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Abstract. To each subset I of {1, . . . , k} associate an integer r(I). Denote by X the collection
of those n × k matrices for which the rank of a union of columns corresponding to a subset I

is r(I), for all I. We study the equivariant cohomology class represented by the Zariski closure
Y = X. This class is an invariant of the underlying matroid structure. Its calculation incorporates
challenges similar to the calculation of the ideal of Y , namely, the determination of the geometric
theorems for the matroid. This class also gives information on the degenerations and hierarchy
of matroids. New developments in the theory of Thom polynomials of contact singularities
(namely, a recently found stability property) help us to calculate these classes and present their
basic properties. We also show that the coefficients of this class are solutions to problems in
enumerative geometry, which are natural generalization of the linear Gromov-Witten invariants
of projective spaces.

1. Introduction

1.1. Matroid representation varieties. To each subset I of {1, . . . , k} associate an integer
r(I). Denote by X the collection of those n×k matrices for which the rank of a union of columns
corresponding to a subset I is r(I), for all I. Our main object of study in this paper is the Zariski
closure Y of this set. This is a version of matroid representation varieties. Other versions (eg.
contained in Grassmannians, instead of the affine space of matrices) are also known, and they
are closely related to ours. A dual point of view is considering the hyperplanes determined by
the column vectors of the matrices. From this point of view Y is the parameter space of certain
hyperplane arrangements.

Matroid representation varieties are universal objects in algebraic geometry in the sense that
any complication of varieties can be modeled on them. The precise statement of this universality
theorem is called Mnëv’s theorem, see [Mnë88], [RG95], or a recent account in [Vak06]. Hence
one does not hope that any reasonable question on these varieties has an easy answer. One
manifestation of this phenomenon is the determination of the ideal of these varieties. In Section 3
below we will explain with examples how the generators of the ideal encode projective geometry
theorems.

The problem we will consider about matroid varieties is an enumerative geometry problem, a
generalization of the linear Gromov-Witten invariants of projective spaces. Suppose a matroid
variety is given, as above. Consider k generic linear subspaces Vi in Cn. The question is, how
many n×k matrices exist that belong to our matroid variety such that the i’th column vector is in
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Vi. For example, after projectivizing, we can ask the following question: given 8 generic straight
lines and a generic point in the projective plane, how many Pappus configurations exist with 8
points of the Pappus configuration belonging to the 8 lines, and the 9’th point coinciding with the
given point. The precise definitions, and the answer are given below. In the special case, when
the matroid variety is the variety of rank ≤ 2 matrices of size n× k, this enumerative question is
equivalent to the determination of k-point linear Gromov-Witten invariants in projective spaces.
For general matroid varieties, however, no classical geometric or Gromov-Witten-type methods
are known to compute the generalized Gromov-Witten invariants.

The nature of the matroid Gromov-Witten invariants in P2 can be visualized by pictures. Some
interactive presentations, created with the Interactive Geometry Software Cinderella [RGK] can
be found at www.unc.edu/˜rimanyi/matroid show.

We will show in Theorem 5.3 that our matroid versions of linear Gromov-Witten invariants
can be computed through the equivariant classes [Y ]. These are cohomology classes that the
varieties Y represent in the GL(n) ×GL(1)k-equivariant cohomology ring of the vector space of
n× k matrices.

1.2. Equivariant classes represented by invariant varieties of a representation. Let the
group G act on the complex vector space V , and let Y ⊂ V be an invariant variety of complex
codimension c. Then Y represents a cohomology class [Y ] ∈ H2c

G (V ) in equivariant cohomology.
There are various definitions and names for this class, eg. equivariant Poincaré dual, Thom
polynomial, multidegree. We will call it the equivariant class of Y . Since H∗

G(V ) is naturally
isomorphic to the ring H∗(BG) of G-characteristic classes, the equivariant class [Y ] is simply a
G-characteristic class of degree 2c.

The equivariant class of the variety Y encodes a lot of geometric information on Y ; let us just
allude to the effectiveness of Schubert calculus (the Giambelli formula is such an equivariant class)
or the generalization involving classes of quiver loci. Other applications include the enumerative
geometry results coming from Thom polynomials of singularities, see eg. [Kle76] for a classic
review or [MR07] for a recent addition.

Let us remark that the equivariant class of a matroid representation variety can be interpreted
as a class of a quiver locus for the “star quiver” (based on a star shaped graph). However, the
equivariant properties of quiver representations are only well understood for quivers of Dynkin
type ADE, see [BF99], [FR02], [KMS06], [KS06], [Buc08] and references therein. It would be
interesting to compare our results with quiver coefficients defined in [Buc08] for non-Dynkin
quivers.

The usual tools to calculate equivariant classes represented by invariant subvarieties involve
equivariant resolution, equivariant degeneration, or equivariant localization techniques. These
techniques require the understanding of the ideal or the singularities of the variety in question.
For matroid varieties we lack this essential information.

Another main approach to calculate equivariant classes, effective for equivariant classes of
contact singularities as well, is an interpolation method described in [FR04]. Below we will study
an improvement of this interpolation method. In essence, we will describe certain constraints that
a particular [Y ] must satisfy. Some of these constraints originate from the topological arguments
of [FR04], some others from the enumerative interpretation of some coefficients.

Finally, a key advance of this paper, a third set of constraints, follow from the analogue of
a stabilization property recently proved for contact singularities [FR07]. This property stems
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from understanding how an equivariant class changes at non-transversal intersection. In turn,
one obtains a bound on the number of factors in each term of such and equivariant class.

Overwhelming experience shows that these three sets of constraints are sufficient to determine
the equivariant classes [Y ], providing several enumerative applications. However, at the moment,
we have no theorem claiming that for a particular matroid a certain set of constraints is sufficient.

In Section 7 we show a certain stabilization property connecting the equivariant classes of
matroid varieties in different dimensions n. As a corollary we prove a vanishing theorem on
certain coefficients. In Section 8 we outline the method of calculating these invariants.

A particularly interesting question, subject to future study, is whether the matroid Gromov-
Witten invariants can be organized as structure constants of an algebraic object with some kind
of associativity property—mimicking the construction of the (big) quantum cohomology ring.

1.3. Acknowledgement. The authors would like to express their gratitude to T. Brylawski,
S. Fomin, A. Hraskó, B. Sturmfels, and A. Fink for helpful discussions and remarks; and to
D. Adalsteinson for letting us use his computer cluster for our calculations.

2. Matrix matroid varieties

We will denote the set of natural numbers {0, 1, . . .} by N, and the set {1, 2, . . . , k} by [k].
For a set X let 2X denote its power set, ie. the set of subsets of X. We will identify the vector
spaces (Cn)k and Cn×k by the rule

(1) (v1, . . . , vk) ↔







v1



 . . .



vk









Elements in (Cn)k will be referred to as (ordered) vector configurations in Cn. For a matrix
M ∈ Cn×k and subsets U ⊂ [n], V ⊂ [k], let MU

V denote the submatrix consisting of the

(i, j)-entries of M for i ∈ U , j ∈ V . Let MV = M
[n]
V .

The vector configuration C = (v1, v2, . . . , vk) ∈ (Cn)k defines the rank function rC : 2[k] → N,

rC(V ) = dim span{vi}i∈V .

Definition 2.1. For a configuration C we define

XC = {M ∈ Cn×k : rank(MV ) = rC(V ) for all V ⊂ [k]}.

The Zariski closure XC ⊂ Cn×k will be called the matrix matroid variety associated with C, and
will be denoted by YC.

