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Abstract. This series of lectures contains the material for the class Math 681, Graduate Topol-
ogy, as it was taught in Fall 2021—a.k.a. the δ semester—at the University of North Carolina at
Chapel Hill. It is called a Coloring Book, because numerous arguments, indicated by the sign ♠,
that were presented in the class are not typed in. In fact, those arguments are deliberately left out
of this text: reading those arguments would have no educational value for the reader. Figuring
out those arguments (“coloring between the contours”) does. Hence, whenever the reader meets
a ♠ sign, they should stop and fill in the missing proof. Such “coloring” of this Coloring Book is
an essential part of learning the subject.
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1. Point-set topology

1.1. Topological space, basis. We denote the powerset (the set of subsets) of a set X by 2X .

Definition 1.1. The ordered pair (X, T ) is a topological space (X is the base set, T is the
topology on X), if X is an arbitrary set, and T ⊂ 2X satisfies

• ∅, X ∈ T ,
• the union of arbitrary many sets from T is in T ,
• the intersection of finitely many sets from T is in T , (equivalently, the intersection of
two elements of T belongs to T ).

Elements of T we call open sets. If the complement Ac = X − A is open we call A a closed set.
Find a few (all) topologies on small sets (eg. |X| = 1, 2, 3) ♠.

Example 1.2. (X, 2X) is a topological space, we call it the discrete topological space.

Example 1.3. (X, {∅, X}) is a topological space, we call it the antidiscrete topological space.

Example 1.4. For a given X let U ∈ T if U c is finite or if U = ∅. Then (X, T ) is a topological
space ♠. We call it the finite complement topological space (or the cofinite topological space).

Example 1.5. For a given X let U ∈ T if U c is countable (meaning: finite or countably infinite)
or if U = ∅. Then (X, T ) is a topological space ♠. We call it the countable complement
topological space.

The last two examples can be generalized (if you know the theory of large infinities). Let ℵ be
an infinite cardinality. Then U ∈ T if and only if U = ∅ or |U c| < ℵ defines a topology ♠.

We say (X, T ′) is a finer topological space than (X, T ) if T ′ ⊃ T . In this case the latter is coarser
than the first one. The discrete and the antidiscrete topologies are the finest and the coarsest
topologies on X.

Definition 1.6. Let (X, T ) be a topological space. The set B ⊂ T is called a basis of (X, T ) if
every element of T can be written as a union of some of the elements of T .

For example, T is a basis of T . Usually there are bases of T that are “much smaller” than T .
The set B = {{x} : x ∈ X} (the set of “singletons”) is a basis of the discrete topology ♠.

The basis B determines T ♠.

Theorem 1.7. Let X be a set. The set B ⊂ 2X is a basis of a topology on X if and only if B
satisfies the “basis properties”:

• the union of elements of B is X,
• the intersection of any two elements in B can be written as a union of some of the elements
of B.

Proof. ♠ □

This last notion basis gives us an economical way of defining topologies. We do not need to define
T , just define B (but make sure it satisfies the basis properties).
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Example 1.8. Let X = R and B = {open intervals}. This B satisfies the basis properties ♠,
hence it determines a topology. We call it the Euclidean topology on R and denote it by RE .

In RE a set U ⊂ R is open if for all x ∈ U there exists a positive number ε such that B(x, ε) :=
{y ∈ R : |y − x| < ε} ⊂ U ♠. That is, RE is the topological space studied in Real Analysis.

Example 1.9. Let X = R and B = {[a, b) : a < b}. This B satisfies the basis properties ♠,
hence it determines a topology. We call it the Sorgenfrey line or the lower limit topology on R
and denote it by Rll.

1.2. Order topology.

Definition 1.10. (X,≤) is a totally ordered set if ≤ is irreflexive, transitive, anti-symmetric,
and satisfies the trichotomy law (∀a, b ∈ X : a ≤ b or b ≤ a). We write a < b for (a ≤ b, a ̸= b).

A total order on X restricts to a total order on a subset Y ⊂ X ♠. In a totally ordered
set intervals (a, b), [a, b), (a, b], [a, b] and rays [a,∞), (a,∞), (−∞, a), (−∞, a] are defined for
a, b ∈ X.
For the totally ordered set (X,≤) the set

B = {∅, (a, b), (a,∞), (−∞, a), X : a, b ∈ X}
satisfies the basis axioms ♠. The generated topology is called the order topology on X.
Totally ordered spaces are, for example, R,Z,Q,Qc,Q∩[0, 1],Q∩[0, 1), [0, 1)∪{2} with the stan-
dard ≤; R2 with the lexicographic order. Hence we have order topology on them.

1.3. Product topology.

Definition 1.11. Let (X, T ), (Y,S) be topological spaces. The set B = {U ×V : U ∈ T , V ∈ S}
satisfies the basis axioms ♠. The generated topology is called the product topology on X × Y .

We have RE ×RE = the Euclidean topology on R2, that is, a set ⊂ R2 is open if there exists an
ε > 0 such that B(x, ε) ⊂ U ♠.
Let BX and BY be bases of (X, T ) and (Y,S) respectively. The set B = {U×V : U ∈ BX , V ∈ BY }
is also a basis of the same product topology ♠.

1.4. Subspace topology.

Definition 1.12. Let (X, T ) be a topological space, and Y ⊂ X. The set {U ∩ Y : U ∈ T} is a
topology on Y ♠. It is called the subspace topology on Y inherited from X.

For example in [0, 1] with topology inherited from RE the set [1, 1/3) is open ♠. Interesting
examples include Z ⊂ R, Q ⊂ R, Qc ⊂ R with the topology inherited from RE . If K ⊂ R3 is
a knot, the topological space R3−K ⊂ R3 is an important topological space used to study the
knot.
Let B be a basis of T . The set B′ = {U ∩ Y : U ∈ B} is a basis of the subspace topology ♠.

One may ask if some of our operations commute or not.



GRADUATE TOPOLOGY COLORING BOOK 3

• If (X, T ), (Y,S) are topological spaces, A ⊂ X, B ⊂ Y we can consider two topologies
on A × B. First, the subspace topology from the product topology X × Y . Second, the
product topology of the subspace topologies on A and B. Are they necessarily the same
or not? ♠

• If (X,≤) is a totally ordered set and A ⊂ X then on A we can consider two topologies.
First, the subspace topology from the order topology on X. Second, the order topology
defined by (A,≤ |A). Are they necessarily the same or not? ♠

1.5. Metric topology.

Definition 1.13. (X, d) is a metric space if X is a set and d : X × X → R≥0 is a function
satisfying

• d(x, y) = d(y, x),
• d(x, y) = 0 ⇔ x = y,
• (triangle inequality) d(x, y) + d(y, z) ≥ d(x, z).

In a metric space we define B(x, r) = {y ∈ X : d(x, y) < r}.

The set B = {B(x, r) : x ∈ X, r ∈ R>0} satisfies the basis axioms ♠. [This lemma will be useful:
For y ∈ B(x, r) there is an s > 0 such that B(y, s) ⊂ B(x, r) ♠.] The induced topology on X is
called the metric topology. Different metrics may induce the same topology ♠.
The Euclidean topology Rn

E is induced from the metric d(x, y) =
√∑

i(xi − yi)2 on Rn ♠.

The function d(x, y) =

{
1 x ̸= y

0 x = y
is a metric on any set ♠. It induces the discrete topology.

The restriction of a metric to a subset A of X is a metric. The topology induced by the restricted
metric is the same as the subspace topology inherited from (X, d) ♠.

1.6. On open and closed sets. The collection of closed sets includes ∅, X; finite union and
arbitrary intersection of closed sets is closed ♠. The collection of closed sets satisfying these
properties as axioms could be an alternative definition of topological space ♠.

Let X be a topological space, and A ⊂ Y ⊂ X. Then A is a closed set in the subspace topology
on Y , if and only if there is a set Z closed in X with A = Z ∩ Y . ♠
Let Y be open in the topological space X, U ⊂ Y . Then U is open in Y if and only if it is open
in X ♠.

Let Y be closed in the topological space X, V ⊂ Y . Then V is closed in Y if and only if it is
closed in X ♠.

The projection map π : X × Y → X is an open map, that is, U open implies π(U) open ♠.
The same projection is not necessarily a closed map. ♠

1.7. Interior, closure.

Definition 1.14. Let A be a subset in a topological space. Define

intA = ∪{U : U is an open set, U ⊂ A} A = ∩{V : V is a closed set, V ⊃ A}.
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Clearly intA ⊂ A ⊂ A.
If U ⊂ A is an open set then U ⊂ intA. If V ⊃ A is a closed set then V ⊃ A. That is, intA is
the largest open set contained in A, and A is the smallest closed set containing A ♠.
Let X be a topological space, Y a subspace, and A ⊂ Y . Then the closure of A in the topological
space Y is equal to A ∩ Y ♠. That is, (using obvious temporary notation) we have

A
Y
= A

X ∩ Y.

The analogous statement for intA is not true ♠.
An open set containing x ∈ X is called a neighborhood of x.

Proposition 1.15 (Pointwise characterization of interior). We have x ∈ intA if and only if
there is a neighborhood of x which is a subset of A ♠.

Proposition 1.16 (Pointwise characterization of closure). We have x ∈ A if and only if for
every neighborhood U of x the intersection U ∩ A is not empty ♠.

1.8. Limit points.

Definition 1.17. Let A be a subset of the topological space X. The point x ∈ X is called a limit
point of A (notation x ∈ A′) if for every neighborhood U of x the set (U ∩A)−{x} is not empty.

Clearly x ∈ A′ ⇔ x ∈ A− {x} ♠.

Proposition 1.18. We have A = A ∪ A′ ♠.

The following conditions are equivalent: (i) A is closed, (ii)A = A, (iii) A cointains all of its limit
points ♠.

1.9. Boundary.

Definition 1.19. Define the boundary of the set A in a topological space to be ∂A = A ∩ (Ac).

The boundary ∂A is a closed set ♠.
A point x belongs to ∂A if and only if every neighborhood of x intersects both A and Ac ♠.

1.10. Continuous functions.

Definition 1.20. The map f : X → Y between topological spaces is continuous if the preimage
of an open set in Y is open in X.

The following are equivalent characterizations of continuity ♠.

• Let B be a basis in Y . We have U ∈ B ⇒ f−1(U) is open in X.
• The preimage of a closed set in Y is closed in X.
• f(A) ⊂ f(A).
• (pointwise characterization) ∀x ∈ X and for all neighborhood V of f(x) there exists a
neighborhood U of x such that f(U) ⊂ V .
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The identity map X → X is continuous ♠.
The constant map X → Y is continuous ♠.
If X is discrete then f : X → Y is continuous ♠.
If Y is antidiscrete then f : X → Y is continuous ♠.
The composition of continuous functions is continuous ♠.
The identity map (X, T ) → (X,S) is continuous if and only if T is a finer topology than S ♠.

Definition 1.21. A bijection f : X → Y between topological spaces for which both f and f−1 are
continuous is called a homeomorphism. A map f : X → Y for which the induced map X → f(X)
is a homoeomorphism (f(X) ⊂ Y with the subspace topology) is called an embedding.

