GRADUATE TOPOLOGY COLORING BOOK

RICHÁRD RIMÁNYI

Abstract

This series of lectures contains the material for the class Math 681, Graduate Topology, as it was taught in Fall 2021-a.k.a. the δ semester-at the University of North Carolina at Chapel Hill. It is called a Coloring Book, because numerous arguments, indicated by the sign $\boldsymbol{\uparrow}$, that were presented in the class are not typed in. In fact, those arguments are deliberately left out of this text: reading those arguments would have no educational value for the reader. Figuring out those arguments ("coloring between the contours") does. Hence, whenever the reader meets a \uparrow sign, they should stop and fill in the missing proof. Such "coloring" of this Coloring Book is an essential part of learning the subject.

© R. Rimányi
January 2022
(last time typos were corrected: December 25, 2023)

Contents

1. Point-set topology 1
1.1. Topological space, basis 1
1.2. Order topology 2
1.3. Product topology 2
1.4. Subspace topology 2
1.5. Metric topology 3
1.6. On open and closed sets 3
1.7. Interior, closure 3
1.8. Limit points 4
1.9. Boundary 4
1.10. Continuous functions 4
1.11. Continuity vs product space, continuity vs subspace 5
1.12. Separation axioms 5
1.13. Countability axioms 6
1.14. Quotient space 7
1.15. Connectedness 8
1.16. Path connectedness 10
1.17. Compactness 10
1.18. Topological groups - sketch 11
1.19. Metrization theorems - sketch 11
1.20. Infinite products - sketch 11
1.21. Locally compact spaces, Alexandrov compactification - sketch 12
2. Surfaces 13
2.1. Getting familiar with some spaces 13
2.2. Surfaces 15
2.3. The Classification Theorem 17
2.4. Euler characteristic 19
2.5. Identifying surfaces 19
3. Homotopy, fundamental group, covering spaces 20
3.1. Homotopy 20
3.2. CW complexes 20
3.3. Fundamental group 21
3.4. Functor 22
3.5. Covering spaces 22
3.6. Lifting maps, lifting correspondence, $\pi_{1}\left(\mathbb{R} \mathrm{P}^{\mathrm{n}}\right), \pi_{1}\left(S^{1}\right)$ 23
3.7. Applications of $\pi_{1}\left(S^{1}\right)=\mathbb{Z}$ 25
3.8. Fundamental group of a product 26
3.9. Homotopy invariance 26
3.10. Free groups and finitely presented groups 27
3.11. Seifert-van Kampen theorem 27
3.12. π_{1} of CW complexes 28
3.13. Galois correspondence between covering spaces and fundamental groups 29
4. Homology 33
4.1. Simplicial homology 33
4.2. Singular homology 35
4.3. Functor 36
4.4. Homology is homotopy invariant 36
4.5. Long exact sequences: pair and Mayer-Vietoris 37
4.6. Euler characteristic, the right approach 40
4.7. $H_{1}(-; \mathbb{Z})$ vs $\pi_{1}(X)$ 41

1. Point-set topology

1.1. Topological space, basis. We denote the powerset (the set of subsets) of a set X by 2^{X}. Definition 1.1. The ordered pair (X, \mathcal{T}) is a topological space (X is the base set, \mathcal{T} is the topology on X), if X is an arbitrary set, and $\mathcal{T} \subset 2^{X}$ satisfies

- $\emptyset, X \in \mathcal{T}$,
- the union of arbitrary many sets from \mathcal{T} is in \mathcal{T},
- the intersection of finitely many sets from \mathcal{T} is in \mathcal{T}, (equivalently, the intersection of two elements of \mathcal{T} belongs to \mathcal{T}).

Elements of \mathcal{T} we call open sets. If the complement $A^{c}=X-A$ is open we call A a closed set. Find a few (all) topologies on small sets (eg. $|X|=1,2,3$)
Example 1.2. $\left(X, 2^{X}\right)$ is a topological space, we call it the discrete topological space.
Example 1.3. $(X,\{\emptyset, X\})$ is a topological space, we call it the antidiscrete topological space.
Example 1.4. For a given X let $U \in \mathcal{T}$ if U^{c} is finite or if $U=\emptyset$. Then (X, \mathcal{T}) is a topological space $\boldsymbol{\uparrow}$. We call it the finite complement topological space (or the cofinite topological space).
Example 1.5. For a given X let $U \in \mathcal{T}$ if U^{c} is countable (meaning: finite or countably infinite) or if $U=\emptyset$. Then (X, \mathcal{T}) is a topological space $\boldsymbol{\uparrow}$. We call it the countable complement topological space.

The last two examples can be generalized (if you know the theory of large infinities). Let \aleph be an infinite cardinality. Then $U \in \mathcal{T}$ if and only if $U=\emptyset$ or $\left|U^{c}\right|<\aleph$ defines a topology
We say $\left(X, \mathcal{T}^{\prime}\right)$ is a finer topological space than (X, \mathcal{T}) if $\mathcal{T}^{\prime} \supset \mathcal{T}$. In this case the latter is coarser than the first one. The discrete and the antidiscrete topologies are the finest and the coarsest topologies on X.
Definition 1.6. Let (X, \mathcal{T}) be a topological space. The set $\mathcal{B} \subset \mathcal{T}$ is called a basis of (X, \mathcal{T}) if every element of \mathcal{T} can be written as a union of some of the elements of \mathcal{T}.

For example, \mathcal{T} is a basis of \mathcal{T}. Usually there are bases of \mathcal{T} that are "much smaller" than \mathcal{T}. The set $\mathcal{B}=\{\{x\}: x \in X\}$ (the set of "singletons") is a basis of the discrete topology
The basis \mathcal{B} determines \mathcal{T}
Theorem 1.7. Let X be a set. The set $\mathcal{B} \subset 2^{X}$ is a basis of a topology on X if and only if \mathcal{B} satisfies the "basis properties":

- the union of elements of \mathcal{B} is X,
- the intersection of any two elements in \mathcal{B} can be written as a union of some of the elements of \mathcal{B}.

Proof.

This last notion basis gives us an economical way of defining topologies. We do not need to define \mathcal{T}, just define \mathcal{B} (but make sure it satisfies the basis properties).

Example 1.8. Let $X=\mathbb{R}$ and $\mathcal{B}=\{$ open intervals $\}$. This \mathcal{B} satisfies the basis properties hence it determines a topology. We call it the Euclidean topology on \mathbb{R} and denote it by $\mathbb{R}_{\mathcal{E}}$.

In $\mathbb{R}_{\mathcal{E}}$ a set $U \subset \mathbb{R}$ is open if for all $x \in U$ there exists a positive number ε such that $B(x, \varepsilon):=$ $\{y \in \mathbb{R}:|y-x|<\varepsilon\} \subset U \boldsymbol{\oplus}$. That is, $\mathbb{R}_{\mathcal{E}}$ is the topological space studied in Real Analysis.

Example 1.9. Let $X=\mathbb{R}$ and $\mathcal{B}=\{[a, b): a<b\}$. This \mathcal{B} satisfies the basis properties $\boldsymbol{\oplus}$, hence it determines a topology. We call it the Sorgenfrey line or the lower limit topology on \mathbb{R} and denote it by \mathbb{R}_{11}.

1.2. Order topology.

Definition 1.10. (X, \leq) is a totally ordered set if \leq is irreflexive, transitive, anti-symmetric, and satisfies the trichotomy law $(\forall a, b \in X: a \leq b$ or $b \leq a)$. We write $a<b$ for $(a \leq b, a \neq b)$.

A total order on X restricts to a total order on a subset $Y \subset X \boldsymbol{\phi}$. In a totally ordered set intervals $(a, b),[a, b),(a, b],[a, b]$ and rays $[a, \infty),(a, \infty),(-\infty, a),(-\infty, a]$ are defined for $a, b \in X$.
For the totally ordered set (X, \leq) the set

$$
\mathcal{B}=\{\emptyset,(a, b),(a, \infty),(-\infty, a), X: a, b \in X\}
$$

satisfies the basis axioms $\boldsymbol{\oplus}$. The generated topology is called the order topology on X.
Totally ordered spaces are, for example, $\mathbb{R}, \mathbb{Z}, \mathbb{Q}, \mathbb{Q}^{c}, \mathbb{Q} \cap[0,1], \mathbb{Q} \cap[0,1),[0,1) \cup\{2\}$ with the standard $\leq ; \mathbb{R}^{2}$ with the lexicographic order. Hence we have order topology on them.

1.3. Product topology.

Definition 1.11. Let $(X, \mathcal{T}),(Y, \mathcal{S})$ be topological spaces. The set $\mathcal{B}=\{U \times V: U \in \mathcal{T}, V \in \mathcal{S}\}$ satisfies the basis axioms $\boldsymbol{\uparrow}$. The generated topology is called the product topology on $X \times Y$.