If we identify n × k matrices with k-tuples of n-vectors as in (1), then XC consists of those
configurations whose rank function is the same as that of C. For example, C itself belongs to XC.
The matrix matroid variety YC consists of those configurations that are limits (degenerations) of
elements in XC.

Observe that XC and YC do not change if we re-scale, ie. multiply, any vector vi in C by any
non-zero complex number. Hence XC and YC are determined by the list of points Pi := [vi] ∈ Pn−1

for vi 6= 0, and the list of those vi which are 0. By abusing language, such a list will also called
a configuration.
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∅
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Figure 1

Example 2.2. Let n = 2, k = 6, and consider the following configuration

P1 = P2 = P3 = (0 : 1) ∈ P1, P4 = P5 = (1 : 1) ∈ P1, v6 = 0.

This configuration is illustrated in Figure 1. Matrices in XC are those 2 × 6 matrices whose

• first three columns are proportional non-zero vectors,
• the fourth and fifth columns are proportional non-zero vectors,
• the first and the fourth columns are non-proportional,
• the sixth column is the zero vector.

It is true that YC consists of matrices satisfying the “closed” conditions above, but not necessarily
the “open” ones. That is, YC consists of matrices whose first three columns are proportional,
fourth and fifth columns are proportional, and sixth column is 0. However, the easy procedure
of dropping the open conditions will not specify YC in general.

Example 2.3. Matrix Schubert varieties. Consider a complete flag of linear spaces

L0 ⊂ L1 ⊂ . . . ⊂ Ln−1 ⊂ Ln

in Cn. Let ℓ = (l0, l1, . . . , ln) ∈ Nn+1 with
∑
li = k. Choose li generic points v

(i)
1 , . . . , v

(i)
li

in Li.
The matrix matroid variety corresponding to the configuration

Cℓ =
(
v

(0)
1 , . . . , v

(0)
l0
, v

(1)
1 , . . . , v

(1)
l1
, . . . , v

(n)
1 , . . . , v

(n)
ln

)

is studied in the papers [Ful92], [FR03, Sect.5], [KM05], and is called the matrix Schubert variety
corresponding to Grassmannian permutation.

For the problems to be considered later in this paper, matrix Schubert varieties will be the
simple case. Products of matrix Schubert varieties will also be considered simple. Note that
Example 2.2 is such a product of matrix Schubert varieties (after identifying Cn×k1 ×Cn×k2 with

Cn×(k1+k2)), namely,

(2) YC = YC(0,3,0)
× YC(1,2,0)

= YC(0,3,0)
× YC(0,2,0)

× YC(1,0,0)
.

Examples of matrix matroid varieties which are not products of matrix Schubert varieties will
be given below.

Remark 2.4. Other candidate names for matrix matroid varieties would be “matroid variety”
or “matroid representation variety”. We chose the name “matrix matroid variety”, because of
the analogy with matrix Schubert varieties.
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Figure 2. The Menelaus configuration CM , and the Ceva configuration CC

3. The ideal of matrix matroid varieties

The rank of a matrix is r if its (r+1)× (r+1) minors vanish, and at least one r×r minor does
not vanish. Hence the algebraic description of XC ⊂ Cn×k is a collection of equations (several
minors vanish), together with a collection of conditions expressing that certain polynomials (some
other minors) do not vanish together (cf. the open and closed conditions of Example 2.2):

XC = {M = (mi,j) ∈ Cn×k : pu(mi,j) = 0 for u = 1, 2, . . . ;

q
(v)
1 (mi,j), . . . , q

(v)
wv

(mi,j) do not vanish together for v = 1, 2, . . .}.

It follows that

(3) YC ⊂ {M = (mi,j) ∈ Cn×k : pu(mi,j) = 0 for u = 1, 2, . . .}.

Although it is tempting to think that we have equality in formula (3), in general, this is not the
case. First we give an intuitive reason for this.

3.1. Motivation: the Menelaus configuration. Consider the Menelaus configuration CM of
Figure 2, with n = 3, k = 6.

The equations pu of formula (3) are the four 3×3 minors of the 3×6 matrix (mi,j) corresponding
to the following triples of column-indices: 126, 135, 234, 456. The right hand side of formula
(3) hence contains all 3 × 6 matrices for which these four minors vanish. We claim that there
is a matrix for which these minors vanish, but it is not in YCM

, ie. it is not a limit of matrices
from XCM

. Indeed, consider an affine chart of P2, a line l in it, and the configuration C′ of
six generic points on l. If this configuration were in the closure of XCM

then there would be a
family of configurations belonging to XCM

, all in the affine chart, converging to C′. For all these
configurations Menelaus’ theorem [Men00] holds, which we recall now.

Theorem 3.1. [Complex affine version of Menelaus’s theorem] Consider the configuration CM
of points in C2. Choose an identification of the P1P3P5 line with C. Observe that the complex
number (P5−P1)/(P3−P5) does not depend on the choice; denote this ratio by P1P5/P5P3. Then
(using similar notations for the other straight lines) we have

(4)
P1P5

P5P3
·
P3P4

P4P2
·
P2P6

P6P1
= −1.

Our reasoning is finished by observing that for C′ the Menelaus identity (4) does not hold; this
proves that for CM the two sides of Formula (3) are not equal.
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One may wonder if there is a complex projective version of Menelaus’s theorem, which would
eliminate the need for the affine chart in the geometric proof above. The answer is given in the
next section.

What we learned from the Menelaus example is that

• the “naive” equations pu are not enough to cut out YC even set-theoretically from Cn×k;
• the extra equations needed (besides the naive ones) encode the not-so-obvious geometric

theorems of the configuration.

3.2. The ideal of XC, examples. Let IC denote the ideal of the variety YC, ie. the homogeneous
ideal of polynomials vanishing on YC.

Example 3.2. In Schubert calculus the following statement is well known [Ful92]: For the matrix
Schubert variety Cℓ of Example 2.3 the “naive” equations generate ICℓ

:

ICℓ
=
(
det
(
M

{i1,...,is}
{j1,...,js}

)
= 0
)

for i1 < . . . < is, j1 < . . . < js, js ≤ l0 + . . .+ ls−1, s = 1, . . . , n.

Now consider the Menelaus configuration of Section 3.1, and consider the variety corresponding
to the naive equations

Ynaive = {M ∈ C3×6 : detM126 = 0, detM135 = 0, detM234 = 0, detM456 = 0}.

Computer algebra packages [GPS01] can be used to find that this variety is the union of two
irreducible varieties

(5) Ynaive = YCM
∪ {M ∈ C3×6 : rank(M) ≤ 2}.

This decomposition sheds light on the intuitive reasoning of Section 3.1. As a byproduct, the
computer algebra package finds generators of the ideal ICM

. It turns out that ICM
can be minimally

generated by polynomials of degrees

3, 3, 3, 3, 5, 5, 5, 6, . . . , 6︸ ︷︷ ︸
12

.

The four degree 3 polynomials can be chosen to be the four naive equations. As a consequence,
the collection of the other equations can be considered as the extra, non-trivial complex projective
identities holding for Menelaus configurations. We might as well call this set of polynomials the
“complex projective Menelaus’ theorem”.

For completeness let us show how to generate degree 6 and degree 5 polynomials in ICM
knowing

only the usual version of Menelaus’ theorem (Theorem 3.1). In the projective plane (x, y, z) we
can choose the y coordinate to be at infinity. In the remaining affine plane we can identify ratios
of complex numbers by appropriate projections. Hence, for example, from (4) we can obtain

(6)
x5/y5 − x1/y1

x3/y3 − x5/y5

·
z4/y4 − z3/y3

z2/y2 − z4/y4

·
z6/y6 − z2/y2

z1/y1 − z6/y6

= −1.