The map (0,∞) → R2 (with Euclidean topologies) defined by x 7→ (x, sin(1/x)) is an embedding.
The map [0, 2π) → {x ∈ R2 : ∥x∥ = 1} (with Euclidean topologies) defined by x 7→ (cosx, sinx)
is not a homeomorphism ♠.
If there exists an X → Y homeomorphism then we call X and Y homeomorphic. This is an
equivalence “relation” ♠.

1.11. Continuity vs product space, continuity vs subspace.
The projection map πX : X × Y → X is continuous ♠.

Proposition 1.22. The map X → Y ×Z is continuous if and only if both πY ◦ f and πZ ◦ f are
continuous ♠.

Let A ⊂ X be a subspace. The inclusion map i : A ⊂ X is continuous ♠.

Proposition 1.23. Let X = ∪aUα where Uα is open in X for all α. The map f : X → Y is
continuous if and only if f |Uα is continuous for all α.

Proof. Use ♠
• f−1(V ) = f−1(V ) ∩X = f−1 ∩ (∪αUα) = ∪α(f

−1(V ) ∩ Uα), and
• if U ⊂ X is open then for A ⊂ U ⊂ X we have A open in U ⇔ A open if X.

□

Proposition 1.24. (Pasting lemma) Let X = ∪n
i=1Ai where Ai is closed in X for all i (finite

union). The map f : X → Y is continuous if and only if f |Ai
is continuous for all i ♠.

Proof. Use the “preimage of closed is closed” definition of continuity, and an appropriate modi-
fication of the proof above ♠. □

1.12. Separation axioms.

Definition 1.25. The topological space (X, T ) is called

• T0 if for any x ̸= y ∈ X there is a U ∈ T that contains one of x, y but not the other;
• T1 if for any x ̸= y ∈ X there is a U ∈ T such that x ∈ U, y ̸∈ U ;
• T2 (Hausdorff) if for any x ̸= y ∈ X there are disjoint U, V ∈ T such that x ∈ U, y ∈ V ;
• T3 (regular) if T1 and for any x ̸∈ A ⊂ X, A closed there are disjoint U, V ∈ T such that
x ∈ U,A ⊂ V ;
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• T4 (normal) if T1 and for any A,B ⊂ X disjoint closed sets there are disjoint U, V ∈ T
such that A ⊂ U,B ⊂ V .

The space X is T1 if and only if singletons are closed ♠. Equivalently, if finite sets are closed.
We have T4 ⇒ T3 ⇒ T2 ⇒ T1 ⇒ T0 ♠.
The antidiscrete topology is not T0.
The space ({1, 2}, {∅, {1}, {1, 2}}) is T0 but not T1. This example has two generalizations:

(1) The “distinguished point topology”: Fix x ∈ X. Let U ∈ T if x ∈ U .
(2) The “avoid a point topology”: Fix x ∈ X. Let U ∈ T if x ̸∈ U .

Both of these are T0 but not T1 ♠.
If X has infinitely many points then the finite complement topology on X is T1 but not T2.

Definition 1.26 (Ravioli). Let X = (R−{0})∪{0′, 0′′}. Define a topology on X via the following
basis. The intervals (a, b) with either a, b < 0 or a, b > 0 belong to B. Also, for a < 0, b > 0 the
set ((a, b) − {0}) ∪ {0′} and the set ((a, b) − {0}) ∪ {0′′} belong to B. This B satisfies the basis
properties ♠. The defined topology we will call the ravioli space.

The ravioli is T1 but not T2 ♠.

Proposition 1.27. The property

• for all x ∈ X and neighborhood U of x there exist a neighborhood V of x with V ⊂ U

is equivalent to the T3 property.

Proposition 1.28. The order topology is T2. The metric topology is T2 ♠.

Proposition 1.29. A subspace of a T2 space is T2. Product of T2 spaces is T2 ♠.

In fact the analogous proposition holds for T3 but not for T4—we do not prove these statements
here.

Proposition 1.30. If A ⊂ X, X is T1 then x ∈ A′ if and only if every neighborhood of x contains
infinitely many points of A ♠.

Definition 1.31. A sequence is a map a : N → X. We use the standard notation an. A point
b ∈ X is a limit of an if for every neighborhood U of b there is a threshold N such that n ≥ N
implies an ∈ U .

In an antidiscrete space every point is the limit of every sequence.

Proposition 1.32. In T2 space the limit of a sequence, if exists, is unique ♠.

1.13. Countability axioms.

Definition 1.33. A neighborhood basis of a point x in a topological space X is a collection Uα

of neighborhoods of x such that for all neighborhood V of x there is an α with Uα ⊂ V .

Definition 1.34. The topological space (X, T ) is called

• M1 (first countable) if every point x ∈ X has a countable neighborhood basis;
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• M2 (second countable) if (X, T ) has a countable basis.

Without loss of generality we may assume that a countable neighborhood basis is ‘nested’: U1 ⊃
U2 ⊃ U3 ⊃ . . .. ♠.
We have M2 ⇒ M1 ♠. The Euclidean line is M2 (think of rational endpoint open intervals) ♠.

Proposition 1.35. The Sorgenfrey line is M1 but not M2.

Proof. That it is M1 at x is proved by {[x, r) : r ∈ Q, r > x} ♠. Now let B be a basis of Rll.
For x ∈ R there is a neighborhood of x contained in [x, x + 1) ♠. Choose one such Ux for each
x ∈ R. The chosen Ux’s are all different, because inf Ux = x. Hence the cardinality of B is at
least the cardinality of R. □

The space R with the countable complement topology is not M1 ♠.

Proposition 1.36. If X is M1 and A ⊂ X, then the following are equivalent

• x ∈ A;
• there is a sequence an in A whose limit is x.

Proof. ♠ □

Proposition 1.37. If X is M1 then the following are equivalent

• f : X → Y is continuous;
• (f is sequentially continuous, that is) limxn = a ⇒ lim f(xn) = f(a).

Proof. The proof from Real Analysis applies. One direction is convenient to prove by contradic-
tion ♠. □

1.14. Quotient space.

Definition 1.38. Let (X, T ) be a topological space, A a set, and q : X → A a surjection. We
define a topology on A by setting U open in A if q−1(U) is open in X.

The defined collection of open sets in A is indeed a topology ♠. The quotient topology on A is
the finest topology among those for which q is continuous ♠.
The surjection q is often given by an equivalence relation ∼ on X. Namely, ∼ determines a
surjection X → X/ ∼ to the set of equivalent classes. Thus, we defined a topology of X/ ∼.

Example 1.39. Let X = [0, 1]∪ [2, 3] and define 1 ∼ 2 (and the obvious other relations that are
forced by the fact that ∼ is an equivalence relation). Then the quotient space is homeomorphic
with [0, 2] ♠.

Example 1.40. Let X = [0, 1], and define 0 ∼ 1 (and the obvious other relations that are forced
by the fact that ∼ is an equivalence relation). Then the quotient space is homeomorphic with S1

♠.

Here and in the whole course Sn = {x ∈ Rn+1 : ∥x∥ = 1} with the Euclidean topology.
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Definition 1.41. Let G be a group, X a topological space. The map

G×X → X, written as (g, x) 7→ g · x
is a (continuous) left group action if

• 1 · x = x (for all x);
• g1 · (g2 · x) = (g1g2) · x (for all g1, g2, x);
• x 7→ g · x is a continuous map X → X (for all g).

The map in the last requirement is actually a homeomorphism ♠.
For a group action we define the relation x ∼ y if there is a g such that g · x = y. It is
an equivalence relation ♠. An equivalence class is called an orbit. Hence the quotient space
construction defines a topology on the space of orbits.

Example 1.42. The multiplicative group S1 ⊂ R2 = C acts on R2 = C by multiplication. The
space of orbits is homeomorphic to [0,∞) ♠.

Example 1.43. The additive group R acts on R2 by u · (x, y) = (x+ uy, y). As a set, the space
of orbits can be identified with the union of the axes in R2. Describe the obtained topology ♠.

The last example produced a rather “ugly” topological space. Other pathological examples of
quotient spaces include

• X = R, x ∼ y if y − x ∈ Q.
• X = R, x ∼ y if they are both rational, or if x = y.

Example 1.44. Let X = [0, 1]×Z+, and define (0, a) ∼ (0, b) for all a, b (and the obvious other
relations that are forced by the fact that ∼ is an equivalence relation). Let Y be the quotient
space. Let Z be the union of the segments in the plane connecting (0, 0) with (1/n, 1) for all
n ∈ Z+, with the Euclidean topology. It is tempting to think that Y is homeomorphic with Z.
It is not ♠.

Let q : X → Y be a quotient map. A map f̃ : Y → Z determines a map f : X → Z making
f = f̃ ◦ q true. Conversely, a map f : X → Z that is constant on the equivalence classes
determine a map f̃ : Y → Z making f = f̃ ◦ q true ♠.

Proposition 1.45. The map f is continuous if and only if f̃ is continuous ♠.

1.15. Connectedness.

Definition 1.46. Let X be a topological space. The pair (U, V ) is called a separation of X, if
X = U∪V , both are non-empty, and are disjoint. If X has no separation, it is called connected. A
subset A in a topological space is connected if it is a connected topological space with the subspace
topology.

In a separation U is both open and closed, and U ̸= ∅, U ̸= X.
Examples: R−{0} is not connected. The space {(x, 1/x) : x > 0}∪ y-axis is not connected. The
space Q is not connected. The space {(x, sin 1/x) : x > 0} ∪ y-axis is connected ♠.
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Lemma 1.47. Let X = U ∪ V be a separation, and A ⊂ X a connected set. Then A ⊂ U or
A ⊂ V ♠.

Lemma 1.48. Let X = ∪αUα, with each Uα connected. If there is a point p ∈ ∩αUα, then X is
connected ♠.

Proposition 1.49. Let A be a connected subset of X, and A ⊂ B ⊂ A. Then B is connected.

Proof. Let B = U ∪ V be a separation of the topological space B. Since Lemma 1.47 we can

assume A ⊂ U . Then we have A
B ⊂ U

B
. The left hand side is B, and the right hand side is U ,

hence B ⊂ U , which is a contradiction ♠. □

Proposition 1.50. Let f : X → Y be continuous, and A a connected subset of X. Then f(A)
is connected.

Proof. Let f̃ : A → f(A) be induced by f . It is also continuous ♠. If f̃(A) = U ∪ V was a

separation of f̃(A) then f̃−1(U), f̃−1(V ) would be a separation of A. □

Proposition 1.51. The product of two connected spaces is connected ♠.

Proposition 1.52. For A ⊂ R (with Euclidean topology) the following are equivalent:

(1) A is connected;
(2) A is convex (x, y ∈ A and x < z < y imply z ∈ A);
(3) A is an interval (arbitrary open/closed on each side, finite, half infinite, or infinite).

Proof. (1) ⇒ (2) is proved indirectly by ((−∞, z) ∩ A) ∪ ((z,∞) ∩ A).
(2) ⇒ (3): First show that (inf A, supA) ⊂ A ♠.
(3) ⇒ (1) [Heine’s theorem] Let u ∈ U, v ∈ V , u < v for a separation of an interval. Consider
x = supU and check the cases x ∈ U , x ∈ V ♠.