We have $\mathbb{R}_{\mathcal{E}} \times \mathbb{R}_{\mathcal{E}}=$ the Euclidean topology on \mathbb{R}^{2}, that is, a set $\subset \mathbb{R}^{2}$ is open if there exists an $\varepsilon>0$ such that $B(x, \varepsilon) \subset U \boldsymbol{\oplus}$.
Let \mathcal{B}_{X} and \mathcal{B}_{Y} be bases of (X, \mathcal{T}) and (Y, \mathcal{S}) respectively. The set $\mathcal{B}=\left\{U \times V: U \in \mathcal{B}_{X}, V \in \mathcal{B}_{Y}\right\}$ is also a basis of the same product topology

1.4. Subspace topology.

Definition 1.12. Let (X, \mathcal{T}) be a topological space, and $Y \subset X$. The set $\{U \cap Y: U \in T\}$ is a topology on $Y \boldsymbol{\uparrow}$. It is called the subspace topology on Y inherited from X.

For example in $[0,1]$ with topology inherited from $\mathbb{R}_{\mathcal{E}}$ the set $[1,1 / 3)$ is open $\boldsymbol{\oplus}$. Interesting examples include $\mathbb{Z} \subset \mathbb{R}, \mathbb{Q} \subset \mathbb{R}, \mathbb{Q}^{c} \subset \mathbb{R}$ with the topology inherited from $\mathbb{R}_{\mathcal{E}}$. If $K \subset \mathbb{R}^{3}$ is a knot, the topological space $\mathbb{R}^{3}-K \subset \mathbb{R}^{3}$ is an important topological space used to study the knot.
Let \mathcal{B} be a basis of \mathcal{T}. The set $\mathcal{B}^{\prime}=\{U \cap Y: U \in \mathcal{B}\}$ is a basis of the subspace topology
One may ask if some of our operations commute or not.

- If $(X, \mathcal{T}),(Y, \mathcal{S})$ are topological spaces, $A \subset X, B \subset Y$ we can consider two topologies on $A \times B$. First, the subspace topology from the product topology $X \times Y$. Second, the product topology of the subspace topologies on A and B. Are they necessarily the same or not?
- If (X, \leq) is a totally ordered set and $A \subset X$ then on A we can consider two topologies. First, the subspace topology from the order topology on X. Second, the order topology defined by $\left(A, \leq \mid{ }_{A}\right)$. Are they necessarily the same or not?

1.5. Metric topology.

Definition 1.13. (X, d) is a metric space if X is a set and $d: X \times X \rightarrow \mathbb{R}_{\geq 0}$ is a function satisfying

- $d(x, y)=d(y, x)$,
- $d(x, y)=0 \Leftrightarrow x=y$,
- (triangle inequality) $d(x, y)+d(y, z) \geq d(x, z)$.

In a metric space we define $B(x, r)=\{y \in X: d(x, y)<r\}$.
The set $\mathcal{B}=\left\{B(x, r): x \in X, r \in \mathbb{R}_{>0}\right\}$ satisfies the basis axioms $\boldsymbol{\emptyset}$. [This lemma will be useful: For $y \in B(x, r)$ there is an $s>0$ such that $B(y, s) \subset B(x, r) \boldsymbol{\varphi}$.] The induced topology on X is called the metric topology. Different metrics may induce the same topology $\boldsymbol{\phi}$.
The Euclidean topology $\mathbb{R}_{\mathcal{E}}^{n}$ is induced from the metric $d(x, y)=\sqrt{\sum_{i}\left(x_{i}-y_{i}\right)^{2}}$ on \mathbb{R}^{n}
The function $d(x, y)=\left\{\begin{array}{ll}1 & x \neq y \\ 0 & x=y\end{array}\right.$ is a metric on any set $\boldsymbol{\phi}$. It induces the discrete topology.
The restriction of a metric to a subset A of X is a metric. The topology induced by the restricted metric is the same as the subspace topology inherited from (X, d)
1.6. On open and closed sets. The collection of closed sets includes \emptyset, X; finite union and arbitrary intersection of closed sets is closed $\boldsymbol{\varphi}$. The collection of closed sets satisfying these properties as axioms could be an alternative definition of topological space
Let X be a topological space, and $A \subset Y \subset X$. Then A is a closed set in the subspace topology on Y, if and only if there is a set Z closed in X with $A=Z \cap Y$.
Let Y be open in the topological space $X, U \subset Y$. Then U is open in Y if and only if it is open in X
Let Y be closed in the topological space $X, V \subset Y$. Then V is closed in Y if and only if it is closed in X
The projection map $\pi: X \times Y \rightarrow X$ is an open map, that is, U open implies $\pi(U)$ open
The same projection is not necessarily a closed map.

1.7. Interior, closure.

Definition 1.14. Let A be a subset in a topological space. Define

$$
\operatorname{int} A=\cup\{U: U \text { is an open set, } U \subset A\} \quad \bar{A}=\cap\{V: V \text { is a closed set, } V \supset A\} .
$$

Clearly int $A \subset A \subset \bar{A}$.
If $U \subset A$ is an open set then $U \subset \operatorname{int} A$. If $V \supset A$ is a closed set then $V \supset \bar{A}$. That is, $\operatorname{int} A$ is the largest open set contained in A, and \bar{A} is the smallest closed set containing $A \boldsymbol{\phi}$.
Let X be a topological space, Y a subspace, and $A \subset Y$. Then the closure of A in the topological space Y is equal to $\bar{A} \cap Y \boldsymbol{\phi}$. That is, (using obvious temporary notation) we have

$$
\bar{A}^{Y}=\bar{A}^{X} \cap Y .
$$

The analogous statement for $\operatorname{int} A$ is not true $\boldsymbol{\varphi}$.
An open set containing $x \in X$ is called a neighborhood of x.
Proposition 1.15 (Pointwise characterization of interior). We have $x \in \operatorname{int} A$ if and only if there is a neighborhood of x which is a subset of A

Proposition 1.16 (Pointwise characterization of closure). We have $x \in \bar{A}$ if and only if for every neighborhood U of x the intersection $U \cap A$ is not empty $\boldsymbol{\oplus}$.

1.8. Limit points.

Definition 1.17. Let A be a subset of the topological space X. The point $x \in X$ is called a limit point of A (notation $x \in A^{\prime}$) if for every neighborhood U of x the set $(U \cap A)-\{x\}$ is not empty.

Clearly $x \in A^{\prime} \Leftrightarrow x \in \overline{A-\{x\}}$
Proposition 1.18. We have $\bar{A}=A \cup A^{\prime}$
The following conditions are equivalent: (i) A is closed, (ii) $A=\bar{A}$, (iii) A cointains all of its limit points

1.9. Boundary.

Definition 1.19. Define the boundary of the set A in a topological space to be $\partial A=\bar{A} \cap \overline{\left(A^{c}\right)}$.
The boundary ∂A is a closed set
A point x belongs to ∂A if and only if every neighborhood of x intersects both A and A^{c}

1.10. Continuous functions.

Definition 1.20. The map $f: X \rightarrow Y$ between topological spaces is continuous if the preimage of an open set in Y is open in X.

The following are equivalent characterizations of continuity

- Let \mathcal{B} be a basis in Y. We have $U \in \mathcal{B} \Rightarrow f^{-1}(U)$ is open in X.
- The preimage of a closed set in Y is closed in X.
- $f(\bar{A}) \subset \overline{f(A)}$.
- (pointwise characterization) $\forall x \in X$ and for all neighborhood V of $f(x)$ there exists a neighborhood U of x such that $f(U) \subset V$.

The identity map $X \rightarrow X$ is continuous
The constant map $X \rightarrow Y$ is continuous
If X is discrete then $f: X \rightarrow Y$ is continuous
If Y is antidiscrete then $f: X \rightarrow Y$ is continuous
The composition of continuous functions is continuous
The identity map $(X, \mathcal{T}) \rightarrow(X, \mathcal{S})$ is continuous if and only if \mathcal{T} is a finer topology than \mathcal{S}
Definition 1.21. A bijection $f: X \rightarrow Y$ between topological spaces for which both f and f^{-1} are continuous is called a homeomorphism. A map $f: X \rightarrow Y$ for which the induced map $X \rightarrow f(X)$ is a homoeomorphism $(f(X) \subset Y$ with the subspace topology) is called an embedding.
The map $(0, \infty) \rightarrow \mathbb{R}^{2}$ (with Euclidean topologies) defined by $x \mapsto(x, \sin (1 / x))$ is an embedding. The map $[0,2 \pi) \rightarrow\left\{x \in \mathbb{R}^{2}:\|x\|=1\right\}$ (with Euclidean topologies) defined by $x \mapsto(\cos x, \sin x)$ is not a homeomorphism
If there exists an $X \rightarrow Y$ homeomorphism then we call X and Y homeomorphic. This is an equivalence "relation"

1.11. Continuity vs product space, continuity vs subspace.

The projection map $\pi_{X}: X \times Y \rightarrow X$ is continuous $\boldsymbol{\uparrow}$
Proposition 1.22. The map $X \rightarrow Y \times Z$ is continuous if and only if both $\pi_{Y} \circ f$ and $\pi_{Z} \circ f$ are continuous

Let $A \subset X$ be a subspace. The inclusion map $i: A \subset X$ is continuous
Proposition 1.23. Let $X=\cup_{a} U_{\alpha}$ where U_{α} is open in X for all α. The map $f: X \rightarrow Y$ is continuous if and only if $\left.f\right|_{U_{\alpha}}$ is continuous for all α.