Rearranging this equality we obtain a degree 6 polynomial. Making other choices we may obtain
several other degree 6 polynomials. Getting degree 5 ones is more delicate. Consider the degree
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6 polynomial obtained from (6), and the ones obtained from the next three similar equalities

z5/y5 − z1/y1

z3/y3 − z5/y5
·
z4/y4 − z3/y3

z2/y2 − z4/y4
·
x6/y6 − x2/y2

x1/y1 − x6/y6
= −1,

x1/y1 − x2/y2

x2/y2 − x6/y6

·
z6/y6 − z4/y4

z4/y4 − z5/y5

·
z5/y5 − z3/y3

z3/y3 − z1/y1

= −1,

z1/y1 − z2/y2

z2/y2 − z6/y6
·
z6/y6 − z4/y4

z4/y4 − z5/y5
·
x5/y5 − x3/y3

x3/y3 − x1/y1
= −1.

It turns out that the sum of these four degree 6 polynomials is y4 times

(7) −x5y1z3z6y2 + x5y1z3z2y6 + x3y5z2z1y6 − x5y3z2z1y6 + z1y5z3x6y2 − z1y5z3x2y6−

z3y5z2x6y1 + z5y3z2x6y1 + x2y1z6z3y5 − x2y1z6z5y3 − x6y2z5z1y3+

x2y6z5z1y3 − z1y2z6x3y5 + z1y2z6x5y3 + z6y2z5x3y1 − z2y6z5x3y1.

This latter is one of the degree 5 generators of ICM
. The other two can be obtained by similar

calculations, or appropriate changes of variables in (7).

For an arbitrary configuration C determining IC seems to be a hopelessly difficult problem.
One might start with the ideal generated by the naive equations, and try to get rid of the
“fake” components (just like the determinantal variety in (5)) by primary decomposition or by
dividing (or saturating) with ideals of extra components. In practice, none of these strategies is
feasible in reasonable time for configurations even a little more complicated than the Menelaus
configuration.

Below, in Section 4 we will study another invariant of matrix matroid varieties, namely, their
equivariant classes, which will be much better computable than IC, and which can answer various
questions about these varieties without determining their ideals.

3.3. The codimension of matrix matroid varieties. A consequence of the universality theo-
rem mentioned in the Introduction, is that matrix matroid varieties in general can have multiple
components, possibly of different dimensions. Let us mention that it seems a difficult problem
to show an example for this phenomenon. Nevertheless, we do not expect any easy general
procedure which would give the (co)dimension of a matrix matroid variety corresponding to a
given matroid. In practice, however, one may often determine the codimension by imagining
the matroid builded up step by step, and keeping track of the degrees of freedom. Consider, for
example, the Menelaus configuration of Figure 2. The points P1, P2, P4, P5 are projectively free.
Adding P3 however means a restriction: it can not be anywhere in the plane, it has to be in
the intersection of P1P5 and P2P4. This is a 2-codimensional restriction. Similarly, adding the
point P6 is another 2 codimensional restriction. Hence the codimension of YCM

is 2+2 = 4. Now
consider the Pappus configuration in Figure 3. The subset P1, P2, P4, P5 is free. The points P3

and P6 are on the straight lines P1P2 and P4P5 respectively. Hence each represents a codimension
1 restriction. These 6 points determine the remaining 3, which hence represent 2-codimensional
restrictions each. Therefore the codimension of this matrix matroid variety is 1+1+2+2+2=8.

4. Equivariant classes of matrix matroid varieties.

We will work in the complex algebraic category; cohomology will be meant with integer coef-
ficients; and GL(n) will denote the general linear group GL(n,C).
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4.1. Equivariant classes in general. If Y is a complex codimension c subvariety in a compact
complex manifold M , then Y represents a cohomology class [Y ] in H2c(M). The following
equivariant version of this notion is more delicate to define; see e.g. [Kaz97], [EG98], [FR04],
[MS04, 8.5], [Ful07].

Let the group G act on the complex vector space V , and let Y ⊂ V be an invariant variety
of complex codimension c. Then Y represents a cohomology class [Y ] ∈ H2c

G (V ) in equivariant
cohomology. Since H∗

G(V ) is naturally isomorphic to the ring H∗(BG) of G-characteristic classes,
the equivariant class [Y ] is simply a G-characteristic class of degree 2c.

4.2. Equivariant classes of matrix matroid varieties. Let D(k) be the group of diagonal
matrices of size k. Consider the action of Gn,k = GL(n) × D(k) on the vector space Cn×k of
n× k matrices by

(A,B) ·M = AMB−1, A ∈ GL(n), B ∈ D(k),M ∈ Cn×k .

Viewing elements of Cn×k as vector configurations as in (1), the action of (A,B) ∈ Gn,k

reparametrizes Cn (the action of A) and rescales the vectors one by one (the action of B).
Therefore, the spaces XC and hence the varieties YC are Gn,k-invariant.

In the rest of the paper the main concept of interest will be the equivariant class

(8) [YC] ∈ H∗
Gn,k

(Cn×k) = H∗(BGn,k) = Z[c1, . . . , cn, d1, . . . , dk],

where ci are the Chern classes of GL(n), and di are the first Chern classes of the GL(1) compo-
nents of Dk = GL(1)k. We have deg ci = 2i, deg di = 2.

4.3. Examples. In Sections 5–9 we will show how to calculate the classes [YC], and discuss their
geometric meaning. Before that, however, we show some examples.

Example 4.1. Consider the configuration C of Example 2.2. We have

[YC] =
(
d1d2 + d1d3 + d2d3 − c1(d1 + d2 + d3) + c21 − c2

)
(c1 − d4 − d5)(d

2
6 − c1d6 + c2).

Let us now consider matrix Schubert varieties Cℓ of Example 2.3. That is, we have ℓ =
(l0, . . . , ln),

∑
li = k. We may assume without loss of generality that there is an r such that

l1, . . . , lr are all non-zero, while lr+1 = . . . = ln = 0. (Indeed, observe for example that YC2,0,2 =
YC2,1,1 , by changing the complete flag.) Define

µi =

{∑i−1
j=0 lj + 1, i ≤ r

k + i− r i > r,
λn+1−i = µi − i, for i = 1, . . . , n.

Let β
(i)
j be degree j polynomials in the ring (8), defined by

1 + β
(i)
1 t+ β

(i)
2 t2 + . . . =

∏
j<µi

(1 + djt)

1 + c1t+ . . .+ cntn
.

Theorem 4.2. Using the notation above, the matrix Schubert variety Cℓ ⊂ Cn×k has complex
codimension |λ| =

∑
λi, and we have

(9) [YCℓ
] = (−1)|λ| det

(
β

(n+1−i)
λi+j−i

)

i,j=1,...,n
.
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Figure 3. The Pappus configuration CP

Proof. This is, in fact, not a new theorem. Observe, that YCℓ
is not only invariant under the

action of GL(n) × D(k), but under the same action of GL(n) × B(k), where B(k) is the Borel
group of upper triangular k×k matrices associated with the complete flag. The varieties YCℓ

are,
in fact, the orbit closures of this extended action. The equivariant classes of these orbit closures
are calculated in [FR03, Thm. 5.1] to be the double Schur polynomials of (9), see also [KM05].
Since the inclusion D(k) ⊂ B(k) is a homotopy equivalence, the Gn,k-equivariant classes are the
same as the GL(n) × B(k)-equivariant classes. This observation also shows that expression (9)
is symmetric in the di variables. �

Equivariant classes of products of varieties multiply in the obvious sense. For instance, the
result of Example 4.1 can be recovered from the factorization (2) and the application of Theo-
rem 4.2 to the three factors. Namely, we have

[YC0,3,0 ] = det

(∏3
i=1(1+dit)

1+c1t+c2t2
|2

∏3
i=1(1+dit)

1+c1t+c2t2
|3

0
∏0

i=1(1+dit)

1+c1t+c2t2
|0

)
= d1d2 + d1d3 + d2d3 − c1(d1 + d2 + d3) + c21 − c2.