□

Corollary 1.53 (Intermediate Value Theorem). Let f : [a, b] → R be continuous. Then
f([a, b]) ⊃ [f(a), f(b)] ♠.

Definition 1.54. Let X be a topological space. Define x ∼ y if there is an open set A ⊂ X with
x, y ∈ A. Its is an equivalence relation on X (use Lemma 1.48 ♠). The equivalence classes are
called the connected components of X.

Determine the connected components of the examples after Definition 1.46 ♠.

Proposition 1.55. Connected components are

• connected ♠;
• closed (♠ use Proposition 1.49).

If X has finitely many connected components then connected components are open ♠.
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1.16. Path connectedness.

Definition 1.56. For x, y ∈ X define x ∼ y if there is a path (γ : [0, 1] → X continuous)
connecting them (ie. γ(0) = x, γ(1) = y).

This is an equivalence relation ♠. The equivalence classes are called path components. If X
is one path component, it is called path-connected. If A ⊂ X is path-connected, it must be
contained in a path component of X.
Instructive example: {(x, sin(1/x)) : x > 0}∪y-axis—this is a connected but not path-connected
space ♠.
Path components must be contained in connected components ♠. In general path components
are neither open nor closed.

1.17. Compactness.

Definition 1.57. A collection of open sets Uα in X such that ∪Uα = X is called an open
cover(ing) of X. A space X is called compact, if every open covering has a finite sub-cover.

R is not, (0, 1] is not, {1/n} is not, {1/n} ∪ {0} is compact.
If A is a subspace of X, then A being compact is equivalent with this property: If Uα are open
in X and ∪Uα ⊃ A, then finitely many of them also cover A ♠.

Proposition 1.58. A closed subset of a compact space is compact ♠.

Proposition 1.59. A compact subspace of a Hausdorff space is closed.

Proof. A ⊂ X. We will show that Ac is open, using the pointwise criterion of openness. Let
x ∈ Ac. Since X is T2, for all a ∈ A there exists disjoint neighborhoods Ua and Va of a and x
respectively. Finitely many of the Ua’s cover A. The intersection of the corresponding Va’s is a
neighborhood of x, disjoint from A ♠. □

Proposition 1.60. Continuous image of compact space is compact ♠.

Corollary 1.61. If f : X → Y is a continuous bijection, X compact, Y Hausdorff, then f is a
homeomorphism.

Proof. For A ⊂ X closed, the set (f−1)−1(A) is closed, using the propositions above ♠. □

Proposition 1.62. If X and Y are compact then X × Y is compact.

Proof. Let Uα be an open cover of X × Y . Let x ∈ X. The fiber {x} × Y is compact, hence
finitely many of the Uα’s cover it. Let Vx be the union of these Uα’s. Claim (“tube lemma”):
there exists a neighborhood Wx of x such that Wx × Y ⊂ Vx ♠. From the collection Wx finitely
many cover X. Each Wx × Y is covered by a finite collection of Uα’s, so X × Y is covered by a
finite collection of Uα’s. □

Proposition 1.63. The closed interval [0, 1] is compact.
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Proof. Let Uα be an open cover of [0, 1], and assume that no finite subcollection covers [0, 1].
Consider [0, 1/2] and [1/2, 1]. At least one of them is not covered by a finite subcollection of
Uα’s, choose that one, and continue halving it, always shoosing a half which is not covered by a
finite subcollection of Uα’s. Let x be in the intersection of these intervals (completeness of R).
Since x is contained by one of the Uα’s, there is an ε such that the ε-neighborhood of x is in a
Uα. However, after a while the halving intervals are contained in this ε-neighborhood, which is
a contradiction. □

Corollary 1.64. A set A ⊂ Rn compact if and only if it is bounded and closed ♠.

Corollary 1.65 (Extreme Value Theorem). If X is comapct then the continuous function f :
X → R attains its maximum (minimum) ♠.

1.18. Topological groups — sketch.

Definition 1.66. A T1 topological space G that is also a group is called a topological group if the
group operations G×G → G (multiplication) and G → G (inverse) are continuous.

We get an equivalent notion if we just require that the map f : G × G → G, (x, y) 7→ xy−1 is
continuous ♠.
A topological group is necessarily T2 (hint: consider f−1(1)) ♠.

Proposition 1.67. An open subgroup of a topological group is also closed ♠.

Proposition 1.68. The closure of a subgroup of a topological group is also a subgroup ♠.

Important examples of topological groups include (Z,+), (R,+), (R−{0}, ∗), (S1, ∗), (GLn(R), ∗),
(O(n), ∗), (S3, quaternionic multiplication).

1.19. Metrization theorems — sketch.

Theorem 1.69 (Urysohn metrization theorem— not proved in this course). A T3, M2 topological
space is metrizable (homeomorphic with a metric space).

Remark 1.70.

• T3,M2 implies T4.
• Somewhere in the proof we need to “create” some functions out of thin air (out of just
spaces). This is done using Urysohn’s lemma [not proved in this course]: If A,B are
disjoint closed subsets of a T4 topological space X then there exists a continuous function
f : X → [0, 1] such that f−1(0) = A, f−1(1) = B. It is instructive to glance at the proof
of this lemma (in the textbook or online) to see how the T4 property is used to “create a
function”, and hence to prove Urysohn’s lemma.

• The Sorgenfrey line is T3, it is not M2, and it is not metrizable ♠.

1.20. Infinite products — sketch. Let Xα be topological spaces for all α ∈ A. Define∏
α∈A

Xα = {f : A
⋃
α∈A

: f(α) ∈ Xα}

as a set. We define two topologies on this set:
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• [basis of box topology]
∏

α∈A Uα where Uα ⊂ Xα open;
• [basis of product topology]

∏
α∈A Uα where Uα ⊂ Xα open, Uα = Xα for all but finitely

many α ∈ A.

Both of these collections satisfy the axioms of a basis ♠.

Proposition 1.71. A map f : A →
∏

α∈A Xα (with the product topology) is continuous if and
only if all the component functions are continuous ♠.

The map f : R →
∏

n∈N R, t 7→ (t, t, t, . . .) has continuous coordinate functions, but is not
continuous if the codomain is equipped with the box topology. (♠ Hint: consider the preimage
of the set (−1, 1)× (−1/2, 1/2)× (−1/3, 1/3)× . . ..)

Theorem 1.72 (Tychonoff’s theorem). If Xα is compact for all α ∈ A then
∏

α∈A Xα (with the
product topology) is compact [not proved in this course].

1.21. Locally compact spaces, Alexandrov compactification — sketch.

Definition 1.73. The space X is called locally compact at x ∈ X if there exists a neighborhood
of x which is contained in a compact set. The space is locally compact if it is locally compact at
all x ∈ X.

Proposition 1.74. If X is T2 then the following are equivalent ♠
• X is locally compact;
• For all x ∈ X and all neighborhood U of x there is a compact set A and another neigh-
borhood V of x, such that x ∈ V ⊂ A ⊂ U .

Definition 1.75. The space Y is an Alexandrov compactification (a.k.a. 1-point compactifica-
tion) of the space X if

• X ⊂ Y (with subspace topology), Y −X is one point;
• Y is compact T2.

Theorem 1.76. The space X has an Alexandrov compactification if and only if it is locally
compact and T2. In this case the Alexandrov compactification is unique.

Proof. Let X be locally compact T2. The construction of Y is as follows: let Y = X ∪{∞}, with
the topology defined by the open sets

(1) U ⊂ X open;
(2) U ∪ {∞}, where U ⊂ X is open, X − U is compact.

Verifying that this is an Alexandrov compactification, as well as other parts of the proof are
straightforward. ♠ □

Example 1.77. The stereographic projection S2 − {North Pole} → R2 shows that the Alexan-
drov compactification of R2 is S2 ♠. In fact this works in every dimension for Rn and Sn ♠. The
Alexandrov compactification of a compact T2 space X is X ∪ {∞} (discrete union) ♠. Find a
familiar space that is homeomorphic to the Alexandrov compactification of Z ♠.
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2. Surfaces

2.1. Getting familiar with some spaces. The pictures below define quotient spaces (with
intuitive notation of gluing), they will be called (i) cylinder or annulus, (ii) Möbius strip Ms, (iii)
torus T 2, (iv) Klein bottle Kb, (v) real projective plane RP2.

In these spaces some points x have a neighborhood homeomorphic to R2, and some points x have
a neighborhood homeomorphic to the half-plane R2

+ = {(x, y) ∈ R2 : y ≥ 0} in such a way that
the point x is mapped to (0, 0). Points of the second kind will be called edge-points, or boundary
points. (This is not the “boundary of a set” notion we learned before.) For each space find these
boundary points ♠.

The cylinder can be realized as a subspace of R2 (c.f. the name annulus ♠). The Ms and the
torus (see picture on the left) can be realized as a subspace of R3 ♠. The Klein bottle can be
realized as a subspace of R4, starting from the usual picture (on the right) below ♠.

The picture on the right is not an embedding of the Kb into R3, because it has self intersections.
Similar pictures are called immersions. The space RP2 can also be immersed in R3 (search for
pictures online) and can be embedded in R4.

The following are all homeomorphic to RP2 ♠
• D2/ ∼, where x ∼ −x on the boundary of D2. (D2 = {x ∈ R2 : ∥x∥ ≤ 1} is the 2-disc.)
• S2/ ∼, where x ∼ −x.

As a set {1-dimensional linear subspaces of R3} is in bijection with RP2 ♠. In this disguise RP2

is also called the Gr1(R3) Grassmannian.
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Define RPn = Sn/ ∼, where x ∼ −x. As a set RPn is in bijection with Gr1(Rn+1) ♠. In geometry
(but not in this course) Grassmannians are endowed with extra structures besides their topology.

Proposition 2.1.

• Gluing together two copies of D2 along a homeomorphism of their boundaries results S2.
• Gluing together a D2 and a Ms along a homeomorphism of their boundaries results RP2.
• Gluing together two copies of Ms along a homeomorphism of their boundaries results Kb.

Three different proofs of the second statement are illustrated below

Finish the proof of the third statement started in the figure below. (♠ Hint: the next step is
realizing the b gluing.)

We may use the proposition above to identify some other quotient spaces. Eg. the space below
is the Kb ♠.
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Proposition 2.2. The spaces below are all the “punctured torus’ (ie. the torus with an open
disc removed) ♠.

Find analogous pictures of the punctured Klein bottle ♠.

2.2. Surfaces.

Definition 2.3. The T2,M2 topological space X is called a (topological n-) manifold, if every
x ∈ X has a neighborhood homeomorphic to Rn.

1-manifolds are also called curves, 2-manifolds are called surfaces.

Remark 2.4. The T2 condition is there to exclude spaces like the ravioli. The M2 condition is
there to exclude spaces like an uncountable disjoint union of R2s. A very interesting topological
space, named Alexandroff line (or “long line”, not covered in this course) also satisfies all, but
the M2 property.

