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Expressions for resultants oming from the global theory of

singularities

G. B�erzi, L. M. Feh�er, and R. Rim�anyi

Abstrat. We present formulas for the Thom polynomials of �

1;1

and �

1;1;1

singularities in all relative dimensions k (Theorem 3.2, 4.2) and relate these

formulas to resultant identities (Theorem 5.4, 5.5).

1. Introdution

The global behavior of singularities is governed by their so alled Thom poly-

nomials. One the Thom polynomial of a singularity � is known, one an ompute

the ohomology lass represented by the �-points of a map. This approah of enu-

merative geometry is turning out to be more and more fruitful. The problem of

alulating Thom polynomials has essentially been solved in [Rim01℄. The way of

obtaining the sought Thom polynomial there is through the solution of a system of

linear equations, whih is �ne when we want to �nd one onrete Thom polynomial.

However, if we want to �nd the Thom polynomials of a series of singularities,

we have to solve a series of systems of linear equations simultaneously.

When trying to organize these solutions for the singularity series

� �

1;1

: N

n

! P

n+k

, k = 0; 1; 2; : : : and

� �

1;1;1

: N

n

! P

n+k

, k = 0; 1; 2; : : :

the authors found surprising expressions for the resultant of two polynomials. The

authors hope that a better understanding of the underlying algebra (or analysis) will

yield a loser onnetion between the theory of resultants and Thom polynomials

as well as a possibility to �nd many more (in�nite series) of Thom polynomials.

The new result in this paper is the formula for the Thom polynomials of �

1;1;1

singularities (Theorem 4.2) and its relation to a resultant identity (Theorem 5.5).

2. Thom polynomials

Let � : (C

n

; 0)! (C

n+k

; 0) be a singularity, i.e. an equivalene lass of analyti

germs (C

n

; 0) ! (C

n+k

; 0) under the equivalene of analyti reparametrizations
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(biholomorphisms) of the soure and the target. For a summary of the theory

of singularities, see e.g. [AVGL91℄. If � is suh a singularity then for any map

f : N

n

! P

n+k

one an identify the points in N where the map has singularity

�. For generi f this set is a submanifold of N , whose odimension is alled the

odimension of �. Usually the losure of this set arries a fundamental ohomology

lass, whose determination is our goal. It is a lassial theorem of Thom that this

lass an be obtained as the value of a polynomial Tp

�

(

1

; 

2

; 

3

; : : :) (the Thom

polynomial|depending only on �) when we substitute the harateristi lasses of

the map f , i.e.

1 + 

1

+ 

2

+ : : : =

f

�

(TP )

(TN)

�

=

(f

�

TP )

(TN)

= (f

�

TP � TN)

�

;

where (TP ) and (TN) stand for the total Chern lasses of the manifolds N and

P .

As said, this is the ase \usually"; in fat this is de�nitely the ase with omplex

singularities in the region where moduli (ontinuous families) of singularities do

not our (see [Kaz97℄ or [FR℄ for the general ase). In this paper we will study

singularities in this easier setting: Namely, we will ompute the Thom polynomials

of the omplex singularities alled �

1;1

(also alled A

2

) and �

1;1;1

(also alled A

3

)

for (C

n

; 0)! (C

n+k

; 0). In this dimension setting the moduli of singularities start

at odimension > 6k+8 whereas the odimension of A

2

and A

3

are 2k+2, 3k+3

respetively.

Sine [Rim01℄ the main tehnique of omputing Thom polynomials is the

method of restrition equations. The essene of this method is that when omputing

the Thom polynomial of �, one has to deal with the singularities � of odimension

at most odim �. For any suh singularity �, using the symmetries of � one gets a

ertain set of equations on the oeÆients of Tp

�

. The form of these equations and

their proof will not be given in this paper. They and all the neessary alulations

are expliitly given in [Rim01℄, see Theorem 2.4, Setion 4 and the last two para-

graphs of Setion 5. We will give and solve these equations in ase of A

2

and A

3

singularities in the next two hapters.

3. Thom polynomial of A

2

singularities

In this setion we onsider the Thom polynomial of A

2

singularities, originally

determined by Ronga ([Ron72℄). Our goal is to show the onnetion with the

theory of resultants.