Here, and later, f(t)|i means the i’th coefficient of the Taylor series f(t) in the formal variable t.
Similarly,

[YC0,2,0 ] = −(d4 + d5 − c1), [YC(1,0,0)
] = d2

6 − c1d6 + c2,

after appropriate shifting of indices.

It is rather difficult to present equivariant classes of matrix matroid varieties which are not
products of matrix Schubert varieties. For example the class [YCM

] for the Menelaus configuration
of Section 3.1 is a degree 8 polynomial with 173 terms (in c-d-monomials). To indicate how it
looks we show this polynomial after we substitute 0 for all the di variables: [YC]

∗ = [YC]di=0∀i.
Observe that the [YC]

∗ class is the GL(n) equivariant class represented by YC. We have

• [YCM
]∗ = 3c21c2 − 2c1c3 − c22 = 3∆(211) + 2∆(22) + 3∆(31).

Here the Schur polynomials ∆λ corresponding to a partition (λ1 ≥ λ2 ≥ . . . ≥ λr) are defined
by ∆λ = det(cλi+j−i)i,j=1,...,r. The significance of the Schur basis is presented in Sections 6, 7.
The expression in Theorem 4.2 can also be interpreted as a Schur polynomial. Here is a list of
similar specializations of [YC] for the Ceva, Pappus, and Desargues configurations.
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• [YCC
]∗ = 6∆(2211) + 4∆(222) + 3∆(3111) + 8∆(321) + ∆(33);

• [YCP
]∗ = 11∆(221111)+16∆(22211)+8∆(2222)+12∆(311111)+28∆(32111)+28∆(3221)+17∆(3311)+

15∆(332);
• [YCD

]∗ = 15∆(222111) + 20∆(22221) + 20∆(321111) + 50∆(32211) + 30∆(3222) + 30∆(33111) +
45∆(3321) + 10∆(333).

The coefficients of these classes in terms of Schur polynomials are all non-negative. We will
prove this property for general matroids in Theorem 6.6.

The equivariant classes are rather meaningless formulas unless we find geometric applications.
We finish this section with a rather simple application; more delicate geometric meaning will be
discussed in Sections 5 and 6.

4.4. The degree of P(YC). Suppose the group G acts on the vector space V , and Y is an invari-
ant cone. Then the degree of the projective variety P(Y ) can be recovered from the equivariant
class [Y ] ∈ H∗

G(V ) by the following procedure.
Let T n be a maximal torus of G with corresponding Chern roots αi. If w1, . . . , wn, w are

integers with the property that for any z ∈ C, |z| = 1 we have

(zw1 , . . . , zwn) · v = zwv, (zw1 , . . . , zwn) ∈ T n, v ∈ V,

then

deg P(Y ) = [Y ](αi =
wi
w

).

On the right hand side we have the equivariant class, with the number wi/w substituted into the
Chern root corresponding to the i’th factor of T n. This theorem easily follows from the study of
the change of equivariant classes when the torus action is pulled back to another torus action;
see e.g. [MS04, Ex. 8.14, 8.15], [FNR05, 6.4].

For matrix matroid varieties we have two natural choices for the substitution. Either we
substitute

ci =

(
n

i

)
, di = 0, or ci = 0, di = −1.

Observe that the first substitutions can be carried out for the specialized classes above (di = 0∀i),
hence the following theorem can be checked from the classes presented above.

Theorem 4.3. For the Menelaus, Ceva, Pappus, and Desargues configurations (see Figures 2,
3, 4) we have

deg P(YCM
) = 66, deg P(YCC

) = 297, deg P(YCP
) = 2943, deg P(YCD

) = 4680.

Remark 4.4. The degree of P(YCM
) can also be recovered from the decomposition in (5). Indeed,

in this decomposition all three varieties are 4 codimensional; Ynaive has degree 34 because of
Bézout’s theorem; the determinantal variety {M ∈ C3×6 | rankM ≤ 2} has degree

(
6
4

)
(see

[Ful84, 14.4.14]). Hence deg YCM
= 81 − 15 = 66. The same argument shows that

[YCM
] = (c1−d1−d2−d6)(c1−d1−d3−d5)(c1−d2−d3−d4)(c1−d4−d5−d6)−

∏6
j=1(1 + djt)

1 + c1t+ c2t2 + c3t3
|4.

For the other varieties in the Theorem we know no other way of determining the degree, but to
calculate the equivariant class as in Section 8, then carry out the described substitution.
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Figure 4. The Desargues configuration CD

P1 P6 P2

P3

P5 P4

P(V1)

P(V2)

P(V3)

P(V6)

P(V4)

P(V5)

Figure 5. (a) C, (b) the enumerative problem, (c) the solution = 2

5. Matroid versions of linear Gromov-Witten invariants

In the rest of the paper, for simplicity, we will assume that C is a configuration of k non-zero
vectors in Cn, and that YC is pure dimensional.

For nonnegative integers q1, . . . , qk with
∑
qi = codimC(YC ⊂ Cn×k) we define

N(C; q1, . . . , qk) = #{([v1], . . . , [vk]) ∈ (PCn)k : (v1, . . . , vk) ∈ YC, vi ∈ Vi},

where V1, . . . , Vk is a generic collection of linear spaces with dimVi = qi + 1.
More generally, instead of generic linear spaces Vi, we could have considered varieties of different

dimensions and degree. These generalized enumerative problems can be reduced to the linear
version above.

Example 5.1. Consider the configuration C in Figure 5 (a). The number N(C; 1, 1, 1, 0, 0, 0) is
the number of solutions to the following problem: given 3 points and 3 straight lines (generically)
on the plane P2 (Figure 5 (b)). How many triangles exist, whose vertices are on the straight
lines, and whose sides pass through the given points? The solution is 2 (Figure 5 (c)) due to
the following well known argument: Choosing a point X on PV1 we can project it through
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PV6 to PV2, then project further through P V4 to PV3, then further through PV5 back to PV1,
obtaining a point X ′. The map X 7→ X ′ is a projective transformation of the projective line PV1,
whose number of fixed points is the question. Since projective transformations have the form
x 7→ (ax+ b)/(cx+ d) (in affine coordinate), the number of fixed points is 2. (The construction
of the fixed points using a compass and straightedge is the famous Steiner construction, see e.g.
[PT01, Ad.3].)

Example 5.2. Consider the number N(CM ; 1, 1, 1, 1, 0, 0) for the Menelaus configuration of Fig-
ure 2. One may try to follow the argument of Example 5.1: choose a pointX on PV1, projecting it
through PV6 to PV2, then further project through the intersection of PV4 and the line PV5,PV6

to PV3, then even further through the point PV5, back to PV1, obtaining X ′. The transforma-
tion X 7→ X ′ is a projective transformation of PV1, hence it has 2 fixed points, suggesting that
N(CM ; 1, 1, 1, 1, 0, 0) = 2. However, this is wrong, the correct number is N(CM ; 1, 1, 1, 1, 0, 0) = 1.
One of the two fixed points of the transformation X 7→ X ′ is on the “other” component of Ynaive
in (5), not on YCM

. Geometrically, one of the fixed points of the transformation corresponds to
all the points lying on the line of P V5 and PV6, which configuration does not belong to YCM

.
There are configurations (e.g. the Ceva configuration) for which some “extra” components in
Ynaive \ YC have bigger dimensions then YC. For these, arguments similar to that in Example 5.1
suggest the incorrect N(C; q1, . . . , qk) = ∞.