Remark 2.5. There are other versions of manifolds, namely smooth manifolds, and PL (piece-
wise linear) manifolds. We will not meet them in this course.

The spaces Rn, Sn are n-manifolds. An open subset of Rn is an n-manifold. The cylinder S1×R1

is a surface. The annulus or the Ms are not surfaces, because points of the boundary circles do not
satisfy the requirement. If we remove those boundary circles, the remaining spaces are surfaces.
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2.2.1. The first list. Consider the infinite sequence of spaces in the figure.

The figures in the middle line will be called the plane models with gluing scheme aba−1b−1,
a1b1a

−1
1 b−1

1 a2b2a
−1
2 b−1

2 , etc.
In the figure we used the following notations

• If A and B both has a distinguished circle (typically a boundary circle) as a subspace,
then A ∪S1 B is obtained by gluing those two circles together via a homeomorphism.
Whenever we use this notation it will be true that the choice of the homeomorphism
S1 ↔ S1 does not matter.

• If A and B are surfaces then A#B is obtained by removing a (small) open disc, and then
gluing the resulting edge circles together by a homeomorphism (again, does not matter
which homeomorphism).

Proposition 2.6. The three sequences of spaces (the three lines) above are the same sequence of
spaces. ♠
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2.2.2. The second list. Consider the infinite sequence of spaces in the figure.

The figures in the second line will be called the plane models with gluing scheme a2, (a1)
2(a2)

2,
(a1)

2(a2)
2(a3)

2, etc.
The bottom line is

RP2,Kb,RP2#T 2,Kb#T 2,RP2#T 2#T 2,Kb#T 2#T 2,RP2#T 2#T 2#T 2, . . .

Proposition 2.7. The four sequences of spaces (the four lines) above are the same sequence of
spaces.

Proof. The following lemma is useful in the proof: If A is a surface which contains a Ms then
A#T 2 ∼ A#Kb. ♠ □

2.3. The Classification Theorem.

Theorem 2.8 (Classification of Closed Surfaces). The union of the lists in Section 2.2.1 and
Section 2.2.2 is a complete, repetition-free list of compact connected surfaces.

Proof. First we prove that every compact connected surface is one from the lists.
Let M be a compact connected surface. It is possible to remove an open disc from M such that
what remains is a disc with a finite number of ribbons (some twisted, some not) attached to it.
This fact we do not prove here—see Remark 2.9 below.

Case 1: None of the ribbons are twisted. Consider one of the ribbons R1. There must be
another ribbon R2 that is “linked” with this one. [Linked: one if its foot is below the ribbon
R1 and the other foot is outside.] This holds because otherwise the boundary would have more
than one components—see the picture on the left, the blue and green doted lines ♠. Consider
the ribbons R1 and R2 together. It is possible to “slide” the feet of all other ribbons away from
R1 and R2—see how the foot of the red ribbon slides along the blue arrows in the middle figure
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♠. We arrive at the picture on the right, and by induction we arrive at one of the pictures in the
third row of the Figure in Section 2.2.1.

Case 2: If there is a twisted ribbon R1. We can slide the foot of all other ribbons away
from R1—see the figure below, on the left ♠. Iterating this procedure we arrive at a picture on
the right ♠. The rest must not have a twisted ribbon anymore. Hence the rest—according to
Case 1—is m pairs of linked untwisted ribbons. We find that M is

(#nRP2)#(#mT 2),

which is the same (cf. the lemma in the proof of Proposition 2.7) as #n+2m RP2 .

We still need to prove that the surfaces on our list are pairwise not homeomorphic. We will come
back to it later. □

Remark 2.9. Our first step in the proof created a combinatorial structure on the surface.
That step can be carried out by proving the existence of a so-called “differentiable structure”
on a topological surface, then using a statement from “Morse theory”. We will not cover this
argument in this course.

Remark 2.10. There are other proofs of the Classification Theorem. Their first step is always
giving some kind of combinatorial structure to M . An example of such a combinatorial structure
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is triangulation. Proving the existence of a triangulation is not easier than our first step above.
A proof assuming the existence of triangulations is available in the textbook.

2.4. Euler characteristic. An n-simplex is the convex hull of n+1 points in Rn, eg. an interval,
a triangle, a tetrahedron. An n-simplex has i-faces for i = 0, 1, . . . , n.
A topological space which is the union of finitely many simplices, such that any two either are
disjoint, or intersect in a full face of each, is a simplicial complex.

Definition 2.11. The Euler characteristic of a simplicial complex M is

χ(M) =
∞∑
n=0

(−1)n|{n-dimensional simplices}|

Theorem 2.12 (proved later, c.f. Definition-Theorem 4.21). The Euler characteristic does not
depend on the simplicial structure, it only depends on the homeomorphism type of the space.

We have χ(S2) = 2 ♠, χ(T 2) = 0 ♠, χ(RP2 = 1) ♠.

Proposition 2.13. For compact connected surfaces A and B we have ♠
χ(A#B) = χ(A) + χ(B)− 2.

We have ♠
χ(#gT 2) = 2− 2g, χ(#g RP2) = 2− g.

Define a surface non-orientable (orientable) if it contains (does not contain) a Ms as a subspace.
Those on our first list are orientable, those on the second list are non-orientable ♠.
The pair (orientability of M , χ(M)) proves that the surfaces in the Classification Theorem are
pairwise non-homeomorphic ♠. This completes the proof of Theorem 2.8.

Another way of proving that the list is a repetition free list will be given after Corollary 3.28.

2.5. Identifying surfaces. Consider the surface on the left of the figure below. We will identify
this surface as one from the Classification Theorem.

The Euler characteristic of the space in the middle figure is 5 ♠. At the operation showed on
the right the Euler characteristic decreases by 1 ♠. Hence the Euler characteristic of the surface
on the left is

5(middle figure)− 7(joins) + 1(adding the disc) = −1.

Hence the surface is RP2#RP2#RP2.
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3. Homotopy, fundamental group, covering spaces

3.1. Homotopy.

Definition 3.1. The continuous maps f, g : X → Y are homotopic (we write f ≃ g), if there is
a continuous map F : X × [0, 1] → Y such that F (x, 0) = f(x), F (x, 1) = g(x).

Any two maps X → Rn are homotopic (♠ use the linear structure of Rn). The reader probably
“feels” that the identity map of S1 is not homotopic to the constant map (the map S1 → S1 that
maps all points to one point). We will prove this fact later.
Homotopy is an equivalence relation on the set of maps X → Y ♠.

Definition 3.2. The topological spaces X and Y are homotopy equivalent (we write X ≃ Y ) if
there exist continuous maps f : X → Y , g : Y → X such that

g ◦ f ≃ idX , f ◦ g ≃ idY .

We have Rn ≃ {0} ♠. We have the annulus ≃ S1 ≃ Ms ♠.
Homotopy equivalence is an equivalence “relation” on topological spaces ♠.

Theorem 3.3 (proved later, cf. Definition-Theorem 4.21). If X ≃ Y then χ(X) = χ(Y ).

The torus minus an open disc is homotopy equivalent to the figure 8 ♠. Derive from this that
χ(T 2) = 0 ♠.
We have Dn+1 ≃ pt ♠, hence χ(Dn+1) = 1. Use this to derive that χ(Sn) = 1 + (−1)n (hint:
consider the n+1-simplex as a simplicial structure on Dn+1, then take away the interior and see
what happens to χ ♠).

3.2. CW complexes. Consider the following procedure of building a topological space.

• Start with a finite number of points, with the discrete topology, call it X0 (the 0-skeleton).
• Consider a finite disjoint union of 1-discs (intervals), and a map from their boundary S0’s
to X0. Let us glue these 1-discs to X0 along the map, and call the resulting space X1

(the 1-skeleton).
• Consider a finite union of 2-discs, and a map from their boundary S1’s to X1. Let us glue
these 2-discs to X1 along the map, and call the resulting space X2.

• etc.

Definition 3.4. If a space X is obtained by such a (finite) procedure, then we call it (together
with the procedure) a finite CW complex. The interiors of the k-discs survive as subspaces of X
♠, we call them k-cells.

A triangulation of a space (ie. simplicial complex structure on a space) can be considered a CW
complex structure ♠.
The plane models we considered for the compact surfaces can be considered as CW complex
structures on them, with exactly one 2-cell (and, in fact, exactly one 0-cell too)♠.
The sphere Sn has a CW structure with one 0-cell and one n-cell (nothing else) ♠.
The space RPn has a CW structure with exactly one k-cell for all k = 0, 1, . . . , n ♠. It is worth
thinking over what the gluing map Sk → Xk of each cell is ♠.
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Theorem 3.5 (proved later, cf. Definition-Theorem 4.21). The Euler characteristic of a finite
CW complex can be calculated by

∑∞
n=0(−1)n|{n-cells}|.

We say that a space is contractible if it is homotopy equivalent to a one-point space. Eg. Rn, a
star-shaped region of Rn, or a tree are contractible.
If A ⊂ X then by X/A we mean the quotient space where all points of A are declared equivalent,
that is, A is collapsed to a point. Eg. Dn/∂Dn = Sn−1.

Theorem 3.6 (proved in the HW assignments). Let A be a sub-complex of the finite CW complex
X, and let A be contractible. Then X is homotopy equivalent to X/A.

3.3. Fundamental group. A continuous function α : [0, 1] → X is called a path in X, “from
α(0) to α(1)”. If α(0) = α(1), it is a loop. We denote α(t) = α(1− t).
A path homotopy between paths α and β, both from x0 to x1, is a continuous map H : [0, 1] ×
[0, 1] → X such that H(t, 0) = α(t), H(t, 1) = β(t), H(0, s) = x0, H(1, s) = x1. Draw a picture
of [0, 1] × [0, 1] indicating which part is mapped where ♠. In notation α ≃p β. Path homotopy
is an equivalence relation ♠.

We fix a basepoint x0 in X, and, as a set, define π1(X, x0) to be the set of path-homotopy
equivalence classes of loops in X based on x0.
We define a product ∗ on π1(X, x0) by [α] ∗ [β] = [α ∗ β] where the ∗-product of paths f and g
with f(1) = g(0) is defined by

(f ∗ g)(t) =

{
f(2t) if t ≤ 1/2,

g(2t− 1) if t ≥ 1/2.

Proposition 3.7. The ∗ product

• is well defined ♠;
• is associative ♠;
• has a neutral element, the constant x0 map ♠;
• has a two-sided inverse ♠.

That is, π(X, x0) is endowed with a group structure, it is called the fundamental group of X, x0.

Proposition 3.8. Let β be a path from x0 to x1. The assignment [α] 7→ [β ∗ α ∗ β] is a well
defined map π1(X, x0) → π1(X, x1) ♠. It is a group isomorphism ♠.

Hence, for path-connected spaces X the group π1(X) is well defined as a group isomorphism
type. If the path-connected X satisfies π1(X) = 0 (the one-element, “trivial” group), we call it
simply connected.
A subset X ⊂ Rn is called star-shaped, if for all x ∈ X the segment [0, x] is part of X. Then we
have π1(X) = 0, use the linear structure of Rn ♠.
It should be intuitive to “feel” that π1(S

1) = Z ♠, we will prove this later. Find a loop in RP2

that ‘feels’ to have order 2 in π1(RP2) ♠.