Proof. Use

- $f^{-1}(V)=f^{-1}(V) \cap X=f^{-1} \cap\left(\cup_{\alpha} U_{\alpha}\right)=\cup_{\alpha}\left(f^{-1}(V) \cap U_{\alpha}\right)$, and
- if $U \subset X$ is open then for $A \subset U \subset X$ we have A open in $U \Leftrightarrow A$ open if X.

Proposition 1.24. (Pasting lemma) Let $X=\cup_{i=1}^{n} A_{i}$ where A_{i} is closed in X for all i (finite union). The map $f: X \rightarrow Y$ is continuous if and only if $\left.f\right|_{A_{i}}$ is continuous for all i

Proof. Use the "preimage of closed is closed" definition of continuity, and an appropriate modification of the proof above

1.12. Separation axioms.

Definition 1.25. The topological space (X, \mathcal{T}) is called

- T_{0} if for any $x \neq y \in X$ there is a $U \in \mathcal{T}$ that contains one of x, y but not the other;
- T_{1} if for any $x \neq y \in X$ there is a $U \in \mathcal{T}$ such that $x \in U, y \notin U$;
- T_{2} (Hausdorff) if for any $x \neq y \in X$ there are disjoint $U, V \in \mathcal{T}$ such that $x \in U, y \in V$;
- T_{3} (regular) if T_{1} and for any $x \notin A \subset X, A$ closed there are disjoint $U, V \in \mathcal{T}$ such that $x \in U, A \subset V$;
- T_{4} (normal) if T_{1} and for any $A, B \subset X$ disjoint closed sets there are disjoint $U, V \in \mathcal{T}$ such that $A \subset U, B \subset V$.

The space X is T_{1} if and only if singletons are closed $\boldsymbol{\uparrow}$. Equivalently, if finite sets are closed. We have $T_{4} \Rightarrow T_{3} \Rightarrow T_{2} \Rightarrow T_{1} \Rightarrow T_{0} \boldsymbol{\wedge}$.
The antidiscrete topology is not T_{0}.
The space $(\{1,2\}$, $\{\emptyset,\{1\},\{1,2\}\})$ is T_{0} but not T_{1}. This example has two generalizations:
(1) The "distinguished point topology": Fix $x \in X$. Let $U \in \mathcal{T}$ if $x \in U$.
(2) The "avoid a point topology": Fix $x \in X$. Let $U \in \mathcal{T}$ if $x \notin U$.

Both of these are T_{0} but not $T_{1} \boldsymbol{\oplus}$.
If X has infinitely many points then the finite complement topology on X is T_{1} but not T_{2}.
Definition 1.26 (Ravioli). Let $X=(\mathbb{R}-\{0\}) \cup\left\{0^{\prime}, 0^{\prime \prime}\right\}$. Define a topology on X via the following basis. The intervals (a, b) with either $a, b<0$ or $a, b>0$ belong to \mathcal{B}. Also, for $a<0, b>0$ the set $((a, b)-\{0\}) \cup\left\{0^{\prime}\right\}$ and the set $((a, b)-\{0\}) \cup\left\{0^{\prime \prime}\right\}$ belong to \mathcal{B}. This \mathcal{B} satisfies the basis properties $\boldsymbol{\uparrow}$. The defined topology we will call the ravioli space.

The ravioli is T_{1} but not T_{2}
Proposition 1.27. The property

- for all $x \in X$ and neighborhood U of x there exist a neighborhood V of x with $\bar{V} \subset U$ is equivalent to the T_{3} property.

Proposition 1.28. The order topology is T_{2}. The metric topology is T_{2}
Proposition 1.29. A subspace of a T_{2} space is T_{2}. Product of T_{2} spaces is T_{2}
In fact the analogous proposition holds for T_{3} but not for T_{4}-we do not prove these statements here.

Proposition 1.30. If $A \subset X, X$ is T_{1} then $x \in A^{\prime}$ if and only if every neighborhood of x contains infinitely many points of $A \boldsymbol{\phi}$.

Definition 1.31. A sequence is a map $a: \mathbb{N} \rightarrow X$. We use the standard notation a_{n}. A point $b \in X$ is a limit of a_{n} if for every neighborhood U of b there is a threshold N such that $n \geq N$ implies $a_{n} \in U$.

In an antidiscrete space every point is the limit of every sequence.
Proposition 1.32. In T_{2} space the limit of a sequence, if exists, is unique $\boldsymbol{\oplus}$

1.13. Countability axioms.

Definition 1.33. A neighborhood basis of a point x in a topological space X is a collection U_{α} of neighborhoods of x such that for all neighborhood V of x there is an α with $U_{\alpha} \subset V$.

Definition 1.34. The topological space (X, \mathcal{T}) is called

- M_{1} (first countable) if every point $x \in X$ has a countable neighborhood basis;
- M_{2} (second countable) if (X, \mathcal{T}) has a countable basis.

Without loss of generality we may assume that a countable neighborhood basis is 'nested': $U_{1} \supset$ $U_{2} \supset U_{3} \supset \ldots$.
We have $M_{2} \Rightarrow M_{1} \boldsymbol{\phi}$. The Euclidean line is M_{2} (think of rational endpoint open intervals)
Proposition 1.35. The Sorgenfrey line is M_{1} but not M_{2}.
Proof. That it is M_{1} at x is proved by $\{[x, r): r \in \mathbb{Q}, r>x\} \boldsymbol{\oplus}$. Now let \mathcal{B} be a basis of \mathbb{R}_{11}. For $x \in \mathbb{R}$ there is a neighborhood of x contained in $[x, x+1) \boldsymbol{\uparrow}$. Choose one such U_{x} for each $x \in \mathbb{R}$. The chosen U_{x} 's are all different, because $\inf U_{x}=x$. Hence the cardinality of \mathcal{B} is at least the cardinality of \mathbb{R}.

The space \mathbb{R} with the countable complement topology is not M_{1}
Proposition 1.36. If X is M_{1} and $A \subset X$, then the following are equivalent

- $x \in \bar{A}$;
- there is a sequence a_{n} in A whose limit is x.

Proof.
Proposition 1.37. If X is M_{1} then the following are equivalent

- $f: X \rightarrow Y$ is continuous;
- (f is sequentially continuous, that is) $\lim x_{n}=a \Rightarrow \lim f\left(x_{n}\right)=f(a)$.

Proof. The proof from Real Analysis applies. One direction is convenient to prove by contradiction

1.14. Quotient space.

Definition 1.38. Let (X, \mathcal{T}) be a topological space, A a set, and $q: X \rightarrow A$ a surjection. We define a topology on A by setting U open in A if $q^{-1}(U)$ is open in X.

The defined collection of open sets in A is indeed a topology $\boldsymbol{巾}$. The quotient topology on A is the finest topology among those for which q is continuous $\boldsymbol{\phi}$.
The surjection q is often given by an equivalence relation \sim on X. Namely, \sim determines a surjection $X \rightarrow X / \sim$ to the set of equivalent classes. Thus, we defined a topology of X / \sim.

Example 1.39. Let $X=[0,1] \cup[2,3]$ and define $1 \sim 2$ (and the obvious other relations that are forced by the fact that \sim is an equivalence relation). Then the quotient space is homeomorphic with $[0,2]$

Example 1.40. Let $X=[0,1]$, and define $0 \sim 1$ (and the obvious other relations that are forced by the fact that \sim is an equivalence relation). Then the quotient space is homeomorphic with S^{1}

Here and in the whole course $S^{n}=\left\{x \in \mathbb{R}^{n+1}:\|x\|=1\right\}$ with the Euclidean topology.

Definition 1.41. Let G be a group, X a topological space. The map

$$
G \times X \rightarrow X, \quad \text { written as } \quad(g, x) \mapsto g \cdot x
$$

is a (continuous) left group action if

- $1 \cdot x=x$ (for all x);
- $g_{1} \cdot\left(g_{2} \cdot x\right)=\left(g_{1} g_{2}\right) \cdot x$ (for all $\left.g_{1}, g_{2}, x\right)$;
- $x \mapsto g \cdot x$ is a continuous map $X \rightarrow X$ (for all g).