If the ideal IC is known, determining the numbers N(C; q1, . . . , qk) reduces to algebraic calcu-
lations, which are, at least theoretically, doable. However, as we mentioned, the ideal IC is not
known in general. The equivariant class defined in Section 4.2 provides an answer.

Theorem 5.3. The coefficient of dq11 d
q2
2 . . . dqkk in [YC] is (−1)codim CN(C; q1, q2, . . . , qk).

This follows from a more or less standard intersection theoretic argument, which we show in
detail in the next section.

Example 5.4. The matrix matroid variety corresponding to the configuration of Example 5.1 is
a product of matrix Schubert varieties. Hence, its equivariant class is computed by Theorem 4.2
to be

(c1 − d1 − d3 − d5)(c1 − d2 − d3 − d4)(c1 − d1 − d2 − d6).

The coefficient of d1d2d3 is −2, reproducing the result of Example 5.1.

Example 5.5. Special cases of N(C;q)’s are solutions to certain so-called Schubert problems.
We illustrate this with the prototype of Schubert problems: how many straight lines intersect
4 generic lines in P3? In our language the answer is N(C(0,1,3,0,0); 1, 1, 1, 1). According to Theo-
rems 5.3 and 4.2 we have N(C(0,1,3,0,0); 1, 1, 1, 1) = coefficient of d1d2d3d4 in

det

(
d1d2 + . . .+ d4d5 d1d2d3 + . . .+ d3d4d5

d1 + . . .+ d4 d1d2 + . . .+ d3d4

)
,

which is clearly
(
4
2

)
−
(
4
1

)
= 2.

Remark 5.6. Certain N(C;q) invariants are 0 for obvious reasons. For example, if P1, P2,
and P3 are on one line in the configuration C, then N(C; 0, 0, 0, q4, . . . , qk) = 0. Indeed, P1,
P2, and P3, being on one line, can not be three generic points. Similarly, if there is a subset
I = {i1, . . . , is} ⊂ [k] such that

∑
(qij + 1) > rC({i1, . . . , is}), then obviously N(C;q) = 0. It is

easy to see that the existence of such an I is the only reason for vanishing N(C;q).
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The method in Section 8 to calculate [YC] for the configurations CM (Menelaus), CC (Ceva),
CP (Pappus), and CD (Desargues) (just like any other configuration we tried) works, leading to
the knowledge of all the Gromov-Witten invariants of these configurations. Below we present
some information on these invariants.

Menelaus: All non-zero coefficients of the pure d monomials of [YCM
] are 1—for example

the one studied in Example 5.2.
Ceva: The same holds for the Ceva configuration: the range of invariants is {0, 1}.
Pappus: The range of the N(CP ;q) invariants is {0, 1, 2, 3, 4, 5}. Here are some sample

results.
• N(CP ; 1, 1, 1, 1, 1, 1, 1, 0) = 5, that is, the number of Pappus configurations on the

plane whose i’th vertex is on a pre-described generic line li for i = 1, . . . , 8, and
whose 9’th point is a pre-described generic point, is 5. We know no other way of
finding this number.

• N(CP ; 2, 0, 0, 1, 1, 1, 1, 1, 1) = 4. The argument in Example 5.1 would suggest the
wrong answer 5.

• N(CP ; 1, 1, 0, 2, 1, 1, 0, 0, 2) = N(CP ; 1, 1, 1, 1, 1, 0, 0, 1, 2) = 3.
Desargues: Again, the range of the invariants N(CD;q) is {0, 1}.

It would be interesting to find a geometric interpretation of the property of a configuration,
which is equivalent to the condition that the range of N(C;q) is {0, 1}.

6. Proof of Theorem 5.3

We are going to present a proof of Theorem 5.3 which also proves positivity and enumerative
properties of other coefficients.

Let C be a configuration of k vectors in Cn, such that YC is a codimension l subvariety of
Hom(Ck,Cn).

Let τn be the universal tautological bundle over the Grassmannian GrnC∞ (universal subbun-
dle) which we will approximate with the finite Grassmannian Grn CN for a large N >> n, k.
Below we will refer to certain numbers as ‘large’; by this we mean that those numbers tend to
infinity as N → ∞. The cohomology of the finite Grassmannian is a factor of the cohomology
H∗(Grn C∞) = Z[c1, . . . , cn] by an ideal with large degree generators. In our notations we will
ignore this ideal, and identify the two cohomology rings.

Let φ : Grn CN → GrnCN be the (necessarily non-holomorphic) classifying map of the dual
vector bundle τ ∗n , and consider the induced diagram

Σ̂C
� � // Hom(τk1 , τ

∗
n)

ψ
//

ξ

��

Hom(τk1 , τn)

��

ΣC
? _oo

Grn CN ×(PN−1)k
φ×id

// Grn CN ×(PN−1)k

Here ψ is the map induced by φ × id, and ΣC is the collection of the copies of YC in each fiber
of the bundle Hom(τk1 , τn). That is, by definition, the cohomology class represented by ΣC in
the cohomology H∗(Hom(τk1 , τn)) = H∗(GrnCN ×(PN−1)k) is the equivariant class [YC]. We set

Σ̂C = ψ−1(ΣC).
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The homomorphism (φ × id)∗ : Z[c1, . . . , cn, d1, . . . , dk] → Z[c1, . . . , cn, d1, . . . , dk] induced by
the map φ× id maps ci to (−1)ici, and di to di. Hence we have that

[Σ̂C ⊂ Hom(τk1 , τ
∗
n)] = (φ× id)∗[ΣC ⊂ Hom(τk1 , τn)] = [YC]|ci 7→(−1)ici.

Observe that the bundle ξ = Hom(τk1 , τ
∗
n) has a large dimensional space of sections. Indeed,

let αi : CN → (CN)∗ be linear maps for i = 1, . . . , k. Then the map

(10) sα : (Ln ≤ CN , l11, . . . , l
1
k ≤ CN) 7→

k∑

i=1

ι∗Lαiιli

is a section of ξ; where ιL : L→ CN , ιli : li → CN are the canonical inclusions, and ι∗L : (CN)∗ →
L∗ is the adjoint map.

We want to show that for an appropriate choice of α = (α1, . . . , αk) the section sα of ξ

is transversal to Σ̂C. We will use the following straightforward generalization of the classical
Bertini theorem.

Proposition 6.1. Let E → X be a smooth vector bundle, B a vector space and ϕ : B → Γ(E)
is a linear family of smooth sections. Suppose that E is generated by the sections ϕ(b), b ∈ B,
i.e. Φ(b, x) := ϕ(b)(x) : B × X → E is surjective, and Y is a smooth submanifold of the total
space E. Then there is a b ∈ B such that ϕ(b) is transversal to Y .

For the proof we will use two lemmas.

Lemma 6.2. [GG73, II.4.6] Let B,X, Y be smooth manifolds, Φ : B × X → Y smooth and
transversal to the submanifold W ⊂ Y . The map Φ encodes a family of maps Φb(x) = Φ(b, x) :
X → Y for b ∈ B. Then

{b ∈ B : Φb |∩W}

is dense in B. �

Lemma 6.3. Let E → X be a smooth vector bundle, B a vector space, and ϕ : B → Γ(E) a
linear family of smooth sections. Suppose that E is generated by the sections ϕ(b), b ∈ B, i.e.