Proposition 3.9. π1(S
2) = 0.
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First attempt of the proof: let α be a loop on x0 ∈ S2. If p ̸∈ im(α) then we may use a
stereographic projection F : S2−{p} → R2 to view α as a loop in R2. Here it is path homotopic
to the constant loop. The F−1 image of the path homotopy is a path homotopy in S2 between
α and the constant x0 loop. ♠
The described “first attempt” only works if α misses at least one point of S2, so it is not a
complete proof yet.

Lemma 3.10 (Lebesgue number lemma). If X is a compact metric space, covered by open sets
Uκ, then there is a (Lebesgue-) number δ such that if A ⊂ X is part of a δ-radius ball then there
is a κ with A ⊂ Uκ. [Find the proof of this lemma in a textbook or online, then close your source
and write it down for yourself. ♠]

Let α be a loop in S2. Let us cover S2 with small discs. Consider α−1 of this cover: we obtain
an open cover of [0, 1]. Let δ be a Lebesgue number of this cover, and let us subdivide [0, 1] to
intervals shorter than δ. On each subinterval change α by a path-homotopy to a “nicer” path, eg.
smooth one (or a segment in a fixed homeomorphism between the disc and R2). Thus we replaced
α with a path-homotopic α0 which is piece-wice nice. The image of such an α0 has measure 0 (a
fact from Analysis), hence it cannot cover S2. Now out first attempt can be applied. □

The above proof extends to prove that π1(S
n) = 0 for all n ≥ 2 ♠. But it does not apply to

n = 1 (why? ♠).

3.4. Functor. Let h : X, x0 → Y, y0 be continuous (ie. h : X → Y with h(x0) = y0). The
map h∗ : π1(X, x0) → π1(Y, y0) defined by [α] 7→ [h ◦ α] is well defined ♠, and is a group
homomorphism ♠.
Observe that id∗ = id ♠, (h ◦ g)∗ = h∗ ◦ g∗ ♠.

3.5. Covering spaces. The continuous map p : E → B is called a covering space, if all x ∈ B
has a neighborhood U such that

• p−1(U) = ∪Vα, the Vα are open in E,
• p|Vα : Vα → U is a homeomorphism for all α.

Vocabulary: U is a trivializing neighborhood, E is the total space, B is the base space, p is the
projection of the covering.
For a covering the set Bκ = {b ∈ B : |p−1(b)| = κ} is open ♠. Hence, if B is connected, the
cardinality |p−1(b)| is constant ♠, we call it the number of sheets in the covering.
The identity map X → X is a covering space. If D is a discrete topological space, then the
projection map B ×D → B is a covering map ♠.
The following are covering maps:

• S1 → S1, z 7→ z2. Draw a picture, where the first S1 is like the boundary circle of a Ms
♠.

• S1 → S1, z 7→ zn, for n = 1, 2, 3, . . .. Draw pictures ♠.
• The defining quotient map q : Sn → RPn ♠.
• The quotient map R2 → T 2 where T 2 is presented by the equivalence relation (x, y) ∼
(x+ integer, y + integer).
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• The picture below defines a covering map T 2 → Kb ♠.

• The pictures below define two covering maps to the figure-8 space ♠. The labels here do
not mean gluing, they indicate the map.

• The quotient map by the Z3-action on #4T 2 indicated in the picture below is a covering
map ♠.

3.6. Lifting maps, lifting correspondence, π1(RPn), π1(S
1). For p : E → B covering and

f : X → B we call f̃ : X → E a lifting of f if f = p ◦ f̃ , that is, if the diagram

E

X B

p

f

f̃

is commutative.
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We say p : E, e0 → B, b0 is a covering, if p : E → B be a covering, and b0 ∈ B, e0 ∈ E such that
p(e0) = b0.

Lemma 3.11 (path lifting). Let p : E, e0 → B, b0 be a covering. Let f : [0, 1] → B be a path

with f(0) = b0. Then there exists a unique lifting f̃ of f with f̃(0) = e0.

Proof. If a lifting exists and is unique on [0, t], then—due to local triviality of the covering map—a
lifting exists uniquely on [0, t+ε] ♠. Use this idea, precomposed with a Lebesgue number lemma
argument to go from the interval [0, 0] to the interval [0, 1] in finitely many steps ♠. □

Lemma 3.12 (homotopy lifting). Let p : E, e0 → B, b0 be a covering. Let F : [0, 1]× [0, 1] → B
be a map with F ((0, 0)) = b0. Then there exists a unique lifting F̃ of F with F̃ ((0, 0)) = e0 ♠.
Moreover, if F is a path-homotopy then F̃ is also a path-homotopy ♠.

Corollary 3.13. Let f, g be path-homotopic paths in B, both from b0 to b1. Let f̃ and g̃ be their
liftings starting at e0. Then f̃(1) = g̃(1) (and, in fact, f̃ and g̃ are path-homotopic) ♠.

Definition 3.14 (lifting correspondence map). Let p : E, e0 → B, b0 be a covering. Define the
lifting correspondence map between sets

ϕ : π1(B, b0) → p−1(b0), [f ] 7→ f̃(1).

The lifting correspondence map ϕ is well defined ♠. Work out examples of ϕ-images of elements
in π1(B) for all the examples in Section 3.5 ♠.

Theorem 3.15.

• If E is path-connected then ϕ is surjective ♠.
• If π1(E) = 0 then ϕ is injective.

Proof. The following lemma is useful to prove ♠ the second statement: Any two paths from x to
y in a simply connected space are path-homotopic ♠. □

We have π1(RPn) = Z2 ♠ for n ≥ 2. We have that π1(S
1) is a countably infinite group ♠.

Theorem 3.16. The map ϕ for the covering R → S1, t 7→ (cos(2πt), sin(2πt)) is also a group
homomorphism. Hence π1(S

1) = Z.

Proof. For [f ], [g] ∈ π1(S
1, b0) prove that f̃ ∗ (g̃ + f̃(1)) works for f̃ ∗ g ♠. □

Proposition 3.17. Let [f ] ∈ π1(S
1) be represented by an odd map, that is, assume f(−x) =

−f(x). Then ϕ(f) ∈ Z is an odd number.

Proof. A idea similar to that in the proof of Theorem 3.16 works: first lift the restriction to a
half-circle, then show that a shift of that works for the lift of the other half-circle ♠. □
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3.7. Applications of π1(S
1) = Z.

Theorem 3.18 (2d Brouwer fixed point theorem). Every f : D2 → D2 continuous map has a
fixed point (ie. ∃x ∈ D2 such that f(x) = x).

Proof. If f has no fixed point then the map g defined in the picture is continuous,

and makes the diagram

D2 S1

S1

g

j id

commutative. Applying the π1 functor (Section 3.4) we obtain a commutative diagram ♠

0 Z

Z

g∗

j∗
id

which is a contradiction. □

The last step of the proof generalizes. Call a subset A of a topological space X a retract of X, if
there exists a map (the retraction) r : X → A such that r|A = idA.

Proposition 3.19. If A is a retract of X then j∗ : π1(A) → π1(X) is an injection. (Here j is
the embedding A ⊂ X.) Moreover, r∗ is surjective, where r is the retraction ♠.

Theorem 3.20 (Borsuk-Ulam). For every continuous map S2 → R2 there is a point p ∈ S2

where f(p) = f(−p).

Proof. Assuming that there is no such point we can define

g : S2 → S1, g(x) =
f(x)− f(−x)

∥f(x)− f(−x)∥
.

The map h := g|S1 : S1 → S1 is odd in the sense of Proposition 3.17, hence [h] ∈ π1(S
1) is an

odd number ♠. On the other hand the picture shows that [h] = 0 ♠, proving the

needed contradiction. □

Other notable applications of π1(S
1) = Z include

• The inside-pointing vector field lemma: Let D2 → R2 be nowhere 0. Then there is
a point p ∈ S1 such that X(p) is a negative multiple of p.

• The Fundamental Theorem of Algebra: Every complex coefficient polynomial of
positive degree has a complex root.
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• The hairy ball theorem (a.k.a. Porcupine theorem): Every continuous tangent
vector field on S2 has a 0.

• The ham and cheese sandwich theorem: Let B,H,C be “nice” subsets of R3 (bread,
ham, cheese). Then there is a plane in R3 that cuts all three of them to two equal volume
parts.

• The Lusternik-Schnirelmann category theorem for RP2: Let A1, A2, A3 be closed
subsets of S2 whose union is S2. Then at least one of them contains a pair of antipodal
points.

These statements will be explored in the homework assignments.

3.8. Fundamental group of a product.

Proposition 3.21. We have π1(X × Y, (x0, y0)) ∼= π1(X, x0)× π1(Y, y0).

Proof. The map α 7→ (p∗(α), q∗(α)) is a homomorphism from the left hand side to the right hand
side ♠, where p, q are the projections. It is injective and surjective ♠. □

We have π1(T
2) = Z2 ♠.

3.9. Homotopy invariance.

Theorem 3.22. Let F : X → Y be a homotopy equivalence, with F (x0) = y0. Then F∗ is an
isomorphism.

The proof depends on two arguments. The first one is a lemma.

Lemma 3.23. Let f, g : X → Y , f(x0) = g(x0) = y0. Assume that f and g are homotopic in
such a way that during the homotopy x0 is mapped to y0. Then f∗ = g∗ : π1(X, x0) → π1(Y, y0).

Proof. Let α be a loop on x0, and let H be the homotopy assumed in the lemma. Then (α ×
id[0,1]) ◦H proves that f∗([α]) = g∗([α]) ♠. □

If we could disregard base-points, we would have

X Y

F

G

with G ◦ F ≃ idX , F ◦G ≃ idY .

Applying the π1 functor, and using the lemma, we would get

π1(X) π1(Y )

F∗

G∗

with (G ◦ F )∗ = (idX)∗, (F ◦G)∗ = (idY )∗.

Then using (F ◦ G)∗ = F∗ ◦ G∗, (G ◦ F )∗ = G∗ ◦ F∗, (idX)∗ = idπ1(X), (idY )∗ = idπ1(Y ) from
Section 3.4 would prove that π1(X) ∼= π1(Y ) ♠. The second argument needed to prove Theo-
rem 3.22 is a modification of what we just described, but taking into account the base points
♠.

We have π1(Rn − pt) = π1(S
n−1) ♠. We have π1(Ms) = π1(S

1) ♠.
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3.10. Free groups and finitely presented groups. Consider words in the letters

x1, x2, . . . , xn, x
−1
1 , x−1

2 , . . . , x−1
n

up to the equivalence that consecutive xix
−1
i can be deleted, as well as consecutive x−1

i xi can be
deleted. Call the empty word 1. These words (equivalence classes) form a group for concatenation
♠. We call this the free group on n letters, we denote it by Fn or F (x1, . . . , xn) or ⟨x1, . . . , xn | ⟩.
Let r1, . . . , rm be words representing elements in Fn (“the relations”). Let N denote the normal
subgroup of Fn generated by these elements. Define ⟨x1, x2, . . . , xn | r1, r2, . . . , rm⟩ to be the
quotient group Fn/N .