The map in the last requirement is actually a homeomorphism $\boldsymbol{\phi}$.
For a group action we define the relation $x \sim y$ if there is a g such that $g \cdot x=y$. It is an equivalence relation $\boldsymbol{\uparrow}$. An equivalence class is called an orbit. Hence the quotient space construction defines a topology on the space of orbits.
Example 1.42. The multiplicative group $S^{1} \subset \mathbb{R}^{2}=\mathbb{C}$ acts on $\mathbb{R}^{2}=\mathbb{C}$ by multiplication. The space of orbits is homeomorphic to $[0, \infty)$

Example 1.43. The additive group \mathbb{R} acts on \mathbb{R}^{2} by $u \cdot(x, y)=(x+u y, y)$. As a set, the space of orbits can be identified with the union of the axes in \mathbb{R}^{2}. Describe the obtained topology

The last example produced a rather "ugly" topological space. Other pathological examples of quotient spaces include

- $X=\mathbb{R}, x \sim y$ if $y-x \in \mathbb{Q}$.
- $X=\mathbb{R}, x \sim y$ if they are both rational, or if $x=y$.

Example 1.44. Let $X=[0,1] \times \mathbb{Z}_{+}$, and define $(0, a) \sim(0, b)$ for all a, b (and the obvious other relations that are forced by the fact that \sim is an equivalence relation). Let Y be the quotient space. Let Z be the union of the segments in the plane connecting $(0,0)$ with $(1 / n, 1)$ for all $n \in \mathbb{Z}_{+}$, with the Euclidean topology. It is tempting to think that Y is homeomorphic with Z. It is not

Let $q: X \rightarrow Y$ be a quotient map. A map $\tilde{f}: Y \rightarrow Z$ determines a map $f: X \rightarrow Z$ making $f=\tilde{f} \circ q$ true. Conversely, a map $f: X \rightarrow Z$ that is constant on the equivalence classes determine a map $\tilde{f}: Y \rightarrow Z$ making $f=\tilde{f} \circ q$ true

Proposition 1.45. The map f is continuous if and only if \tilde{f} is continuous

1.15. Connectedness.

Definition 1.46. Let X be a topological space. The pair (U, V) is called a separation of X, if $X=U \cup V$, both are non-empty, and are disjoint. If X has no separation, it is called connected. A subset A in a topological space is connected if it is a connected topological space with the subspace topology.

In a separation U is both open and closed, and $U \neq \emptyset, U \neq X$.
Examples: $\mathbb{R}-\{0\}$ is not connected. The space $\{(x, 1 / x): x>0\} \cup y$-axis is not connected. The space \mathbb{Q} is not connected. The space $\{(x, \sin 1 / x): x>0\} \cup y$-axis is connected $\boldsymbol{\oplus}$

Lemma 1.47. Let $X=U \cup V$ be a separation, and $A \subset X$ a connected set. Then $A \subset U$ or $A \subset V$

Lemma 1.48. Let $X=\cup_{\alpha} U_{\alpha}$, with each U_{α} connected. If there is a point $p \in \cap_{\alpha} U_{\alpha}$, then X is connected $\boldsymbol{\uparrow}$.

Proposition 1.49. Let A be a connected subset of X, and $A \subset B \subset \bar{A}$. Then B is connected.
Proof. Let $B=U \cup V$ be a separation of the topological space B. Since Lemma 1.47 we can assume $A \subset U$. Then we have $\bar{A}^{B} \subset \bar{U}^{B}$. The left hand side is B, and the right hand side is U, hence $B \subset U$, which is a contradiction

Proposition 1.50. Let $f: X \rightarrow Y$ be continuous, and A a connected subset of X. Then $f(A)$ is connected.

Proof. Let $\tilde{f}: A \rightarrow f(A)$ be induced by f. It is also continuous $\boldsymbol{\phi}$. If $\tilde{f}(A)=U \cup V$ was a separation of $\tilde{f}(A)$ then $\tilde{f}^{-1}(U), \tilde{f}^{-1}(V)$ would be a separation of A.

Proposition 1.51. The product of two connected spaces is connected
Proposition 1.52. For $A \subset \mathbb{R}$ (with Euclidean topology) the following are equivalent:
(1) A is connected;
(2) A is convex $(x, y \in A$ and $x<z<y$ imply $z \in A)$;
(3) A is an interval (arbitrary open/closed on each side, finite, half infinite, or infinite).

Proof. (1) $\Rightarrow(2)$ is proved indirectly by $((-\infty, z) \cap A) \cup((z, \infty) \cap A)$.
$(2) \Rightarrow(3)$: First show that $(\inf A, \sup A) \subset A \boldsymbol{\oplus}$.
(3) \Rightarrow (1) [Heine's theorem] Let $u \in U, v \in V, u<v$ for a separation of an interval. Consider $x=\sup U$ and check the cases $x \in U, x \in V$

Corollary 1.53 (Intermediate Value Theorem). Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous. Then $f([a, b]) \supset[f(a), f(b)] \boldsymbol{\oplus}$.

Definition 1.54. Let X be a topological space. Define $x \sim y$ if there is an open set $A \subset X$ with $x, y \in A$. Its is an equivalence relation on X (use Lemma 1.48 円). The equivalence classes are called the connected components of X.

Determine the connected components of the examples after Definition 1.46
Proposition 1.55. Connected components are

- connected $\boldsymbol{\uparrow}$;
- closed ($\boldsymbol{\omega}$ use Proposition 1.49).

If X has finitely many connected components then connected components are open $\boldsymbol{\uparrow}$

1.16. Path connectedness.

Definition 1.56. For $x, y \in X$ define $x \sim y$ if there is a path $(\gamma:[0,1] \rightarrow X$ continuous) connecting them (ie. $\gamma(0)=x, \gamma(1)=y$).

This is an equivalence relation $\boldsymbol{\uparrow}$. The equivalence classes are called path components. If X is one path component, it is called path-connected. If $A \subset X$ is path-connected, it must be contained in a path component of X.
Instructive example: $\{(x, \sin (1 / x)): x>0\} \cup y$-axis—this is a connected but not path-connected space $\boldsymbol{\emptyset}$
Path components must be contained in connected components $\boldsymbol{\varphi}$. In general path components are neither open nor closed.

1.17. Compactness.

Definition 1.57. A collection of open sets U_{α} in X such that $\cup U_{\alpha}=X$ is called an open cover(ing) of X. A space X is called compact, if every open covering has a finite sub-cover.
\mathbb{R} is not, $(0,1]$ is not, $\{1 / n\}$ is not, $\{1 / n\} \cup\{0\}$ is compact.
If A is a subspace of X, then A being compact is equivalent with this property: If U_{α} are open in X and $\cup U_{\alpha} \supset A$, then finitely many of them also cover $A \boldsymbol{\phi}$.

Proposition 1.58. A closed subset of a compact space is compact
Proposition 1.59. A compact subspace of a Hausdorff space is closed.
Proof. $A \subset X$. We will show that A^{c} is open, using the pointwise criterion of openness. Let $x \in A^{c}$. Since X is T_{2}, for all $a \in A$ there exists disjoint neighborhoods U_{a} and V_{a} of a and x respectively. Finitely many of the U_{a} 's cover A. The intersection of the corresponding V_{a} 's is a neighborhood of x, disjoint from A

Proposition 1.60. Continuous image of compact space is compact
Corollary 1.61. If $f: X \rightarrow Y$ is a continuous bijection, X compact, Y Hausdorff, then f is a homeomorphism.

Proof. For $A \subset X$ closed, the set $\left(f^{-1}\right)^{-1}(A)$ is closed, using the propositions above
Proposition 1.62. If X and Y are compact then $X \times Y$ is compact.
Proof. Let U_{α} be an open cover of $X \times Y$. Let $x \in X$. The fiber $\{x\} \times Y$ is compact, hence finitely many of the U_{α} 's cover it. Let V_{x} be the union of these U_{α} 's. Claim ("tube lemma"): there exists a neighborhood W_{x} of x such that $W_{x} \times Y \subset V_{x} \boldsymbol{\phi}$. From the collection W_{x} finitely many cover X. Each $W_{x} \times Y$ is covered by a finite collection of U_{α} 's, so $X \times Y$ is covered by a finite collection of U_{α} 's.

Proposition 1.63. The closed interval $[0,1]$ is compact.

Proof. Let U_{α} be an open cover of $[0,1]$, and assume that no finite subcollection covers $[0,1]$. Consider $[0,1 / 2]$ and $[1 / 2,1]$. At least one of them is not covered by a finite subcollection of U_{α} 's, choose that one, and continue halving it, always shoosing a half which is not covered by a finite subcollection of U_{α} 's. Let x be in the intersection of these intervals (completeness of \mathbb{R}). Since x is contained by one of the U_{α} 's, there is an ε such that the ε-neighborhood of x is in a U_{α}. However, after a while the halving intervals are contained in this ε-neighborhood, which is a contradiction.