Consider the theory of singularities of maps C

n

! C

n+k

. There are three

singularities with odimension at most 2k+ 2: A

0

(odim 0), A

1

(odim k + 1), A

2

(odim 2k+2). So looking for the Thom polynomial of A

2

we will obtain three sets

of equations on the oeÆients of

Tp

A

2

= � � 

2k+2

1

+ � � 

2k

1



2

+ : : :+ ! � 

2k+2

;

as follows ([Rim01℄)

(A0) Tp

A

2

�

Q

k

i=1

(1� g

i

t)

�

= 0 2 Z[g

i

℄

(A1) Tp

A

2

�

1�2xt

1�xt

Q

k

i=1

(1� g

i

t)

�

= 0 2 Z[x; g

i

℄

(A2) Tp

A

2

�

1�3xt

1�xt

Q

k

i=1

(1� g

i

t)

�

= 2x

2

Q

k

i=1

((2x� g

i

)(x� g

i

)) 2 Z[x; g

i

℄:
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These equations mean that what we really substitute in Tp

A

2

are the Taylor o-

eÆients of the frations (with variable t) given in brakets. Clearly the equation

(A0) is ontained in (A1) so we really have to solve (A1) and (A2).

We know from theory ([FR, Th. 3.5℄) that the solution is unique (one k is

�xed), so we only have to show that a ertain polynomial satis�es the onditions.

Theorem 3.1. Tp

A

2

= 

2

k+1

+

P

k+1

i=1

2

i�1



k+1�i



k+1+i

.

Although it is easy to �nd this polynomial diretly using elementary algebra,

we will give a proof using the resultant formulas from Setion 5; see the disussion

after Theorem 5.4.

There is an equivalent way to haraterize these polynomials independently

from k as follows. Let us shift the indies by k + 1, i.e. let d

i

= 

i+k+1

(so d

i

= 0

for i < �k � 1). Then we have

Theorem 3.2. For every k we have Tp

A

2

= d

2

0

+

P

1

i=1

2

i�1

d

�i

d

i

.

4. Thom polynomial of A

3

singularities

For all k, the ase of A

3

: (C

n

; 0)! (C

n+k

; 0) singularities is essentially harder

than that of A

2

. The reason is that in this ase there is a singularity of lower

odimension than A

3

, whih is not from the A

i

series (not a Morin singularity).

So Tp

A

3

has to satisfy a ondition whih omes from this extra singularity (alled

III

2;2

), and this extra ondition is very di�erent in nature. This phenomenon

was observed by Ga�ney in [Gaf83℄| there he had to deal with the \ompeting

singularities" A

4

, I

2;2

for k = 0.

So let us reall from [Rim01℄ the onditions Tp

A

3

has to satisfy.

(A0) Tp

A

3

�

Q

k

i=1

(1� g

i

t)

�

= 0 2 Z[g

i

℄

(A1) Tp

A

3

�

1�2xt

1�xt

Q

k

i=1

(1� g

i

t)

�

= 0 2 Z[x; g

i

℄

(A2) Tp

A

3

�

1�3xt

1�xt

Q

k

i=1

(1� g

i

t)

�

= 0 2 Z[x; g

i

℄

(A3) Tp

A

3

�

1�4xt

1�xt

Q

k

i=1

(1� g

i

t)

�

=

�6x

3

Q

k

i=1

((3x� g

i

)(2x� g

i

)(x� g

i

)) 2 Z[x; g

i

℄

(III

2;2

) Tp

A

3

�

(1�2xt)(1�2yt)(1�(x+y)t)

(1�xt)(1�yt)

Q

k�1

i=1

(1� g

i

t)

�

= 0 2 Z[x; y; g

i

℄:

Remark 4.1. The interested reader an �nd these onditions in [Rim01℄ p. 513,

though we reversed the sign onvention. Also the \total Chern lass" of the singu-

larity III

2;2

is not inluded expliitly there, one has to follow the instrutions of

[Rim01, Setion 4℄.

Here, again, by theory we know that for eah k there is only one polynomial

that satis�es all these equations. Clearly, the last one is more diÆult to deal with.

As a start one might try whether the �rst three already determine Tp

A

3

, but this

is not the ase: there is a family of polynomials satisfying the �rst three, and the

task is really to �nd the one from this family satisfying the last one. It turns out

that this task again translates to a surprising expression on resultants.

To state the solution we will need some terminology. Let us modify the Pasal

triangle by putting the 3-powers on the edges (instead of 1's), but let us keep the

rule of the Pasal triangle, as shown:
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a

0;0

0

a

1;0

a

0;1

1 1

a

2;0

a

1;1

a

0;2

= 3 2 3

a

3;0

a

2;1

a

1;2

a

0;3

9 5 5 9

a

4;0

a

3;1

a

2;2

a

1;3

a

0;4

27 14 10 14 27

Let a

i;j

stand for the number whih stands in the plae of

�

i+j

j

�

in this modi�ed

Pasal triangle, i.e. let

X

i;j

a

i;j

u

i

v

j

=

u

1�u

1�3u

+ v

1�v

1�3v

1� (u+ v)