Remark 3.24. The concept “generated normal subgroup” is not an easy one. Hence it is very
difficult to say anything about ⟨x1, x2, . . . , xn | r1, r2, . . . , rm⟩ in general. Even the question
whether such group is the trivial group or not is undecidable—in a precise mathematical sense—
in general.

We have F1 = ⟨x|⟩ = Z, F2 is not commutative, ⟨x1, x2|x1x2x
−1
1 x−1

2 ⟩ = Z2, ⟨x|xxxx⟩ = Z4 ♠.

We will use obvious notation: eg. x4 = xxxx, and we will write equalities instead of words ri,
eg. x1x2 = x2x1 instead of x1x2x

−1
1 x−1

2 ♠.

Define the free product G ∗ H of G = ⟨x1, x2, . . . , xa | r1, r2, . . . , rb⟩ and H = ⟨y1, y2, . . . , yc |
s1, s2, . . . , sd⟩ to be ⟨x1, x2, . . . , xa, y1, y2, . . . , yc | r1, r2, . . . , rb, s1, s2, . . . , sd⟩. This concept does
not depend on the chosen presentations ♠.

3.11. Seifert-van Kampen theorem. Let X = U ∪ V , x0 ∈ U ∩ V . Assume that

• U, V are open,
• U, V, U ∩ V are path-connected;

and that

• π1(U, x0) = ⟨x1, x2, . . . , xa | r1, r2, . . . , rb⟩,
• π1(V, x0) = ⟨y1, y2, . . . , yc | s1, s2, . . . , sd⟩,
• π1(U ∩ V, x0) = ⟨z1, z2, . . . , zd | ∗⟩,

Theorem 3.25 (SvK). Let i : U ⊂ X, j : V ⊂ X be the inclusions. We have

π1(X) = ⟨x1, x2, . . . , xa, y1, y2, . . . , yc | r1, r2, . . . , rc, s1, s2, . . . , sd

i∗(z1) = j∗(z1), i∗(z2) = j∗(z2), . . . , i∗(zd) = j∗(zd)⟩

Some explanations are in order. Namely, the element i∗(zk) of π1(U) can be represented by a
word in the letters x1, . . . , xa. By i∗(zk) above we mean such a word (the statement does not
depend on which representative we choose). Similarly, j∗(zk) means a (chosen) word in the letters
y1, . . . , yc.
The proof of the SvK theorem is based on the so-called “universality property” of the concept of
“generated normal subgroup”, as well as numerous applications of the Lebesgue number lemma.
We will not give the details of the proof in this course.
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Let X ∨ Y be the one-point union of the spaces X and Y , that is, the quotient space of X ∪ Y
obtained by declaring one point of X equivalent to one point of Y . In practice the points chosen
in X and Y do not matter, hence we do not indicate them in the notation.

We have π1(S
2) = 0 ♠ (we already had a proof using the Lebesgue number lemma, now we have

another proof using the SvK theorem—which also depends on the Lebesgue number lemma). We
have π1(S

1 ∨ S1) = F2 ♠. We have π1(S
1 ∨ S2) = Z ♠. We have π1(S

1 ∨ T 2) = Z ∗Z2 ♠.

Glue together (identify by a homeomorphism) the longitude of the torus with the longitude of a
Klein bottle. The resulting space have ♠

π1 = ⟨x, y, a, b | xyx−1y−1, abab−1, x = b⟩ = ⟨x, y, a | xyx−1y−1, axax−1⟩.

3.12. π1 of CW complexes. The fundamental group of a connected graph (1-skeleton of a CW
complex) is a free group ♠. (Hint: collapse a spanning tree.)
Assume X1 is connected, and π1(X

1) = ⟨x1, x2, . . . , xa| ⟩. Let fi : S1 → X1, i = 1, . . . , n be the
attaching maps of the 2-skeleton of a CW complex. To a loop fi we associate a word w(fi) in
the x-letters as follows: let s be a path connecting the base point x0 with fi(1), then the loop
s ∗ fi ∗ s is a loop on x0 hence it is represented by a word—w(fi).

The choice of s will not matter, hence we do not indicate it in notation.

Theorem 3.26. We have π1(X
2) = ⟨x1, x2, . . . , xa | w(f1), . . . , w(fn)⟩.

Theorem 3.27. Attaching 3- or higher dimensional cells do not change π1.

Both theorems intuitively follow from the SvK theorem, by attaching the cells one by one ♠.
The (quite tedious) details are left to the reader.

Corollary 3.28. We have ♠

π1(#
gT 2) =⟨a1, b1, a2, b2, . . . , ag, bg | a1b1a−1

1 b−1
1 a2b2a

−1
2 b−1

2 · · · agbga−1
g b−1

g ⟩,
π1(#

g RP2) =⟨a1, a2, . . . , ag | a21a22 · · · a2g⟩.

Think over what the abelianizations of these groups are ♠, and conclude that the surfaces in the
Classification Theorem 2.8 are indeed pairwise non-homeomorphic (even pairwise non homotopy
equivalent) ♠.

Consider a triangle with gluing scheme aaa. Its fundamental group is Z3 ♠.

Identify two points A and B of S2. Use the picture



GRADUATE TOPOLOGY COLORING BOOK 29

and Theorem 3.6 to find that π1 = Z.
Let A1, A2 be two points on a torus. Let B1, B2 be two points on a Klein bottle. Let C1, C2 be
two points on a RP2. Let X be the union with A1 ∼ B2, B1 ∼ C2, C1 ∼ A2. Find π1 by tricks
similar to the one above ♠.

Cut out two small open 3-balls from a larger closed 3-ball, and identify 3 points on the resulting
space as in the picture on the left. Use the pictures

to find that π1 = F2.

3.13. Galois correspondence between covering spaces and fundamental groups. The
covering spaces p : E → B of this lecture will be assumed to have extra properties:

• both E and B are path-connected;
• both E and B are locally path-connected (for every point x and every neighborhood U
of x there is a path-connected neighborhood of x contained in U);

• B is semilocally simply connected (every point b has a neighborhood U such that i∗ :
π1(U, b) → π1(B, b) is the trivial homomorphism).

Lemma 3.29. The map p∗ : π1(E, e0) → π1(B, b0) is injective.

Proof. Let f be a loop on e0 and H a path homotopy connecting p ◦ f with the constant loop
b0. The unique lift of H (Lemma 3.12) is a path homotopy between f and the constant e0 loop
♠. □

Let Hp := p∗(π1(E, e0)) be the subgroup associated with the covering p. It is a subgroup of
π1(B, b0) and is isomorphic to π1(E, e0).

Remark 3.30. Note that the subgroupHp depends on the choice of e0 (not indicated in notation).
For a different choice of base point in p−1(b0) the subgroup Hp gets conjugated ♠. Hence, Hp is
a concrete subgroup if the base point e0 is fixed, or is only defined up to conjugation if the base
point is not fixed. It should be clear from context which meaning we use.

Lemma 3.31. The index [π1(B, b0) : Hp] is equal to the number of sheets of p.
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Proof. The lifting correspondence map induces a bijection between the right cosets of Hp in
π1(B, x0) and p−1(b0) ♠. □

Verify the statements of the two lemmas above for all of the examples of Section 3.5. ♠♠♠♠♠♠♠
In one of the examples you will see that F2 has an index 3 subgroup isomorphic to F4. Name the
generators of this subgroup in terms of a, b in F2 = F (a, b) ♠.

Definition 3.32. Let p : E → B and p′ : E ′ → B be covering spaces of the same base B. We
define them equivalent if there is a homeomorphism f : E → E ′ with p = f ◦ p′.

Theorem 3.33 (Part 1 of Galois correspondence). There is a bijection between

• covering spaces over B, up to equivalence, and
• subgroups of π1(B) up to conjugation.

The subgroup associated with a covering space p : E → B is Hp (c.f. Remark 3.30).

In particular, the identity map B → B is the covering space associated with the “subgroup”
π1(B) ⊂ π1(B) ♠.
The covering space p : E → B associated with the trivial subgroup 0 ⊂ π1(B) is called the
universal covering. That is, a covering is universal if E is simply connected ♠.

Theorem 3.34 (Part 2 of Galois correspondence). Let p : E → B and q : F → B be covering
spaces. There exists a covering r : E → F with q ◦ r = p if and only if Hp ⊂ Hq.

Note that Hp and Hq are only defined up to conjugation, hence Hp ⊂ Hq really means that
there are representative subgroups satisfying the condition. There are pairs of subgroups in
Example 3.36 illustrating this phenomenon ♠.

In particular, the total space of the universal covering covers the total space of all other coverings.
Hence that name “universal.”

Example 3.35. Let B = RP2×RP2, and hence π1(B) = Z2×Z2. Its subgroups are: itself,
the trivial subgroup 0, and three order 2 subgroups H1, H2, H3 ♠. According to Theorem 3.33
they correspond to covering maps. Let the total spaces of these covering maps be denoted by
B,E0, EH1 , EH2 , EH3 , respectively. The content of Theorem 3.34 is illustrated in the diagram
below (all dashed arrows, black or red, and their compositions indicate covering maps).

Z2×Z2

H1 H2 H3

0

E0

EH1 EH2 EH3

B

B

4:1
2:1

2:1
2:1

1:1
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Note the “upside down” correspondence between the topological objects and the algebraic objects.
Find explicit descriptions of all the spaces E∗ ♠, and all the dashed arrows ♠. In this example the
fundamental group ofB is Abelian, hence the “up to conjugacy” part of the Galois correspondence
is trivial.

Example 3.36. Consider D4 = ⟨r, t | r4 = 1, t2 = 1, trt = r3⟩ (the dihedral group of order 8)
and define t1 = t, t2 = r−1tr, t3 = r−2tr2, t4 = r−3tr3. The hierarchy of its subgroups is ♠

D4

(r) ∼= Z4 (t1, r
2) ∼= Z2×Z2 (t2, r

2) ∼= Z2×Z2

(r2) (t1) (t2) (t3) (t4)

1

where ( ) means “generated subgroup”, and we connected conjugate subgroups by green squiggly
lines. Therefore the hierarchy of covering spaces over a space B with π1(B) = D4 (find such a
space ♠) is ♠

E1

E(r2) E(ti)

E(r) E(ti,r2)

ED4 .

2:1

2:1

2:1
2:1

2:1

2:1

2:1

The proof of Theorems 3.33 and 3.34 are in the textbook. One of the key steps is the construc-
tion of the universal covering over (path-connected, locally path-connected, semilocally simply
connected) B. Most of the rest of the proof depends on the following lemma (which is important
on it own right too).
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Lemma 3.37 (General Lifting Lemma). Consider a map f into the base of a covering map, as
in the picture on the left

E, e0

Y, y0 B, b0

p

f

E, e0

Y, y0 B, b0.

p
f̃

f

There is a lifting f̃ : Y, y0 → E, e0 (that is, a map f̃ making the diagram on the right commutative)
if and only if

(1) f∗(π1(Y, y0)) ⊂ p∗(π1(E, e0)).