Corollary 1.64. A set $A \subset \mathbb{R}^{n}$ compact if and only if it is bounded and closed
Corollary 1.65 (Extreme Value Theorem). If X is comapct then the continuous function f : $X \rightarrow \mathbb{R}$ attains its maximum (minimum) $\boldsymbol{\uparrow}$.
1.18. Topological groups - sketch.

Definition 1.66. A T_{1} topological space G that is also a group is called a topological group if the group operations $G \times G \rightarrow G$ (multiplication) and $G \rightarrow G$ (inverse) are continuous.
We get an equivalent notion if we just require that the map $f: G \times G \rightarrow G,(x, y) \mapsto x y^{-1}$ is continuous
A topological group is necessarily T_{2} (hint: consider $\left.f^{-1}(1)\right) \boldsymbol{\phi}$.
Proposition 1.67. An open subgroup of a topological group is also closed $\boldsymbol{\phi}$.
Proposition 1.68. The closure of a subgroup of a topological group is also a subgroup $\boldsymbol{\uparrow}$.
Important examples of topological groups include $(\mathbb{Z},+),(\mathbb{R},+),(\mathbb{R}-\{0\}, *),\left(S^{1}, *\right),\left(\mathrm{GL}_{n}(\mathbb{R}), *\right)$, $(O(n), *),\left(S^{3}\right.$, quaternionic multiplication).
1.19. Metrization theorems - sketch.

Theorem 1.69 (Urysohn metrization theorem - not proved in this course). $A T_{3}, M_{2}$ topological space is metrizable (homeomorphic with a metric space).

Remark 1.70.

- T_{3}, M_{2} implies T_{4}.
- Somewhere in the proof we need to "create" some functions out of thin air (out of just spaces). This is done using Urysohn's lemma [not proved in this course]: If A, B are disjoint closed subsets of a T_{4} topological space X then there exists a continuous function $f: X \rightarrow[0,1]$ such that $f^{-1}(0)=A, f^{-1}(1)=B$. It is instructive to glance at the proof of this lemma (in the textbook or online) to see how the T_{4} property is used to "create a function", and hence to prove Urysohn's lemma.
- The Sorgenfrey line is T_{3}, it is not M_{2}, and it is not metrizable
1.20. Infinite products - sketch. Let X_{α} be topological spaces for all $\alpha \in A$. Define

$$
\prod_{\alpha \in A} X_{\alpha}=\left\{f: A \bigcup_{\alpha \in A}: f(\alpha) \in X_{\alpha}\right\}
$$

as a set. We define two topologies on this set:

- [basis of box topology] $\prod_{\alpha \in A} U_{\alpha}$ where $U_{\alpha} \subset X_{\alpha}$ open;
- [basis of product topology] $\prod_{\alpha \in A} U_{\alpha}$ where $U_{\alpha} \subset X_{\alpha}$ open, $U_{\alpha}=X_{\alpha}$ for all but finitely many $\alpha \in A$.
Both of these collections satisfy the axioms of a basis
Proposition 1.71. A map $f: A \rightarrow \prod_{\alpha \in A} X_{\alpha}$ (with the product topology) is continuous if and only if all the component functions are continuous

The map $f: \mathbb{R} \rightarrow \prod_{n \in \mathbb{N}} \mathbb{R}, t \mapsto(t, t, t, \ldots)$ has continuous coordinate functions, but is not continuous if the codomain is equipped with the box topology. ($\boldsymbol{\uparrow}$ Hint: consider the preimage of the set $(-1,1) \times(-1 / 2,1 / 2) \times(-1 / 3,1 / 3) \times \ldots)$

Theorem 1.72 (Tychonoff's theorem). If X_{α} is compact for all $\alpha \in A$ then $\prod_{\alpha \in A} X_{\alpha}$ (with the product topology) is compact [not proved in this course].
1.21. Locally compact spaces, Alexandrov compactification - sketch.

Definition 1.73. The space X is called locally compact at $x \in X$ if there exists a neighborhood of x which is contained in a compact set. The space is locally compact if it is locally compact at all $x \in X$.

Proposition 1.74. If X is T_{2} then the following are equivalent

- X is locally compact;
- For all $x \in X$ and all neighborhood U of x there is a compact set A and another neighborhood V of x, such that $x \in V \subset A \subset U$.

Definition 1.75. The space Y is an Alexandrov compactification (a.k.a. 1-point compactification) of the space X if

- $X \subset Y$ (with subspace topology), $Y-X$ is one point;
- Y is compact T_{2}.

Theorem 1.76. The space X has an Alexandrov compactification if and only if it is locally compact and T_{2}. In this case the Alexandrov compactification is unique.
Proof. Let X be locally compact T_{2}. The construction of Y is as follows: let $Y=X \cup\{\infty\}$, with the topology defined by the open sets
(1) $U \subset X$ open;
(2) $U \cup\{\infty\}$, where $U \subset X$ is open, $X-U$ is compact.

Verifying that this is an Alexandrov compactification, as well as other parts of the proof are straightforward.

Example 1.77. The stereographic projection $S^{2}-\{$ North Pole $\} \rightarrow \mathbb{R}^{2}$ shows that the Alexandrov compactification of \mathbb{R}^{2} is $S^{2} \boldsymbol{\phi}$. In fact this works in every dimension for \mathbb{R}^{n} and $S^{n} \boldsymbol{\phi}$. The Alexandrov compactification of a compact T_{2} space X is $X \cup\{\infty\}$ (discrete union) $\boldsymbol{\varphi}$. Find a familiar space that is homeomorphic to the Alexandrov compactification of \mathbb{Z}

2. Surfaces

2.1. Getting familiar with some spaces. The pictures below define quotient spaces (with intuitive notation of gluing), they will be called (i) cylinder or annulus, (ii) Möbius strip Ms, (iii) torus T^{2}, (iv) Klein bottle Kb , (v) real projective plane $\mathbb{R} \mathrm{P}^{2}$.

In these spaces some points x have a neighborhood homeomorphic to \mathbb{R}^{2}, and some points x have a neighborhood homeomorphic to the half-plane $\mathbb{R}_{+}^{2}=\left\{(x, y) \in \mathbb{R}^{2}: y \geq 0\right\}$ in such a way that the point x is mapped to $(0,0)$. Points of the second kind will be called edge-points, or boundary points. (This is not the "boundary of a set" notion we learned before.) For each space find these boundary points

The cylinder can be realized as a subspace of \mathbb{R}^{2} (c.f. the name annulus $\boldsymbol{\oplus}$). The Ms and the torus (see picture on the left) can be realized as a subspace of $\mathbb{R}^{3} \boldsymbol{\phi}$. The Klein bottle can be realized as a subspace of \mathbb{R}^{4}, starting from the usual picture (on the right) below

The picture on the right is not an embedding of the Kb into \mathbb{R}^{3}, because it has self intersections. Similar pictures are called immersions. The space $\mathbb{R P}^{2}$ can also be immersed in \mathbb{R}^{3} (search for pictures online) and can be embedded in \mathbb{R}^{4}.

The following are all homeomorphic to $\mathbb{R} \mathrm{P}^{2}$

- D^{2} / \sim, where $x \sim-x$ on the boundary of $D^{2} .\left(D^{2}=\left\{x \in \mathbb{R}^{2}:\|x\| \leq 1\right\}\right.$ is the 2-disc.)
- S^{2} / \sim, where $x \sim-x$.

As a set $\left\{1\right.$-dimensional linear subspaces of $\left.\mathbb{R}^{3}\right\}$ is in bijection with $\mathbb{R P}^{2} \boldsymbol{\phi}$. In this disguise $\mathbb{R P}^{2}$ is also called the $\operatorname{Gr}_{1}\left(\mathbb{R}^{3}\right)$ Grassmannian.

Define $\mathbb{R} \mathrm{P}^{\mathrm{n}}=S^{n} / \sim$, where $x \sim-x$. As a set $\mathbb{R} \mathrm{P}^{\mathrm{n}}$ is in bijection with $\mathrm{Gr}_{1}\left(\mathbb{R}^{n+1}\right) \boldsymbol{\uparrow}$. In geometry (but not in this course) Grassmannians are endowed with extra structures besides their topology.

Proposition 2.1.

- Gluing together two copies of D^{2} along a homeomorphism of their boundaries results S^{2}.
- Gluing together a D^{2} and a Ms along a homeomorphism of their boundaries results $\mathbb{R P}^{2}$.
- Gluing together two copies of Ms along a homeomorphism of their boundaries results Kb .

Three different proofs of the second statement are illustrated below

Finish the proof of the third statement started in the figure below. ($\boldsymbol{\propto}$ Hint: the next step is realizing the b gluing.)

