varieties

Torus equivariant localization is an extremely powerful tool for computations in cohomology.
The most favorable situation to effectively apply localization techniques is when the natural
pullback i∗ associated with the inclusion i : XT ↪→ X is an isomorphism, i.e. when the coho-
mology ring of X is determined by the information at the fixed points. This property holds
(after permitting denominators) for many important varieties in geometric representation the-
ory, including partial flag varieties and Nakajima quiver varieties [33, 18, 31]. However, i∗ is
not injective in general for bow varieties. On some level, this lack of injectivity hints at the fact
that the whole cohomology H∗

T (X) ring (or its K-theory and elliptic analogs) of a bow variety
is not the correct space to look at from a representation theoretic point of view. Instead, one
should look at some appropriate subalgebra on which i∗ is an isomorphism.

In this appendix, we show that the subalgebra generated by the stable envelopes satisfies
this property. For simplicity, we work in singular cohomology. However, all the statements and
arguments adapt straightforwardly to K-theory and elliptic cohomology.

Let X be a T -space with finitely many T -fixed points. The cohomology H∗
T (X

T ) has a natural
basis associated with the fixed points f ∈ XT . With respect to this basis, the composition

H∗
T (X

T ) H∗
T (X) H∗

T (X
T )

i⃝∗ i∗

is equal to the diagonal matrix multiplying the basis elements by the Euler classes e(TfX) ∈
H∗

T (∗). Since each tangent class TfX is simply a direct sum of nontrivial T -characters, the map
i∗i⃝∗ is injective and hence becomes an isomorphism after localization, i.e. after tensoring with
Frac(H∗

T (∗)). Notice in particular that although i∗ might not be injective, it is always injective
on the image of i⃝∗ . From now on, we will always work in localized equivariant cohomology, i.e.
with the functor

H∗
T (−)loc := H∗

T (−)⊗H∗
T (∗) Frac(H

∗
T (∗)),

and all the maps will be considered as morphisms of Frac(H∗
T (∗))-modules.

Let now X be a bow variety with m NS5 branes equipped with its standard action of the
torus T = A×C×

ℏ . The cohomological stable envelopes are classes in H∗
T (X) and hence generate

a H∗
T(∗)loc-subalgebra

H∗
T(X)Stabloc ⊆ H∗

T(X)loc.
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Since both the stable envelopes and the equivariant parameters are even, this subalgebra is
concentrated in the even part of the cohomology ring and hence is commutative.

Proposition A.1. Let X be an arbitrary bow variety. The localized pushforward

i⃝∗ : H∗
T(X

T)loc → H∗
T(X)loc

is onto H∗
T(X)Stabloc . As a consequence, the fixed point localization

i∗ : H∗
T(X)Stabloc → H∗

T(X
T)loc

is an isomorphism.

Proof. Applying the Hanany-Witten isomorphism, we may assume that X is separated. Since
adding an NS5 brane with maximal charge induces an isomorphism (which is equivalent to
adding an NS5 brane with zero local charge in the co-separated setting), we may also assume
that X has no D5 branes with charge equal to 0. By Corollary 6.6 we have a closed embedding

j : X ↪→ X̃ = T ∗Fl, where Fl is a partial flag variety. This embedding is equivariant along the

map φ : T → T̃ identifying certain equivariant parameters of Ã up to some shifts in ℏ ∈ C×
ℏ ,

cf. Proposition 6.3. In particular, φ identifies A ⊂ T with a subtorus of the maximal torus Ã
acting on T ∗Fl. Equivariant formality of partial flag varieties implies that the map

ĩ⃝∗ : H∗
T̃(X̃

A)loc → H∗
T̃(X̃)loc

associated with the inclusion ĩ : X̃A ↪→ X̃ is an isomorphism. In particular, the subalgebra

H∗
T̃
(X̃)Stabloc is in the image of ĩ⃝∗ (actually in this case H∗

T̃
(X̃)loc = H∗

T̃
(X̃)Stabloc ).