Φ(b, x) := ϕ(b)(x) : B ×X → E

is surjective. Then dΦ|(b,x) : T(b,x)(B ×X) → TΦ(b,x)E is surjective for all (b, x) ∈ B ×X.

Proof of Lemma 6.3. The statement is local, so we can assume that E = Cr×X. Then Φ(b, x) =
(h(b, x), x) for some smooth map h : B ×X → Cr, which is linear in the b variable. Then Φ is
surjective if and only if for all x ∈ X the linear map h(·, x) : B → Cr is surjective. On the other
hand

dΦ =

(
∂bh ∂xh
0 I

)

and
(
∂b|(b,x)h

)
(v) = h(v, x) because of the linearity of h in b. Therefore the surjectivity of h(·, x)

implies that the matrix ∂bh has full rank, and hence it also implies the surjectivity of dΦ. �

Proof of Proposition 6.1. We apply Lemma 6.2. and 6.3. Since Φ transversal to all points, it is
transversal to all submanifolds. �

Proposition 6.1 immediately implies the following algebraic version.
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Proposition 6.4. Let E → X be an algebraic vector bundle, B a vector space, and ϕ : B → Γ(E)
a linear family of algebraic sections. Suppose that E is generated by the sections ϕ(b), b ∈ B, i.e.
Φ(b, x) := ϕ(b)(x) : B ×X → E is surjective, and Y is a subvariety of the total space E. Then
there is an open subset U of B such that for all b ∈ U the section ϕ(b) is transversal to Y .

Transversality to a variety means that ϕ(b) is transversal to all strata of Y for a complex
stratification of Y . If a map f of smooth varieties is transversal to a subvariety Y in this sense
then f ∗([Y ]) = [f−1(Y )] just as if Y were smooth.

We mention that if in Proposition 6.4 we take B = H0(E), then we get that for a vector bundle
generated by global sections we always have an open subset of the sections which is transversal
to any given subvariety of the total space.

Proposition 6.5. The family of sections sα (defined in (10)) generates the bundle ξ.

Proof. Fix Ln ≤ CN and l1 ≤ CN and let ψ(β) = ι∗Lβιl for β ∈ Hom(CN , (CN )∗). It is enough
to show that ψ : Hom(CN , (CN)∗) → Hom(l, L∗) is surjective, which is clear since ψ(β) is a n×1
submatrix of β in an appropriate coordinate system. �

Hence we may choose an sα transversal to Σ̂C. We have that VC = s−1
α (Σ̂C) is a codimen-

sion l subvariety of Grn CN ×(PN−1)k, which represents [YC]|ci 7→(−1)ici in the cohomology of

Grn CN ×(PN−1)k.
Now fix a complete flag in CN , and consider the products of Schubert varieties

Sλ,q = Sλ × (Sq1 × . . .× Sqk) ⊂ Grn CN ×(PN−1)k.

Here λ is a partition (with number of parts ≤ n), and Si ⊂ PN−1 is a linear space of codimension
i, with q = (q1, . . . , qk). The cohomology classes represented by the Sλ,q’s form an additive basis
of the cohomology group, and by the Giambelli formula of Schubert calculus we know that

[Sλ,q] = ∆λ(−c1, c2,−c3, c4, . . . , (−1)ncn) ·
k∏

i=1

(−di)
qi.

Recall also that this basis is self dual in the sense that
∫

[Sλ,q][Sµ,w] = 0 unless µ = λ′, the
complement of λ in the n × (N − n) rectangle, and w = q′, ie, q+w = (N, . . . , N) (in which
case, the integral is 1).

By appropriate choice of the section sα we may also assume that VC is transversal to the
Schubert varieties Sλ,q. Let |λ| +

∑
qi = dim(GrnCN ×(PN−1)k) − l. Then we have that

#(VC ∩ Sλ,q) =

∫
[V ][Sλ,q],

which is then the coefficient of [Sλ′,q′ ] when [VC] is written as a linear combination of [Sµ,w]’s. By
rephrasing we obtain the following theorem.

Theorem 6.6. The coefficient of ∆λ(c1, c2, . . . , cn)
∏

i(−di)
qi in [YC], when the latter is written

as a linear combination of classes

∆µ(c1, c2, . . . , cn)

k∏

i=1

(−di)
wi,
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is the intersection number #(VC ∩ Sλ′,q′). Hence all coefficients in this linear combination are
nonnegative.

Let us now consider the special case of λ being the empty partition, and
∑
qi = l. We obtain

that the coefficient of (−1)l
∏

i d
qi
i in [YC] is the intersection number

#(V ∩ (point×H1 × . . .×Hk)),

where Hi are generic linear subspaces in PN of total codimension l. Identifying the point in
Grn CN with Cn this intersection number is the same as the definition of N(C;q). This proves
Theorem 5.3.

Theorem 5.3 shows the geometric interpretation of the pure d coefficients of [YC ], but the
other extreme, the pure c coefficients are also noteworthy. By the definition of GL(n)-equivariant
cohomology we have

Theorem 6.7. Suppose π : E → B is a rank n vector bundle with Chern classes c1, . . . , cn.
Assume that π has k sections satisfying a certain transversality property. Then the cohomology
class in B represented by the subvariety

{b ∈ B|s1(b), . . . , sk(b) form a configuration belonging to YC ⊂ π−1(b)}

is equal to [YC]
∗.

The transversality property can be easily phrased. Over the real numbers it is a generic
property of k-tuples of sections. Thus one obtains a result on the parity of (the cohomology class
represented by) the points over which k generic sections of a real projective space bundle form a
given configuration C.

Remark 6.8. Certain facts suggest some kind of relations between the c and the d variables of
[YC]. One of these facts is that either one can be used to calculate the degree of YC—hence they
can not be independent. More generally, it can be shown that [YC] can be written as a polynomial
of the weights γi−dj of the representation in Section 4.2. Another fact is that for matrix Schubert
varieties the pure c part determines the whole [YC] (up to permutation of indexes). Since the pure
c part of [YC] can be presented in a more compact way in general, it would be interesting to see
the relation in general. However, we may not expect that the pure c part determines the pure d
part for any C. For example, let C1 be the configuration of 7 points on the projective plane with
the collinearities 123, 145, and 167 (and otherwise general). Let C2 be with the collinearities 123,
345, 567 (and otherwise general). The pure c part of the equivariant classes of both of these are
c31. The pure d parts are essentially different (see Theorem 4.2).

7. Stabilization

The interior structure of natural infinite sequences of equivariant cohomology classes of geo-
metrically relevant varieties has remarkable connections with the theory of symmetric functions
[Nak99], and iterated residue identities for hyperplane arrangements [BS06, FR08]. In this sec-
tion we make the first step towards exploring similar relations for the classes [YC], by showing
the property analogous with the so-called d-stability property of Thom polynomials of contact
singularities, cf. [FR08, Sect. 7.3]. A byproduct—important in Section 8—is Theorem 7.4 on
the vanishing of certain coefficients of [YC].
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Let C be a configuration of k vectors in Cs, spanning Cs, and let codim(YC ⊂ Cs×k) = l. For
n ≥ s let the configuration C#n be obtained from C through the natural embedding of Cs into
Cn. Hence C#n is a configuration of k points in Cn, spanning an s dimensional subspace. It is
easy to check that codim(YC#n ⊂ Cn×k) = l + (k − s)(n− s). Our goal is to compare the classes

(11) [YC] ∈ Z[c1, . . . , cs, d1, . . . , dk] and [YC#n] ∈ Z[c1, . . . , cn, d1, . . . , dk].