We may use the proposition above to identify some other quotient spaces. Eg. the space below is the Kb

Proposition 2.2. The spaces below are all the "punctured torus' (ie. the torus with an open disc removed)

Find analogous pictures of the punctured Klein bottle

2.2. Surfaces.

Definition 2.3. The T_{2}, M_{2} topological space X is called a (topological n-) manifold, if every $x \in X$ has a neighborhood homeomorphic to \mathbb{R}^{n}.

1-manifolds are also called curves, 2-manifolds are called surfaces.
Remark 2.4. The T_{2} condition is there to exclude spaces like the ravioli. The M_{2} condition is there to exclude spaces like an uncountable disjoint union of $\mathbb{R}^{2} \mathrm{~s}$. A very interesting topological space, named Alexandroff line (or "long line", not covered in this course) also satisfies all, but the M_{2} property.
Remark 2.5. There are other versions of manifolds, namely smooth manifolds, and PL (piecewise linear) manifolds. We will not meet them in this course.
The spaces \mathbb{R}^{n}, S^{n} are n-manifolds. An open subset of \mathbb{R}^{n} is an n-manifold. The cylinder $S^{1} \times \mathbb{R}^{1}$ is a surface. The annulus or the Ms are not surfaces, because points of the boundary circles do not satisfy the requirement. If we remove those boundary circles, the remaining spaces are surfaces.
2.2.1. The first list. Consider the infinite sequence of spaces in the figure.

The figures in the middle line will be called the plane models with gluing scheme $a b a^{-1} b^{-1}$, $a_{1} b_{1} a_{1}^{-1} b_{1}^{-1} a_{2} b_{2} a_{2}^{-1} b_{2}^{-1}$, etc.
In the figure we used the following notations

- If A and B both has a distinguished circle (typically a boundary circle) as a subspace, then $A \cup_{S^{1}} B$ is obtained by gluing those two circles together via a homeomorphism. Whenever we use this notation it will be true that the choice of the homeomorphism $S^{1} \leftrightarrow S^{1}$ does not matter.
- If A and B are surfaces then $A \# B$ is obtained by removing a (small) open disc, and then gluing the resulting edge circles together by a homeomorphism (again, does not matter which homeomorphism).

Proposition 2.6. The three sequences of spaces (the three lines) above are the same sequence of spaces.
2.2.2. The second list. Consider the infinite sequence of spaces in the figure.

The figures in the second line will be called the plane models with gluing scheme $a^{2},\left(a_{1}\right)^{2}\left(a_{2}\right)^{2}$, $\left(a_{1}\right)^{2}\left(a_{2}\right)^{2}\left(a_{3}\right)^{2}$, etc.
The bottom line is

$$
\mathbb{R} \mathrm{P}^{2}, \mathrm{~Kb}, \mathbb{R} \mathrm{P}^{2} \# T^{2}, \mathrm{~Kb} \# T^{2}, \mathbb{R} \mathrm{P}^{2} \# T^{2} \# T^{2}, \mathrm{~Kb} \# T^{2} \# T^{2}, \mathbb{R P}^{2} \# T^{2} \# T^{2} \# T^{2}, \ldots
$$

Proposition 2.7. The four sequences of spaces (the four lines) above are the same sequence of spaces.

Proof. The following lemma is useful in the proof: If A is a surface which contains a Ms then $A \# T^{2} \sim A \# \mathrm{~Kb}$.

2.3. The Classification Theorem.

Theorem 2.8 (Classification of Closed Surfaces). The union of the lists in Section 2.2.1 and Section 2.2.2 is a complete, repetition-free list of compact connected surfaces.

Proof. First we prove that every compact connected surface is one from the lists.
Let M be a compact connected surface. It is possible to remove an open disc from M such that what remains is a disc with a finite number of ribbons (some twisted, some not) attached to it. This fact we do not prove here - see Remark 2.9 below.
Case 1: None of the ribbons are twisted. Consider one of the ribbons $R 1$. There must be another ribbon $R 2$ that is "linked" with this one. [Linked: one if its foot is below the ribbon $R 1$ and the other foot is outside.] This holds because otherwise the boundary would have more than one components - see the picture on the left, the blue and green doted lines $\boldsymbol{\varphi}$. Consider the ribbons $R 1$ and $R 2$ together. It is possible to "slide" the feet of all other ribbons away from $R 1$ and $R 2$-see how the foot of the red ribbon slides along the blue arrows in the middle figure
$\boldsymbol{\phi}$. We arrive at the picture on the right, and by induction we arrive at one of the pictures in the third row of the Figure in Section 2.2.1.

Case 2: If there is a twisted ribbon $R 1$. We can slide the foot of all other ribbons away from $R 1$-see the figure below, on the left $\boldsymbol{\varphi}$. Iterating this procedure we arrive at a picture on the right $\boldsymbol{\phi}$. The rest must not have a twisted ribbon anymore. Hence the rest-according to Case 1-is m pairs of linked untwisted ribbons. We find that M is

$$
\left(\#^{n} \mathbb{R} \mathrm{P}^{2}\right) \#\left(\#^{m} T^{2}\right)
$$

which is the same (cf. the lemma in the proof of Proposition 2.7) as $\#^{n+2 m} \mathbb{R P}^{2}$.

We still need to prove that the surfaces on our list are pairwise not homeomorphic. We will come back to it later.

Remark 2.9. Our first step in the proof created a combinatorial structure on the surface. That step can be carried out by proving the existence of a so-called "differentiable structure" on a topological surface, then using a statement from "Morse theory". We will not cover this argument in this course.

Remark 2.10. There are other proofs of the Classification Theorem. Their first step is always giving some kind of combinatorial structure to M. An example of such a combinatorial structure
is triangulation. Proving the existence of a triangulation is not easier than our first step above. A proof assuming the existence of triangulations is available in the textbook.
2.4. Euler characteristic. An n-simplex is the convex hull of $n+1$ points in \mathbb{R}^{n}, eg. an interval, a triangle, a tetrahedron. An n-simplex has i-faces for $i=0,1, \ldots, n$.
A topological space which is the union of finitely many simplices, such that any two either are disjoint, or intersect in a full face of each, is a simplicial complex.

Definition 2.11. The Euler characteristic of a simplicial complex M is

$$
\chi(M)=\sum_{n=0}^{\infty}(-1)^{n} \mid\{n \text {-dimensional simplices }\} \mid
$$

Theorem 2.12 (proved later, c.f. Definition-Theorem 4.21). The Euler characteristic does not depend on the simplicial structure, it only depends on the homeomorphism type of the space.

We have $\chi\left(S^{2}\right)=2 \boldsymbol{\phi}, \chi\left(T^{2}\right)=0 \boldsymbol{\phi}, \chi\left(\mathbb{R} P^{2}=1\right)$
Proposition 2.13. For compact connected surfaces A and B we have

$$
\chi(A \# B)=\chi(A)+\chi(B)-2
$$

We have

$$
\chi\left(\#^{g} T^{2}\right)=2-2 g, \quad \chi\left(\#^{g} \mathbb{R} \mathrm{P}^{2}\right)=2-g .
$$

Define a surface non-orientable (orientable) if it contains (does not contain) a Ms as a subspace. Those on our first list are orientable, those on the second list are non-orientable
The pair (orientability of $M, \chi(M)$) proves that the surfaces in the Classification Theorem are pairwise non-homeomorphic $\boldsymbol{\oplus}$. This completes the proof of Theorem 2.8.

Another way of proving that the list is a repetition free list will be given after Corollary 3.28.
2.5. Identifying surfaces. Consider the surface on the left of the figure below. We will identify this surface as one from the Classification Theorem.

The Euler characteristic of the space in the middle figure is $5 \boldsymbol{\uparrow}$. At the operation showed on the right the Euler characteristic decreases by $1 \boldsymbol{\phi}$. Hence the Euler characteristic of the surface on the left is

$$
5(\text { middle figure })-7(\text { joins })+1(\text { adding the disc })=-1
$$

Hence the surface is $\mathbb{R P}^{2} \# \mathbb{R} P^{2} \# \mathbb{R} P^{2}$.