:

Theorem 4.2. By shifting the indies d

i

= 

i+k+1

the Thom polynomial of A

3

for any k is given by

Tp

A

3

=

1

X

i=0

2

i

d

�i

d

0

d

i

+

1

3

1

X

i=1

1

X

j=1

2

i

3

j

d

�i

d

�j

d

i+j

+

1

2

1

X

i=0

1

X

j=0

a

i;j

d

�i�j

d

i

d

j

:

The veri�ation that this polynomial satis�es the onditions (A0){(A3) an be

done diretly (for this one only needs that 2

r

+

P

i+j=r

a

i;j

= 4 �3

r�1

, not the atual

values of a

i;j

)|although the authors did it using topologial arguments whih are

beyond the sope of this paper. However, the fat that the given polynomial satis�es

the last ondition turned out to be more diÆult than expeted, and we still do

not have an illuminating proof whih would give the real reason. See Theorem 5.5

and the disussion after.

5. Expressions for the resultant

In this setion we review some well known fats about resultants of two polyno-

mials and give the two new expressions, whih seem interesting in their own right

and are needed for the proofs of the preeding setions.

Definition 5.1. Let x = (x

1

; : : : ; x

k

) and y = (y

1

; : : : ; y

l

) where x

1

; : : : ; x

k

and y

1

; : : : ; y

l

are elements from some ring. Then we de�ne their resultant as

Res(xjy) =

Q

i

Q

j

(x

i

� y

j

).

If A and B are the polynomials whose roots are x

i

and y

j

respetively (or

rather 1=x

i

, 1=y

j

for onvenient terminology), then the resultant an be obtained

as a determinant whose entries are the oeÆients of A and B (i.e. the elementary

symmetri polynomials of x

i

and y

j

).

Theorem 5.2. (Sylvester-matrix) Let

A(t) = 1 +

k

X

i=1

a

i

t

i

=

k

Y

i=1

(1� x

i

t) and B(t) = 1 +

l

X

i=1

b

j

t

j

=

l

Y

j=1

(1� y

j

t):
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Then

Res(xjy) =

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

1 a

1

a

2

: : : a

k

0 : : : 0

0 1 a

1

a

2

: : : a

k

0 : : : 0

.

.

.

.

.

.

.

.

.

.

.

.

0 : : : 0 1 a

1

: : : a

k

1 b

1

: : : b

l

0 : : : 0

0 1 b

1

: : : b

l

0 : : : 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 0

0 : : : 0 1 b

1

: : : b

l

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

(k+l)�(k+l)

Now let the Taylor oeÆients of 1=B(t) be 1;

�

b

1

;

�

b

2

; : : :. If we multiply the

Sylvester matrix from the right with the upper triangular matrix whose (i,j)-entry

is

�

b

j�i

, then we get a very useful expression for the resultant.

Theorem 5.3. Let 1 + 

1

t+ 

2

t+ : : : = A(t)=B(t). Then

Res(xjy) = (�1)

kl

�

�

�

�

�

�

�

�

�

�



k



k+1



k+2

: : :



k�1



k



k+1

.

.

.

.

.

.

.

.

.

.

.

.



k�l+1

: : : 

k�1



k

�

�

�

�

�

�

�

�

�

�

l�l

The determinant of this latter matrix (i.e. whose (i; j)-entry is 

k+j�i

) is alled

the k

l

-Shur-determinant, and is denoted by �

k

l
.

We want to abbreviate the formula of the last Theorem as

Res(xjy) = (�1)

kl

�

k

l

�

x

y

�

;

by whih it is lear what we mean: the variables that we substitute into �

k

l are the

Taylor oeÆients of

Q

(1� x

i

t)=

Q

(1� y

j

t). In this language the dual statement

is

Res(xjy) = �

l

k

�

y

x

�

:

The interesting fat is that when there are algebrai relations among the roots,

then there are other nie expressions for the resultants|the oming Theorems 5.4

and 5.5|and these involve exatly the Thom polynomials of Setions 3, 4.

Theorem 5.4. For the polynomial Tp

A

2

given in Theorem 3.2 we have

Res(x; 2xjg

1

; : : : ; g

k+1

) = Tp

A

2

�

g

1

; : : : ; g

k+1

x

�

:

Proof. I. The proof we give here imitates the proof of Theorem 5.3. Let us

multiply the Sylvester matrix of ((1 � xt)(1 � 2xt),

Q

(1 � g

i

t)) with the upper

triangular matrix whose (i; j)'th entry is the j� i'th Taylor oeÆient of 1=(1�x).
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We get

Res(x; 2xjg

1

; : : : ; g

k+1

) =

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

1 �2x

1 �2x

.