Taking the cohomological limit of Theorem 6.13, we get

(58) c(ℏ)e(N−)StabXC (f) = j∗φ∗StabX̃
C̃
(f̃♯),

where c(ℏ) is a nonzero monomial in ℏ and e(N−) ∈ H∗
T(∗) is the Euler class of the negative

part of the normal bundle N of j : X ↪→ X̃, which is trivial in K-theory. Since both j∗ and φ∗

are ring homomorphisms, it follows that the composition of the leftmost and bottom arrows in
the solid diagram

H∗
T̃
(X̃A)loc H∗

T(X
A)loc

H∗
T̃
(X̃)Stabloc H∗

T(X)Stabloc

ĩ⃝∗ i⃝∗

j∗φ∗

is onto. Thus, to prove the proposition, it suffices to show that there exists a dashed map
that makes the diagram above well-defined (a priori, the image if i⃝∗ might not be contained
in H∗

T(X)Stabloc ) and commutative. We claim that this map is given by e(N+)e(N−)j∗Aφ
∗, where

jA : XA ↪→ X̃A is the restriction of j on the fixed locus and N± are the positive and negative
parts of the normal bundle N .

Fix some α ∈ H∗
T̃
(X̃A)loc. It suffices to assume that α is supported on some fixed component

F ⊂ X̃A. Two cases need to be distinguished. If F ∩ X = ∅, then j∗Aφ
∗(α) = 0. On the

other hand, by the exact sequence of the pair (X̃, X̃ \ F ), it follows that ĩ⃝∗ (α) restricts to zero

on X̃ \ F ⊃ X, and hence j∗φ∗ĩ⃝∗ (α) = 0, so, in this case, the diagram commutes. If instead
F ∩X ̸= ∅, then by Lemma 6.9 F ∩X = f , where f is some A-fixed point in X. Taking into
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account tubular neighborhoods11, we get the commutative diagram

f N0
f F

X N X̃

jA

i ĩ

j

.

Here, N0
f is the normal bundle of f in F . Since the right square is Cartesian and satisfies

dim(X̃)− dim(F ) = dim(N)− dim(N0
f ), the descending compatibility of pushforward and pull-

back implies that
j∗φ∗ĩ⃝∗ (α) = e(N+)e(N−)j∗Aφ

∗(α),

as claimed. □

Remark A.2. The proof of the previous proposition is only based on formal properties of the
cohomology theory and on Theorem 6.13. As a consequence, this statement can be directly
generalized to K-theory and elliptic cohomology. In particular, it implies that the elliptic stable
envelopes, their products, and their linear combinations (whenever the latter are defined since
a priori different stable envelopes live in different line bundles) are in the image of the elliptic
localized pushforward i⃝∗ .

Remark A.3. Beyond H∗
T(X)Stabloc , another interesting commutative subalgebra of H∗

T(X)loc is
H∗

T(X)tautloc , the subalgebra generated by the Chern classes of the tautological bundles on X.
Since the cohomology of any partial flag variety is generated by tautological classes, which are
compatible with pullback, equation (58) implies that the stable envelopes of any bow variety
are contained in H∗

T(X)tautloc . As a result, we have the following chain of inclusions:

H∗
T(X)Stabloc ⊆ H∗

T(X)tautloc ⊆ H∗
T(X)loc.

In the case of quiver varieties, it is known that these inclusions are actually equalities12, see [31,
32] and [51, App. A.4]. For bow varieties in general this property is not expected to hold.
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acteristic cycles, Verma modules, and positivity of Chern-Schwartz-MacPherson classes of
Schubert cells. arXiv:1709.08697. 2017.

[4] Jan Boer, Kentaro Hori, Hirosi Ooguri, Yaron Oz, and Zheng Yin. “Mirror symmetry
in three-dimensional gauge theories, SL(2, Z) and D-brane moduli spaces”. In: Nuclear
Physics B 493 (Oct. 1997), pp. 148–176. doi: 10.1016/S0550-3213(97)00115-6.

[5] Tommaso Maria Botta. Shuffle products for elliptic stable envelopes of Nakajima varieties.
2021. arXiv: 2104.00976.

11To embed N in X̃ as an equivariant tubular neighborhood of X, we might need to pass to the maximal compact
subgroup inside A, which does not affect the cohomology theory.
12The second inclusion is actually an isomorphism in the integral theory, i.e. without localizing.

https://doi.org/10.1016/S0550-3213(97)00115-6
https://arxiv.org/abs/2104.00976


62 REFERENCES
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