Clearly YC#n ∩Cs×k = YC. If this intersection was transversal, or if YC#n was equal to YC, then the
relation between the two equivariant classes would follow from standard notions of equivariant
cohomology. None of these is the case; the relation between the two polynomials does not follow
from straightforward applications of equivariant cohomology notions. The relation between the
two classes must involve nontrivial algebra, since it involves nontrivial geometry—consider for
example the case when C is the collection of 4 generic vectors in C2. In this case [YC] = 1
while [YC#4 ] has a term 2d1d2d3d4, whose coefficient is the solution of the Schubert problem of
Example 5.5.

Below we will work with the Chern roots γi of GL(m) (m = s or n), instead of the Chern
classes ci. That is, we identify H∗(BGL(m)) = Z[c1, . . . , cm] with the symmetric polynomials
of γ1, . . . , γm; where the i’th elementary symmetric polynomial is ci. In our notation, hence, YC
may be a polynomial in ci’s and di’s, or a polynomial in γi’s and di’s necessarily symmetric in the
γi’s. If S is an s-element subset of [n], then [YC](γS) will denote the value of [YC] if we substitute
the variables γi, i ∈ S for γ1, . . . , γs.

Theorem 7.1. Let
(
[n]
s

)
denote the set of s-element subsets of [n]. For such a subset S, let S̄

denote the complement of S in [n]. Then we have

(12) [YC#n] =
∑

S∈([n]
s )

[YC](γS) ·
∏

i∈S̄

∏k

j=1(γi − dj)∏
i∈S̄

∏
j∈S(γi − γj)

.

Proof. Let εk denote the trivial bundle of rank k, and let τs be the tautological bundle (or
rank s) over Grs C

n. The embedding of bundles τs ⊂ εn induces the embedding of bundles
i : Hom(εk, τs) → Hom(εk, εn). The maximal torus U(1)n × U(1)k of Gn,k acts on the following
diagram

YC(ξ) ⊂ Hom(εk, τs) � � i
//

ξ
))T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

Hom(εk, εn)

π1

��

π2
// Hom(Ck,Cn) ⊃ YC#n

GrsC
n,

where π1 are π2 the projections of Hom(εk, εn) = GrsC
n×Hom(Ck,Cn), and YC(ξ) is the col-

lection of the YC-points in each fiber of ξ. The composition π2 ◦ i is a birational map from YC(ξ)
to YC#n . Therefore we can apply the fibered version of the Atiyah-Bott localization theorem,
Theorem (3.8) in [BS06] (see also [FR08, Prop.5.1]), and we obtain the theorem. �

Another relation between the classes (11) stems from the following theorem.

Theorem 7.2. Let n > s, and [YC#n ] =
∑
γinpi(γ1, . . . , γn−1, d1, . . . , dk). Then

(1) pi = 0 for i > k − s, and
(2) pk−s = kC · [YC#(n−1) ] for an integer kC.
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Proof. Apply Theorem 2.1 of [FR07]. �

To explore the algebraic consequences of Theorem 7.2 we define lowering and raising operators
on constant width polynomials.

Definition 7.3. The width of a monomial in Z[c1, . . . , cn] is the number of factors in it. The
width of a polynomial is the width of its widest term. Let P n

w be the vector space of width ≤ w
polynomials in Z[c1, . . . , cn]. The lowering operator Lnw : P n+1

w → P n
w is defined to be the linear

extension of
Lnw (ci1ci2 . . . ciw) = ci1−1ci2−1 . . . ciw−1,

and Lnw(cI) = 0 if the width of cI is less than w (c0 is defined to be 1). Lnw decreases the degree
by w. The raising operator (increasing the degree by w) Rn

w : P n
w → P n+1

w is defined by

p =
∑

λ

aλ∆λ(c1, . . . , cn) 7→
∑

λ

aλ∆(λ1+1,...,λw+1)(c1, . . . , cn+1),

where
∑

λ aλ∆λ is the unique expression of p as a linear combination of Schur polynomials cor-
responding to partitions with w parts.

For instance we have L2
3(c1c2c3+5c23) = c1c2, andR2

3(c1c2) = R2
3(∆210(c1, c2)) = ∆321(c1, c2, c3) =

c1c2c3 − c23. We have the one-sided inverse property Lnw ◦Rn
w =id, but not the other way around.

Theorem 7.4. Let C be a configuration of k vectors in Cn, spanning an s dimensional subspace.

• The width of [YC]
∗ is at most k − s.

• If [YC]
∗ is written in the Schur basis ∆λ, then all occurring λ have at most k − s parts.

Proof. If [YC]
∗ had a term of width i > k − s, then Lni ([YC]

∗) would not be 0, contradicting
to Theorem 7.2 (1) (cf. [FR07, Cor.2.5]). This proves the first statement. The second is a
combinatorial rephrasing of the first one. �

Theorem 7.5. Let n, k ≥ s, and let us use the notations of Theorem 7.1. Let λ be a partition
with at most k − s parts. Then we have

(13) Rn−1
k−s ◦ . . . ◦R

s+1
k−s ◦R

s
k−s (∆λ(c1, . . . , cs)) =

∑

S∈([n]
s )

∆λ(γS) ·
∏

i∈S̄ γ
k
i∏

i∈S̄

∏
j∈S(γi − γj)

.

Proof. The polynomial ∆λ(c1, . . . , cs) is the equivariant class [YC]
∗ of an appropriate matrix Schu-

bert variety, according to Theorem 4.2. Then Theorem 7.1 gives that the right hand side is the
GL(n) equivariant class of another matrix Schubert variety. Checking the indexes, and applying
Theorem 4.2 again we obtain the left hand side. �

It would be interesting to find a combinatorial proof of this theorem, possibly along the line
of the multivariate Lagrange interpolation formula for symmetric functions [CL96].

Finally, we have the description of the relation between the pure c parts of the equivariant
classes (11).

Theorem 7.6. Let C be a configuration of k vectors in Cs, spanning Cs. Let n ≥ s, and let C#n

be obtained from C by the natural embedding Cs ⊂ Cn. Then [YC#n]∗ has width at most k − s,
and

[YC#n]∗ = Rn−1
k−s ◦ . . . ◦R

s+1
k−s ◦R

s
k−s ([YC]

∗) .
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Proof. According to Theorem 7.4 we can express [YC]
∗ as a linear combination of ∆λ polynomials

with each λ having at most k − s parts. Let us apply the operation p 7→
∑

S

p·
∏

i∈S̄ γ
k
i∏

i∈S̄

∏
j∈S(γi−γj)

to

this expression. Theorem 7.5 gives our result. �

In particular the constant kC above is 1. Furthermore, the pure c part of [YC] determines
[YC#n] by adding a (k − s) × (n − s) rectangle to each λ in its Schur expansion. The analogous
phenomenon for equivariant classes of contact singularities is called the “finiteness of Thom
series”, see [FR08]. However, finiteness of Thom series seems more the exception than the rule
for contact singularities. The only known finite Thom series correspond to a trivial case (the
algebras Z[x1, . . . , xn]/(x1, . . . , xn)

2), the Giambelli-Thom-Porteous formula.

Denoting the Menelaus configuration considered in a subspace of Cn (n ≥ 3) by C#n
M we obtain

that
[YC#n

M
]∗ = 3∆n−1,n−2,n−2 + 2∆n−1,n−1,n−3 + 3∆n,n−2,n−3.