3. Homotopy, fundamental group, covering spaces

3.1. Homotopy.

Definition 3.1. The continuous maps $f, g: X \rightarrow Y$ are homotopic (we write $f \simeq g$), if there is a continuous map $F: X \times[0,1] \rightarrow Y$ such that $F(x, 0)=f(x), F(x, 1)=g(x)$.
Any two maps $X \rightarrow \mathbb{R}^{n}$ are homotopic ($\boldsymbol{\top}$ use the linear structure of \mathbb{R}^{n}). The reader probably "feels" that the identity map of S^{1} is not homotopic to the constant map (the map $S^{1} \rightarrow S^{1}$ that maps all points to one point). We will prove this fact later.
Homotopy is an equivalence relation on the set of maps $X \rightarrow Y \boldsymbol{\phi}$
Definition 3.2. The topological spaces X and Y are homotopy equivalent (we write $X \simeq Y$) if there exist continuous maps $f: X \rightarrow Y, g: Y \rightarrow X$ such that

$$
g \circ f \simeq \operatorname{id}_{X}, \quad f \circ g \simeq \operatorname{id}_{Y}
$$

We have $\mathbb{R}^{n} \simeq\{0\} \boldsymbol{\oplus}$. We have the annulus $\simeq S^{1} \simeq \mathrm{Ms}$
Homotopy equivalence is an equivalence "relation" on topological spaces
Theorem 3.3 (proved later, cf. Definition-Theorem 4.21). If $X \simeq Y$ then $\chi(X)=\chi(Y)$.
The torus minus an open disc is homotopy equivalent to the figure $8 \boldsymbol{\phi}$. Derive from this that $\chi\left(T^{2}\right)=0 \boldsymbol{\phi}$.
We have $D^{n+1} \simeq$ pt $\boldsymbol{\oplus}$, hence $\chi\left(D^{n+1}\right)=1$. Use this to derive that $\chi\left(S^{n}\right)=1+(-1)^{n}$ (hint: consider the $n+1$-simplex as a simplicial structure on D^{n+1}, then take away the interior and see what happens to $\chi \boldsymbol{\oplus}$).
3.2. CW complexes. Consider the following procedure of building a topological space.

- Start with a finite number of points, with the discrete topology, call it X^{0} (the 0-skeleton).
- Consider a finite disjoint union of 1-discs (intervals), and a map from their boundary S^{0} 's to X^{0}. Let us glue these 1-discs to X^{0} along the map, and call the resulting space X^{1} (the 1-skeleton).
- Consider a finite union of 2-discs, and a map from their boundary S^{1} 's to X^{1}. Let us glue these 2-discs to X^{1} along the map, and call the resulting space X^{2}.
- etc.

Definition 3.4. If a space X is obtained by such a (finite) procedure, then we call it (together with the procedure) a finite $C W$ complex. The interiors of the k-discs survive as subspaces of X ©, we call them k-cells.

A triangulation of a space (ie. simplicial complex structure on a space) can be considered a CW complex structure $\boldsymbol{\phi}$.
The plane models we considered for the compact surfaces can be considered as CW complex structures on them, with exactly one 2 -cell (and, in fact, exactly one 0 -cell too) $\boldsymbol{\phi}$.
The sphere S^{n} has a CW structure with one 0 -cell and one n-cell (nothing else) $\boldsymbol{\oplus}$.
The space $\mathbb{R} \mathrm{P}^{\mathrm{n}}$ has a CW structure with exactly one k-cell for all $k=0,1, \ldots, n \boldsymbol{\oplus}$. It is worth thinking over what the gluing map $S^{k} \rightarrow X^{k}$ of each cell is $\boldsymbol{\phi}$.

Theorem 3.5 (proved later, cf. Definition-Theorem 4.21). The Euler characteristic of a finite $C W$ complex can be calculated by $\sum_{n=0}^{\infty}(-1)^{n} \mid\{n$-cells $\} \mid$.

We say that a space is contractible if it is homotopy equivalent to a one-point space. Eg. \mathbb{R}^{n}, a star-shaped region of \mathbb{R}^{n}, or a tree are contractible.
If $A \subset X$ then by X / A we mean the quotient space where all points of A are declared equivalent, that is, A is collapsed to a point. Eg. $D^{n} / \partial D^{n}=S^{n-1}$.

Theorem 3.6 (proved in the HW assignments). Let A be a sub-complex of the finite $C W$ complex X, and let A be contractible. Then X is homotopy equivalent to X / A.
3.3. Fundamental group. A continuous function $\alpha:[0,1] \rightarrow X$ is called a path in X, "from $\alpha(0)$ to $\alpha(1)$ ". If $\alpha(0)=\alpha(1)$, it is a loop. We denote $\bar{\alpha}(t)=\alpha(1-t)$.
A path homotopy between paths α and β, both from x_{0} to x_{1}, is a continuous map $H:[0,1] \times$ $[0,1] \rightarrow X$ such that $H(t, 0)=\alpha(t), H(t, 1)=\beta(t), H(0, s)=x_{0}, H(1, s)=x_{1}$. Draw a picture of $[0,1] \times[0,1]$ indicating which part is mapped where $\boldsymbol{\phi}$. In notation $\alpha \simeq_{p} \beta$. Path homotopy is an equivalence relation $\boldsymbol{\phi}$.
We fix a basepoint x_{0} in X, and, as a set, define $\pi_{1}\left(X, x_{0}\right)$ to be the set of path-homotopy equivalence classes of loops in X based on x_{0}.
We define a product $*$ on $\pi_{1}\left(X, x_{0}\right)$ by $[\alpha] *[\beta]=[\alpha * \beta]$ where the $*$-product of paths f and g with $f(1)=g(0)$ is defined by

$$
(f * g)(t)= \begin{cases}f(2 t) & \text { if } t \leq 1 / 2 \\ g(2 t-1) & \text { if } t \geq 1 / 2\end{cases}
$$

Proposition 3.7. The $*$ product

- is well defined $\boldsymbol{\oplus}$;
- is associative $\boldsymbol{\oplus}$;
- has a neutral element, the constant x_{0} map $\boldsymbol{\uparrow}$;
- has a two-sided inverse

That is, $\pi\left(X, x_{0}\right)$ is endowed with a group structure, it is called the fundamental group of X, x_{0}.
Proposition 3.8. Let β be a path from x_{0} to x_{1}. The assignment $[\alpha] \mapsto[\bar{\beta} * \alpha * \beta]$ is a well defined map $\pi_{1}\left(X, x_{0}\right) \rightarrow \pi_{1}\left(X, x_{1}\right) \boldsymbol{\oplus}$. It is a group isomorphism $\boldsymbol{\phi}$.

Hence, for path-connected spaces X the group $\pi_{1}(X)$ is well defined as a group isomorphism type. If the path-connected X satisfies $\pi_{1}(X)=0$ (the one-element, "trivial" group), we call it simply connected.
A subset $X \subset \mathbb{R}^{n}$ is called star-shaped, if for all $x \in X$ the segment $[0, x]$ is part of X. Then we have $\pi_{1}(X)=0$, use the linear structure of \mathbb{R}^{n}
It should be intuitive to "feel" that $\pi_{1}\left(S^{1}\right)=\mathbb{Z} \boldsymbol{Q}$, we will prove this later. Find a loop in $\mathbb{R P}^{2}$ that 'feels' to have order 2 in $\pi_{1}\left(\mathbb{R} P^{2}\right)$

Proposition 3.9. $\pi_{1}\left(S^{2}\right)=0$.

First attempt of the proof: let α be a loop on $x_{0} \in S^{2}$. If $p \notin i m(\alpha)$ then we may use a stereographic projection $F: S^{2}-\{p\} \rightarrow \mathbb{R}^{2}$ to view α as a loop in \mathbb{R}^{2}. Here it is path homotopic to the constant loop. The F^{-1} image of the path homotopy is a path homotopy in S^{2} between α and the constant x_{0} loop.
The described "first attempt" only works if α misses at least one point of S^{2}, so it is not a complete proof yet.
Lemma 3.10 (Lebesgue number lemma). If X is a compact metric space, covered by open sets U_{κ}, then there is a (Lebesgue-) number δ such that if $A \subset X$ is part of a δ-radius ball then there is a κ with $A \subset U_{\kappa}$. [Find the proof of this lemma in a textbook or online, then close your source and write it down for yourself.
Let α be a loop in S^{2}. Let us cover S^{2} with small discs. Consider α^{-1} of this cover: we obtain an open cover of $[0,1]$. Let δ be a Lebesgue number of this cover, and let us subdivide $[0,1]$ to intervals shorter than δ. On each subinterval change α by a path-homotopy to a "nicer" path, eg. smooth one (or a segment in a fixed homeomorphism between the disc and \mathbb{R}^{2}). Thus we replaced α with a path-homotopic α_{0} which is piece-wice nice. The image of such an α_{0} has measure 0 (a fact from Analysis), hence it cannot cover S^{2}. Now out first attempt can be applied.