Proof. If f̃ exists then the diagram of group homomorphisms

π1(E, e0)

π1(Y, y0) π1(B, b0)

p∗
f̃∗

f∗

is commutative; which proves (1) ♠. To prove the reverse direction, let y ∈ Y , and choose a
path α in Y connecting y0 to y. Denote the unique lift of f ◦ α : [0, 1] → B, starting at e0, by

α̃ : [0, 1] → E. Define f̃(y) = α̃(1). The key part of the proof is to show that this definition does
not depend on the choice of α. Namely, let β be another path connecting y0 to y, and consider
β̃. Use the condition (1) to argue that α̃(1) = β̃(1) ♠. Once f̃ is well defined as above, its
continuity and the fact that it is a covering map follow from the construction ♠. □

Let X be the space obtained from a solid triangle by the gluing scheme xxx. To illustrate the
power of the General Lifting Lemma 3.37 prove that every map from X to the torus is homotopic
to the constant map ♠.

Definition 3.38. Let p : E → B be a covering map. Call a homeomorphism f : E → E a
covering transformation (deck transformation) if the diagram

E E

B

p

f

p

is commutative.

Covering transformations of p form a group ♠, denote it by C(p). Identify this group for all the
examples of Section 3.5 ♠♠♠♠♠♠♠.

Theorem 3.39 (Part 3 of Galois correspondence). For a covering map p : E → B we have

C(p) ∼= N(Hp)/Hp.
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Here N(Hp) is the normalizer of Hp in π1(B), that is, the largest subgroup N such that Hp ≤
N ≤ π1(B) and Hp is a normal subgroup of N ♠. For example, if the group π1(B) is Abelian
(or more generally, if Hp is a normal subgroup) then ♠

C(p) ∼= π1(B)/Hp.

Verify Theorem 3.39 for all the examples of Section 3.5 ♠♠♠♠♠♠♠. In particular, you will see
two index 3 subgroups of F2, both isomorphic with F4; one of them is a normal subgroup of F2,
the other one is its own normalizer ♠.

4. Homology

4.1. Simplicial homology. Let ∆n be the convex hull of the elementary basis vectors v0, v1, . . . ,
vn of Rn+1. It is called the standard n-simplex, and we will mean the total order v0 < v1 < . . . <
vn be part of this concept. To emphasize this convention we use the notation ∆n = [v0, v1, . . . , vn].
A subsimplex [vi0 , vi1 , . . . , vik ] can be identified with the standard k-simplex [v0, v1, . . . , vk] by
mapping vik to vk and extending this correspondence linearly. In other words the identification
is linear that keeps the total order of the vertices ♠.
The n− 1 subsimplices will be called faces. Let ∂∆n := ∪faces, ∆n◦ := ∆n − ∂∆n.

Definition 4.1. A finite ∆-complex structure on a topological space X is a finite collection of
maps σα : ∆n → X (n depends on α) such that

• the restriction σα|∆n◦ is injective, and every x ∈ X is covered by exactly one such restric-
tion (“X is the union of the open simplices”);

• σα restricted to a face is one of the σβ’s (recall the identification of a face with a standard
n− 1 simplex);

• U ⊂ X is open if and only if σ−1
α (U) is open for all α.

The pictures below indicate ∆-compex structures on T 2, RP2, Kb.

Decode what the decorations 0, 1, 2 mean ♠. The arrows got a new meaning too ♠. Verify that
these are indeed ∆-complexes ♠.
Find a few different ∆-complex structures on S1 ♠, on the triangle with gluing scheme xxx ♠.
Find a ∆-complex structure on Sn with exactly two n-simplices ♠.

Let us fix an Abelian group (G,+). For the first reading you may focus on the special case
G = Z.

Definition 4.2. Let X be endowed with a ∆-complex structure.
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• Formal G-linear combinations of those σα’s whose domain is an n-simplex will be called
n-chains.

• n-chains form an abelian group for addition ♠ denote it by Cn(X;G) (precisely speaking
we should include the ∆-complex structure on X in the notation; we omit that, but keep
it in mind).

Definition 4.3. Define the boundary map ∂n : Cn(X;G) → Cn−1(X;G) by linearly extending

(2) ∂n(σα) =
n∑

i=0

(−1)iσα|[v0,...,v̂i,...,vn].

The hat ˆdenotes a missing index.

Lemma 4.4 (Main Equation of Mathematics). We have ∂2 = 0.

In fact what we really mean is that the composition ∂n−1 ◦ ∂n as a map Cn(X;G) → Cn−2(X;G)
is the zero-map, for all n (prove it ♠). Similar economic notation is common in homology theory.
We obtain the sequence of Abelian groups and homomorphisms

. . . C3(X;G) C2(X;G) C1(X;G) C0(X;G) 0.
∂3∂4 ∂2 ∂1 ∂0

Such sequences, if ∂2 = 0, are called (algebraic) complexes.
Observe that ∂2 = 0 is equivalent to im ∂ ⊂ ker ∂ ♠. Let Zn(X;G) = ker ∂n be the group of
cycles. Let Bn(X;G) = im ∂n+1 be the group of boundaries.

Definition 4.5. Define the n’th homology group with G coefficients Hn(X;G) of the ∆-complex
X to be Zn(X;G)/Bn(X;G).

If G = Z then we do not write it, ie. Cn(X) = Cn(X,Z), Zn(X) = Zn(X,G), Bn(X) = Bn(X,G),
Hn(X) = Hn(X,G).
For the ∆-complex structures of T 2,RP2,Kb above we obtain ♠ · · · ♠

H0(T
2) = Z H1(T

2) = Z2 H2(T
2) = Z

H0(RP2) = Z H1(RP2) = Z2 H2(RP2) = 0
H0(Kb) = Z H1(Kb) = Z⊕Z2 H2(Kb) = 0
H0(T

2;Z2) = Z2 H1(T
2;Z2) = Z2

2 H2(T
2;Z2) = Z2

H0(RP2;Z2) = Z2 H1(RP2;Z2) = Z2 H2(RP2;Z2) = Z2

H0(Kb;Z2) = Z2 H1(Kb;Z2) = Z2
2 H2(Kb;Z2) = Z2

H0(T
2;R) = R H1(T

2;R) = R2 H2(T
2;R) = R

H0(RP2;R) = R H1(RP2;R) = 0 H2(RP2;R) = 0
H0(Kb;R) = R H1(Kb;R) = R H2(Kb;R) = 0.

One possible way of calculating H1(Kb) is

Z3⟨a, b, c⟩/⟨b− c+ a, c− a+ b⟩ = Z3⟨a′, b′, c′⟩/⟨b′ − c′, b′ + c′⟩ =
Z⟨a′⟩ ⊕ Z2⟨b′, c′⟩/⟨b′ − c′, b′ − c′⟩ = Z⟨a′⟩ ⊕ Z2⟨b′′, c′′⟩/⟨b′′, b′′ + 2c′′⟩ =

Z⟨a′⟩ ⊕ Z⟨c′′⟩/⟨2c′′⟩ = Z⊕Z2 .
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The point is that when we changed basis, eg.

a′ = a
b′ = b
c′ = c− a

b′′ = b′ − c′

c′′ = c′,

we needed to make sure that our transformations were invertible over the integers ♠. Recall that
an n× n integer matrix is invertible over the integers if and only if its determinant is ±1 ♠. For
example, the b′′ = b′ − c′, c′′ = b′ + c′ transformation would not be invertible over the integers (so
it is not a legal change of basis over Z), but it is invertible over R (so it is a legal change of basis
if G = R) ♠.

Experiment with other coefficient groups, eg. G = Z3,Z4 ♠. Is there much difference between
the coefficient groups G = Q,R,C? ♠

4.2. Singular homology. Let us fix a topological space X, and an Abelian group G.

Definition 4.6. A singular n-simplex is a continuous map σ : ∆n → X. Singular n-chains
are formal G-linear combinations of singular n-simplices. They form a group Cn(X;G). (Now
the notation is fair, because this Cn(X;G) does not depend on any other structure of X, only
its topological space structure.) Define the boundary ∂ = ∂n of a singular n-chain by the same
formula (2), yielding a homomorphism Cn(X;G) → Cn−1(X;G).

We have ∂2 = 0 ♠. Hence we have the group Zn(X;G) = ker ∂n of (singular) cycles, the
group Bn(X;G) = im ∂n−1 of (singular) boundaries, and we have the singular homology groups
Hn(X;G) = Zn(X;G)/Bn(X;G).

Advantage: the singular groups Hn(X;G) only depend on the topological space. Disadvantage:
the groups Cn(X;G), Zn(X;G), Bn(X;G) are typically huge, we can just hope that the hugeness
of Zn(X;G) and Bn(X;G) cancel in the definition of Hn(X;G) to something manageable—we
will see that this is often true.

Proposition 4.7. We have

Hn(pt;G) =

{
G if n = 0

0 if n ̸= 0.

Proof. For the one-point space we can list all the singular simplices, and calculate Hn(pt) from
the definition ♠. □

Proposition 4.8. If Xα are the path components of X then Hn(X;G) = ⊕αHn(Xα;G) ♠.

Proof. The standard simplices are path-connected, hence their continuous images are contained
in a path component. Hence Cn(X;G) has the ⊕α structure, and the ∂ maps respect it ♠. □

Proposition 4.9. For a path-connected space X we have H0(X;G) = G.

Proof. Consider the map ϵ : C0(X) → G,
∑

nipi 7→
∑

ni ♠. It is surjective ♠, and its kernel
equals the image of ∂1 ♠. □
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Corollary 4.10. We have H0(X;G) = G{path components of X}.

Replacing the standard chain complex . . . → C2(X;G) → C1(X;G) → C0(X;G) → 0 with

. . . C2(X;G) C1(X;G) C0(X;G) G∂ ∂ ∂ ϵ

we still have a complex ♠, and its ker / im groups are called the reduced homology groups of X;
denoted by H̃n(X;G). Reduced homology is only different from ordinary homology in degree 0,
where it is one G less ♠. The content of the two concepts are the same, but some theorems are
more convenient to phrase in terms of H̃.

4.3. Functor. Let f : X → Y be continuous. “Composing with f” induces a homomorphism
f# : Cn(X;G) → Cn(Y ;G) ♠ (more precisely fn#). This map commutes with the ∂’s ♠, giving
a commutative diagram

. . . C3(X;G) C2(X;G) C1(X;G) C0(X;G)

. . . C3(Y ;G) C2(Y ;G) C1(Y ;G) C0(Y ;G).

∂4 ∂3

f#

∂2

f#

∂1

f# f#

∂4 ∂3 ∂2 ∂1

Such a commutative “ladder diagram” induces a homomorphism between the respective ker ∂/ im ∂
groups ♠. Therefore f : X → Y induces a homomorphism f∗ : Hn(X;G) → Hn(Y ;G) (more
precisely fn∗).

Theorem 4.11. We have (f ◦ g)∗ = f∗ ◦ g∗, id∗ = id ♠.