Remark 7.7. The only property of the representation of Section 4.2 used in this section was that
this representation is a quiver representation. Hence the suitable rephrasing of the localization,
width, and vanishing results above are valid for all quiver representations.

8. The calculation of equivariant classes of matrix matroid varieties

The standard straightforward methods to calculate equivariant classes of invariant subvarie-
ties—such as the method of resolution or (Gröbner) degeneration—assume more knowledge on
the ideal of the variety than we have about the ideal of matrix matroid varieties.

What we can do is list certain properties of the class [YC], and hope that a computer search
proves that there is only one element of the polynomial ring Z[c1, . . . , cn, d1, . . . , dk] that satisfies
all these properties. The main such property—which we will call Interpolation property—is
motivated by methods used in the theory of Thom polynomials of singularities.

8.1. Interpolation. For a configuration D ∈ Cn×k let GD denote its stabilizer subgroup in Gn,k.
The embedding GD → Gn,k induces a map between classifying spaces BGD → BGn,k, and, in
turn, a homomorphism between rings of characteristic classes φD : H∗(BGn,k) → H∗(BGD).

Theorem 8.1. [FR04, Th.3.2] If D 6∈ YC then φD([YC]) = 0.

Theorem 8.1 is a homogeneous interpolating condition on [YC]. To obtain a non-trivial condi-
tion, however, we need to find a configuration D, outside of YC, with reasonably large symmetry
group. Let us illustrate the usage of this theorem with an example.

Example 8.2. The calculation of [YCM
]. Consider the following configuration D1|2|6: v1, v2,

and v6 are three generic vectors in C3, while v3 = v4 = v5 = 0 ∈ C3. Clearly D1|2|6 is not in
the closure of XCM

, since for all configurations in XCM
the vectors v1, v2, and v6 are coplanar.

Therefore φD1|2|6
([YCM

]) = 0. The stabilizer subgroup of D1|2|6 is U(1)6 with the embedding into

G3,6 via (diag(α, β, γ), diag(α, β, δ, η, θ, γ)). Hence—by abusing language and identifying general
elements of a U(1) with the first Chern class of U(1)—the map φD1|2|6

: Z[c1, c1, c3, d1, . . . , d6] →
Z[α, β, γ, δ, η, θ] maps

c1 7→ α + β + γ, c2 7→ αβ + αγ + βγ, c3 7→ αβγ,

d1 7→ α, d2 7→ β, d3 7→ δ, d4 7→ η, d5 7→ θ, d6 7→ γ.
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The vanishing of [YCM
] at this map is a non-trivial interpolation property of [YCM

]. In fact, one
finds that the degree 4 part of the intersection of the kernels of the φD1|2|6

, φD1|3|5
, φD2|3|4

, and

φD4|5|6
is 2-dimensional. (This is not surprising in the light of the decomposition (5).) Now let

D124|356 be the following configuration: v1 = v2 = v4 and v3 = v5 = v6 are two different nonzero

vectors in C3. This configuration is not in the closure of XCM
because of Menelaus’ theorem.

Indeed, the left hand side of (4) is −1 for any configuration in XCM
, but it is ∞ for D124|356. As

a consequence, [YCM
] must vanish at the map φD124|356

: Z[c1, c1, c3, d1, . . . , d6] → Z[α, β, γ],

c1 7→ α + β + γ, c2 7→ αβ + αγ + βγ, c3 7→ αβγ,

d1 7→ α, d2 7→ α, d3 7→ β, d4 7→ α, d5 7→ β, d6 7→ β.

It turns out that there is only a 1-dimensional set of degree 4 polynomials in Z[c1, c1, c3, d1, . . . , d6]
vanishing at the five maps φD1|2|6

, φD1|3|5
, φD2|3|4

, φD4|5|6
, and φD124|356

. Normalization is achieved,

for example, by observing that the coefficient of d2
3d

2
6 in [YCM

] has to be 1, due to Theorem 5.3.

Observe that the application of Theorem 8.1 to calculate [YC] resonates to the method of
determining the ideal of YC discussed at the end of Section 3.2. That is, we first deal with the
trivial conditions following from the closed conditions on XC, then need to work with some extra
equations besides these naive ones. What makes the equivariant cohomology calculation easier
is that here we do not have to have a full understanding of all the fake components, or all the
extra geometry theorems of the configuration. It is enough to find some of these, use these to
find an interpolations constraint. And it is clear when we can stop: as soon as we find enough
interpolation constraints to cut down the dimension of the solution set to 1, we can be sure we
found [YC].

8.2. Calculation in practice. The three main conditions we may use to calculate the equivari-
ant class [YC] are

• the interpolation conditions, Theorem 8.1;
• the enumerative conditions, Theorem 5.3;
• the width condition, Theorem 7.4.

The first one depends on the choice of the test configuration D. The second one depends on
the choice of the numbers q. For certain choices of D and q these conditions are far from being
straightforward, because we do not know whether D belongs to YC, or the number N(C;q).
For some other choices, however, simple arguments answer these questions, and hence we have
explicit constraints of [YC]. See, for example, the calculation of [YCM

] above.
It is quite possible that the interpolation conditions themselves are enough to determine the

equivariant class [YC] up to a scalar. For some other representations the analogous statement
is a theorem, eg. [FR04, Thm. 3.5]. However the proof there depends on a condition of the
representation (called Euler condition in [FR04, Def. 3.3], closely related to the “equivariantly
perfect” condition of [AB83, Sect.1.]). This condition does not hold for the representation of
Section 4.2.

What works in practice, is the combination of the three constraints. For all the configurations
the authors considered (many more than the ones presented in this paper) there is only one
polynomial of degree codim YC in Z[c1, . . . , cn, d1, . . . , dk] satisfying the simple straightforward
constraints obtained from interpolation and enumeration, together with the width condition. We
conjecture this holds for all configurations.



EQUIVARIANT CLASSES OF MATRIX MATROID VARIETIES 21

9. Hierarchy

The interpolation method highlights the importance of the hierarchy of the sets YC. In fact,
the effective usage of the interpolation method to calculate [YC] assumes that we have another
configuration D such that D 6∈ YC. To indicate the non-triviality of this problem we challenge
the reader with the problem of deciding whether the configuration D134|256 is contained in YCC

(for notations see Figure 2 and Example 8.2).
The hierarchy of the sets XC is not “normal”, in the sense that there are examples of configu-

rations C and D such that certain points of XD are in the closure of XC, some others are not. A
small example is C = CM , D =6 points on one line. Hence, we restrict our attention to the case
when D is an orbit of the action in Section 4.2. In this case Theorem 8.1 yields the following: if
φD([YC]) 6= 0 then YD ⊂ YC.

The vanishing of φD([YC]) has no chance of determining the adjacency of YC and YD if the
stabilizer group GD is trivial (ie. it is the kernel of the representation, U(1)). However, when
GD is larger, we have found no counterexample to the following conjecture.

Conjecture 9.1. Let C and D be configurations of k points in Cn. Suppose that projectivizations
of the non-zero vectors in D form a projectively independent set (hence of cardinality ≤ n). Then

YD ⊂ YC ⇔ φD([YC]) 6= 0.

Together with the effective algorithm of Section 8.2 computing [YC], this conjecture would serve
as a computable criterion of hierarchy, cf. [FP07].
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[Kle76] S. Kleiman. Enumerative geometry of singularitites. In Real and complex singularities. Proc. Ninth Nordic
Summer School/NAVF Sympos. Math., Oslo, pages 297–396, 1976.
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