.

.

.

.

.

.

.

.

.

.

.

1 �2x 0

d

�k�1

d

�k

: : : d

0

d

1

d

�k�1

d

�k

: : : d

�1

d

0

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

;

where d

�k�1

t

�k�1

+ d

�k

t

�k

+ : : : = 1=t

k+1

�

Q

(1� g

i

t)=(1�xt). Now applying the

Lagrange expansion with respet to the last two rows we obtain

1

X

0

(2x)

i

�

�

�

�

d

�i

d

1

d

�i�1

d

0

�

�

�

�

=

1

X

0

2

i

�

�

�

�

d

�i

x

i

d

1

d

�i�1

x

i

d

0

�

�

�

�

:

Now observe that d

i

= xd

i�1

for i = 1; 2; : : :, so we get

1

X

0

2

i

�

�

�

�

d

�i

d

i+1

d

�i�1

d

i

�

�

�

�

= d

2

0

+

1

X

i=1

2

i�1

d

�i

d

i

= Tp

A

2

�

g

1

; : : : ; g

k+1

x

�

:

Let us sketh another proof not using determinants.

Proof. II. Observe that Tp

A

2

is the onstant term of 1=2 �f(2t)f

+

(t)+1=2 �d

2

0

where f(t) = 1=t

k+1

�

Q

(1 � g

i

t)=(1 � xt), and f

+

(t) is the positive (power) part

of f(t), f

+

(t) = d

0

+ d

1

t+ d

2

t

2

+ : : :. It is easy to see that f

+

(t) = v

1

1�xt

, where

v =

Q

k+1

i=1

(x� g

i

). Then

Tp

A

2

�

g

1

; : : : ; g

k+1

x

�

=

1

2

v

1

(1� 2xt)(1� xt)

k+1

Y

i=1

(1� g

i

t)

�

�

�

k+1st oe�.

+

1

2

v

2

:

It is learly divisible by v and when we substitute g

k+1

= 2x, we get

v

�

1

2

1

(1� xt)

k

Y

i=1

(1� g

i

t)

�

�

�

k+1st oe�.

+

1

2

(�x)

k

Y

i=1

(x� g

i

)

�

:

Observe that the k + 1'st oeÆient of

1

(1�xt)

Q

(1� g

i

t) is x

Q

(x� g

i

) so this last

expression is 0. So the original is divisible by Res(x; 2xjg

1

; : : : ; g

k+1

). To get that

it is in fat equal to it one an hek the oeÆient of e.g. x

2k+2

.

Now we show how this theorem implies that Tp

A

2

|as given in Theorems 3.1,

3.2|satis�es the (A1) and (A2) onditions (see Setion 3). For (A1) we need to

alulate

Tp

A

2

�

1� 2xt

1� xt

k

Y

i=1

(1� g

i

t)

�

;

whih is by the theorem = Res(x; 2xjg

1

; : : : ; g

k+1

; 2x). Beause of the 2x on both

sides this is 0. For (A2) we identify

Tp

A

2

�

1� 3xt

1� xt

k

Y

i=1

(1� g

i

t)

�
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with Res(x; 2xjg

1

; : : : ; g

k+1

; 3x), whih is exatly the right hand side of the (A2)

ondition.

We have given two proofs for Theorem 5.4, an algebrai and a more analyti one.

However, neither easy algebrai or analyti proofs have been found for the next the-

orem, so we do not have a satisfatory proof for Theorem 4.2 either. The only proof

was obtained by the �rst author, and that involves extremely long alulations|so

we omit it. The authors believe that there must be an illuminating proof whih

shows the underlying algebra or analysis. It would partiularly be interesting be-

ause a better understanding of this theorem would probably open the way to

�nd the Thom polynomials for more ompliated singularities, as well as a deeper

relation between Thom polynomials and resultants.

Theorem 5.5. For the polynomial Tp

A

3

given in Theorem 4.2 we have

Res(a; b; a+ bjg

1

; : : : ; g

k

; 0) = �Tp

A

3

�

2a; 2b; g

1

; : : : ; g

k

a; b

�

:

Now we show how this theorem implies that Tp

A

3

satis�es the (III

2;2

) ondition

(in fat, it easily proves the (A1) and (A3) onditions, as well). We need to alulate

Tp

A

3

�

(1� 2xt)(1� 2yt)(1� (x+ y)t)

(1� xt)(1� yt)

k�1

Y

i=1

(1� g

i

t)

�

;

whih is, aording to our theorem, �Res(x; y; x + yjg

1

; : : : ; g

k

; x+ y). Sine there

is an x+ y on both sides, it is 0, whih is what we wanted to prove.
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