4.4. Homology is homotopy invariant. Let the maps f, g : X → Y be homotopic, that is,
we assume the existence of a map H : X × [0, 1] → Y such that H|X×{0} = f , H|X×{1} = g.
Consider the following “prism” construction

σ : ∆n → X H ◦
(
σ × id[0,1]

)
∈ Cn+1(Y ;G),

P

c.f. the picture below.

For this to be precise we would need to fix a subdivision of the prism ∆n × [0, 1] into (n + 1)-
simplices and consider their sum with the right plus/minus signs—that is, in such a way that in
the boundary of this chain the inside faces cancel. We will skip this detail.
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From the picture we see that

boundary
of P (σ)

=
top lid
of P (σ)

+
bottom lid
of P (σ)

+
P (boundary

of σ).

g#(σ) f#(σ)

If we worked out the details (namely, the signs), we would obtain ∂(P (σ)) = g#(σ) − f#(σ) −
P (∂(σ)), and in effect

(3) g# − f# = ∂ ◦ P + P ◦ ∂

for the diagram

. . . Cn+1(X) Cn(X) Cn−1(X) . . .

. . . Cn+1(Y ) Cn(Y ) Cn−1(Y ) . . . .

∂ ∂

P
g#−f#

P

∂

g#−f#

∂

g#−f#
P P

∂ ∂ ∂ ∂

Chasing elements around this diagram—and using (3)—implies that the map induced by g#−f#
is the zero map on the ker / im groups ♠. Thus we obtained

Theorem 4.12. If f ≃ g : X → Y then f∗ = g∗ : Hn(X;G) → Hn(Y ;G).

Corollary 4.13. If X ≃ Y (homotopy equivalent spaces) then Hn(X;G) ∼= Hn(Y ;G).

Proof. Let f : X → Y and g : Y → X be the homotopy equivalence. Apply the Hn(−;G) functor
to f ◦ g ≃ idY , g ◦ f ≃ idX , and use Theorems 4.11, 4.12 ♠. □

We have H̃n(Rm;G) = 0, H̃n(D
m;G) = 0, H̃n(Rm+1− pt;G) = H̃n(S

m;G).

In the rest of the semester we will present some properties of Hn(−;G) without proofs. The
goal is that the reader has enough tools to calculate homology groups efficiently. The proofs and
further development of the theory will be given in the follow-up course.

4.5. Long exact sequences: pair and Mayer-Vietoris. Let A ⊂ X be a non-empty closed
subset, and we also assume that it is the deformation retract of a neighborhood of it. For example
X is a finite CW complex and A is a subcomplex.
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Theorem 4.14 (Long exact sequence of a pair). The (infinitely) long sequence of Abelian groups
and group homomorphisms

. . . H̃n+1(X/A;G)

H̃n(A;G) H̃n(X;G) H̃n(X/A;G)

H̃n−1(A;G) H̃n−1(X;G) H̃n−1(X/A;G)

H̃n−2(A;G) . . .

q∗

∂

i∗

q∗

∂

i∗

q∗

∂

i∗

is exact, where i : A ⊂ X is the inclusion, and q : X → X/A is the quotient map.

Some explanations: We have not defined the map ∂ : Hk+1(X/A) → Hk(A) (it is not the boundary
map between chain groups, it is just traditionally denoted the same way, sorry). Hence, at this
point the theorem reads “there exist ∂ maps making the sequence exact.” In fact, ∂ is defined “in
the proof”, so we could have started with that definition and claim that the sequence is exact
with that definition. However, in practice the definition of ∂ is rarely needed.

A sequence is exact (by definition) if at every term we have im = ker (of the appropriate maps).
In particular the sequence 0 → G1 → G2 is exact iff the map G1 → G2 is injective, the sequence
G1 → G2 → 0 is exact iff the map G1 → G2 is surjective, the sequence 0 → G1 → G2 → 0 is
exact iff the map G1 → G2 is an isomorphism ♠.

Let m ≥ 1. Apply the theorem for X = Dm, A = ∂Dm = Sm−1 to obtain that H̃n(S
m;G) =

H̃n−1(S
m−1;G) ♠. Use our knowledge about the homology of the two point space S0 to conclude

that ♠

H̃n(S
m;G) =

{
G if n = m

0 otherwise.

We have an immediate application.

Theorem 4.15 (n dimensional Brouwer fixed point theorem). Every f : Dn → Dn continuous
map has a fixed point. (∃x ∈ Dn such that f(x) = x.)

We proved the 2d version, Theorem 3.18, using the following properties of the π1 functor:
π1(S

1) ̸= 0, π1(D
2) = 0. Now we have infinitely many functors Hm(−;G), one for each m

and each G. Replace π1 with one of these so that the proof of Theorem 3.18 generalizes to n
dimensions ♠.
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Theorem 4.16 (Mayer-Vietoris). Let A,B ⊂ X such that intA∪intB = X. Then the (infinitely)
long sequence of Abelian groups and group homomorphisms

. . . Hn+1(X;G)

Hn(A ∩B;G) Hn(A;G)⊕Hn(B;G) Hn(X;G)

Hn−1(A ∩B;G) Hn−1(A;G)⊕Hn−1(B;G) Hn−1(X;G)

Hn−2(A ∩B;G) . . .

i∗−j∗

∂

(k∗,l∗)

i∗−j∗

∂

(k∗,l∗)

i∗−j∗

∂

(k∗,l∗)

is exact. Here i : A ⊂ X, j : B ⊂ X, k : A ∩ B ⊂ A, l : A ∩ B ⊂ B. The same statement holds
for reduced homology H̃.

Word by word the same explanations are in order as the paragraph after Theorem 4.14.

Let X ∨ Y mean the “1-point union” of X and Y (gluing a point of X to a point of Y ). For
example S1 ∨ S1 is the figure-8 space. We have ♠♠

Hn(S
1 ∨ S1;G) =


G if n = 0

G⊕G if n = 1

0 otherwise,

H̃n(∨αXα;G) = ⊕αH̃n(Xα;G),

for path-connectedXα if the special point in eachXα is the deformation retract of a neighborhood
of it. We have ♠

Hn(T
2;G) =


G if n = 0

G⊕G if n = 1

G if n = 2

0 otherwise.

Theorem 4.16 (but also Theorem 4.14) intuitively claims that homology can be computed from
pieces. This phenomenon can be developed further to obtain the following theorem.

Theorem 4.17. Let the topological space X be endowed with a ∆-complex structure. Then we
have two homology concepts defined for it: the simplicial homology using the (combinatorial)
∆-complex structure, and the singular homology using only the topological structure. These two
homology groups coincide.

One way of looking at this theorem is that even though the definition of singular homology uses
infinitely generated Abelian groups (the chain groups), if X has a combinatorial structure then
there is another definition that avoids those huge groups. Another advantage of the theorem is
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Corollary 4.18. If the underlying topological space of two ∆-complexes are the same, then their
simplicial homologies are the same.

It is remarkable that while this corollary sounds fully combinatorial, its proof goes through the
non-combinatorial concept of singular homology.

There is a further important theorem along the line of “combinatorial homology vs singular
homology”.

Theorem 4.19 (Cellular homology). If the topological space X is endowed with a finite CW
complex structure then H∗(X;G) can be calculated from an algebraic complex

. . . G(n+1)-cells Gn-cells G(n−1)-cells . . .∂ ∂ ∂ ∂

by the ker ∂/ im ∂ definition.

The full theorem on cellular homology includes the description of the ∂ maps, in terms of a notion
called “degree”. We will not define degree or the ∂ maps here. The cellular homology theorem
is still powerful. For example, use this theorem to trivially calculate H̃n(S

m;G) ♠.

4.6. Euler characteristic, the right approach. Recall the notion of rkA for a finitely gener-
ated Abelian group, as dimR(A⊗RR)♠. We have A = ZrkA ⊕ torsion♠. If 0 → A → B → C → 0
is a short exact sequence then rkB = rkA+ rkC ♠.

Lemma 4.20. Assume . . . Cn+1 Cn Cn−1 . . .∂ ∂ ∂ ∂ is a complex of Abelian

groups for which
∑

n(−1)n rkCn makes sense. Let Zn, Bn, Hn denote the groups of cycles, bound-
aries, and homologies of this complex. Then we have∑

n

(−1)n rkCn =
∑
n

(−1)n rkHn.

Proof. We have the 0 → Zn → Cn → Bn−1 → 0 short exact sequences ♠, as well as the
0 → Bn → Zn → Hn → 0 short exact sequences ♠. These have consequences on the ranks of the
groups involved (see the paragraph above the lemma), and we get rkCn = rkBn−1+rkBn+rkHn

♠. Adding these equations with alternating signs proves the lemma ♠. □

Putting together Corollary 4.18, Theorem 4.19, and Lemma 4.20 now we have the right definition
of Euler characteristic, together with its crucial properties.

Definition-Theorem 4.21. For a topological space X, if the number∑
n

(−1)n rkHn(X;Z)

is defined (that is, if this is a finite sum of finite numbers), then we call it the Euler characteristic
χ(X) of the space (cf. Theorem 2.12). The notion χ(X) is invariant under homotopy equivalence
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(c.f. Theorem 3.3) ♠. If the space is endowed with a ∆-complex structure, then χ(X) can also
be calculated as ♠ (c.f. Definition 2.11)∑

n

(−1)n|{n-simplices}|.

If the space is endowed with a CW complex structure, then χ(X) can also be calculated as ♠
(c.f. Theorem 3.5) ∑

n

(−1)n|{n-cells}|.

Remark 4.22. Our definition of Euler characteristic can be rephrased
∑

n(−1)n dimR Hn(X;R)
♠. For a field F the groups Hn(X;F) turn out to be F vector spaces ♠, and the sum∑

n

(−1)n dimF Hn(X;F)

turns out to be the same Euler characteristic. Verify this for F = Z2 in the examples of Section 4.1
♠. The dimensions bn,F(X) = dimFHn(X;F) are called the F-Betti numbers; for F = R just
Betti numbers bn(X).

4.7. H1(−;Z) vs π1(X).

Theorem 4.23. Let X be path-connected. Then H1(X;Z) ∼= π1(X)Ab.

By GAb we denote the Abelianization of the group G. It is the “largest” (in a precise sense) com-
mutative quotient of G. It is equal to the quotient G/[G,G] where [G,G] is the normal subgroup
generated by the commutators g1g2g

−1
1 g−1

2 for all g1, g2 ∈ G. If G = ⟨x1, x2, . . . , xn | r1, r2, . . . rm⟩
then

⟨x1, x2, . . . , xn | r1, r2, . . . , rm, xixjx
−1
i x−1

j (for all i ̸= j)⟩
is a presentation of GAb. Use this theorem to reprove H1(T

2;Z) = Z2 ♠. Find H1(T
2#T 2;Z) ♠.

Homology, and its friend, cohomology, are essential tools in half of mathematics. The fields where
homology appears include, but are not restricted to, algebraic topology, manifold theory, alge-
braic geometry, complex analysis, graph theory, dynamical systems, group theory, Lie algebras,
statistics. In this course we only introduced the basic concepts. The natural next step is to take
an algebraic topology course.