The above proof extends to prove that $\pi_{1}\left(S^{n}\right)=0$ for all $n \geq 2 \boldsymbol{\phi}$. But it does not apply to $n=1$ (why? $\boldsymbol{\oplus}$).
3.4. Functor. Let $h: X, x_{0} \rightarrow Y, y_{0}$ be continuous (ie. $h: X \rightarrow Y$ with $h\left(x_{0}\right)=y_{0}$). The map $h_{*}: \pi_{1}\left(X, x_{0}\right) \rightarrow \pi_{1}\left(Y, y_{0}\right)$ defined by $[\alpha] \mapsto[h \circ \alpha]$ is well defined $\boldsymbol{\uparrow}$, and is a group homomorphism $\boldsymbol{\oplus}$.
Observe that $\mathrm{id}_{*}=\mathrm{id} \boldsymbol{\oplus},(h \circ g)_{*}=h_{*} \circ g_{*} \boldsymbol{\oplus}$.
3.5. Covering spaces. The continuous map $p: E \rightarrow B$ is called a covering space, if all $x \in B$ has a neighborhood U such that

- $p^{-1}(U)=\cup V_{\alpha}$, the V_{α} are open in E,
- $\left.p\right|_{V_{\alpha}}: V_{\alpha} \rightarrow U$ is a homeomorphism for all α.

Vocabulary: U is a trivializing neighborhood, E is the total space, B is the base space, p is the projection of the covering.
For a covering the set $B_{\kappa}=\left\{b \in B:\left|p^{-1}(b)\right|=\kappa\right\}$ is open $\boldsymbol{\oplus}$. Hence, if B is connected, the cardinality $\left|p^{-1}(b)\right|$ is constant $\boldsymbol{\uparrow}$, we call it the number of sheets in the covering.
The identity map $X \rightarrow X$ is a covering space. If D is a discrete topological space, then the projection map $B \times D \rightarrow B$ is a covering map
The following are covering maps:

- $S^{1} \rightarrow S^{1}, z \mapsto z^{2}$. Draw a picture, where the first S^{1} is like the boundary circle of a Ms ©
- $S^{1} \rightarrow S^{1}, z \mapsto z^{n}$, for $n=1,2,3, \ldots$. Draw pictures
- The defining quotient $\operatorname{map} q: S^{n} \rightarrow \mathbb{R P}^{\mathrm{n}}$
- The quotient map $\mathbb{R}^{2} \rightarrow T^{2}$ where T^{2} is presented by the equivalence relation $(x, y) \sim$ $(x+$ integer, $y+$ integer $)$.
- The picture below defines a covering map $T^{2} \rightarrow \mathrm{~Kb}$

- The pictures below define two covering maps to the figure- 8 space $\boldsymbol{\phi}$. The labels here do not mean gluing, they indicate the map.

- The quotient map by the \mathbb{Z}_{3}-action on $\#^{4} T^{2}$ indicated in the picture below is a covering map

3.6. Lifting maps, lifting correspondence, $\pi_{1}\left(\mathbb{R P}^{\mathrm{n}}\right), \pi_{1}\left(S^{1}\right)$. For $p: E \rightarrow B$ covering and $f: X \rightarrow B$ we call $\tilde{f}: X \rightarrow E$ a lifting of f if $f=p \circ \tilde{f}$, that is, if the diagram

is commutative.

We say $p: E, e_{0} \rightarrow B, b_{0}$ is a covering, if $p: E \rightarrow B$ be a covering, and $b_{0} \in B, e_{0} \in E$ such that $p\left(e_{0}\right)=b_{0}$.

Lemma 3.11 (path lifting). Let $p: E, e_{0} \rightarrow B, b_{0}$ be a covering. Let $f:[0,1] \rightarrow B$ be a path with $f(0)=b_{0}$. Then there exists a unique lifting \tilde{f} of f with $\tilde{f}(0)=e_{0}$.

Proof. If a lifting exists and is unique on $[0, t]$, then-due to local triviality of the covering map-a lifting exists uniquely on $[0, t+\varepsilon] \boldsymbol{\oplus}$. Use this idea, precomposed with a Lebesgue number lemma argument to go from the interval $[0,0]$ to the interval $[0,1]$ in finitely many steps

Lemma 3.12 (homotopy lifting). Let $p: E, e_{0} \rightarrow B, b_{0}$ be a covering. Let $F:[0,1] \times[0,1] \rightarrow B$ be a map with $F((0,0))=b_{0}$. Then there exists a unique lifting \tilde{F} of F with $\tilde{F}((0,0))=e_{0} \boldsymbol{\phi}$. Moreover, if F is a path-homotopy then \tilde{F} is also a path-homotopy

Corollary 3.13. Let f, g be path-homotopic paths in B, both from b_{0} to b_{1}. Let \tilde{f} and \tilde{g} be their liftings starting at e_{0}. Then $\tilde{f}(1)=\tilde{g}(1)$ (and, in fact, \tilde{f} and \tilde{g} are path-homotopic)

Definition 3.14 (lifting correspondence map). Let $p: E, e_{0} \rightarrow B, b_{0}$ be a covering. Define the lifting correspondence map between sets

$$
\phi: \pi_{1}\left(B, b_{0}\right) \rightarrow p^{-1}\left(b_{0}\right), \quad[f] \mapsto \tilde{f}(1)
$$

The lifting correspondence map ϕ is well defined $\boldsymbol{\varphi}$. Work out examples of ϕ-images of elements in $\pi_{1}(B)$ for all the examples in Section 3.5

Theorem 3.15.

- If E is path-connected then ϕ is surjective
- If $\pi_{1}(E)=0$ then ϕ is injective.

Proof. The following lemma is useful to prove $\boldsymbol{\uparrow}$ the second statement: Any two paths from x to y in a simply connected space are path-homotopic

We have $\pi_{1}\left(\mathbb{R P}^{\mathrm{n}}\right)=\mathbb{Z}_{2} \boldsymbol{\uparrow}$ for $n \geq 2$. We have that $\pi_{1}\left(S^{1}\right)$ is a countably infinite group
Theorem 3.16. The map ϕ for the covering $\mathbb{R} \rightarrow S^{1}, t \mapsto(\cos (2 \pi t), \sin (2 \pi t))$ is also a group homomorphism. Hence $\pi_{1}\left(S^{1}\right)=\mathbb{Z}$.

Proof. For $[f],[g] \in \pi_{1}\left(S^{1}, b_{0}\right)$ prove that $\tilde{f} *(\tilde{g}+\tilde{f}(1))$ works for $\widetilde{f * g}$
Proposition 3.17. Let $[f] \in \pi_{1}\left(S^{1}\right)$ be represented by an odd map, that is, assume $f(-x)=$ $-f(x)$. Then $\phi(f) \in \mathbb{Z}$ is an odd number.

Proof. A idea similar to that in the proof of Theorem 3.16 works: first lift the restriction to a half-circle, then show that a shift of that works for the lift of the other half-circle
3.7. Applications of $\pi_{1}\left(S^{1}\right)=\mathbb{Z}$.

Theorem 3.18 (2d Brouwer fixed point theorem). Every $f: D^{2} \rightarrow D^{2}$ continuous map has a fixed point (ie. $\exists x \in D^{2}$ such that $f(x)=x$).

Proof. If f has no fixed point then the map g defined in the picture

is continuous, and makes the diagram

commutative. Applying the π_{1} functor (Section 3.4) we obtain a commutative diagram

which is a contradiction.
The last step of the proof generalizes. Call a subset A of a topological space X a retract of X, if there exists a map (the retraction) $r: X \rightarrow A$ such that $\left.r\right|_{A}=\mathrm{id}_{A}$.
Proposition 3.19. If A is a retract of X then $j_{*}: \pi_{1}(A) \rightarrow \pi_{1}(X)$ is an injection. (Here j is the embedding $A \subset X$.) Moreover, r_{*} is surjective, where r is the retraction $\boldsymbol{\oplus}$.

Theorem 3.20 (Borsuk-Ulam). For every continuous map $S^{2} \rightarrow \mathbb{R}^{2}$ there is a point $p \in S^{2}$ where $f(p)=f(-p)$.

Proof. Assuming that there is no such point we can define

$$
g: S^{2} \rightarrow S^{1}, \quad g(x)=\frac{f(x)-f(-x)}{\|f(x)-f(-x)\|}
$$

The map $h:=\left.g\right|_{S^{1}}: S^{1} \rightarrow S^{1}$ is odd in the sense of Proposition 3.17, hence $[h] \in \pi_{1}\left(S^{1}\right)$ is an
odd number $\boldsymbol{\oplus}$. On the other hand the picture

shows that $[h]=0 \boldsymbol{\oplus}$, proving the needed contradiction.
Other notable applications of $\pi_{1}\left(S^{1}\right)=\mathbb{Z}$ include

- The inside-pointing vector field lemma: Let $D^{2} \rightarrow \mathbb{R}^{2}$ be nowhere 0 . Then there is a point $p \in S^{1}$ such that $X(p)$ is a negative multiple of p.
- The Fundamental Theorem of Algebra: Every complex coefficient polynomial of positive degree has a complex root.
- The hairy ball theorem (a.k.a. Porcupine theorem): Every continuous tangent vector field on S^{2} has a 0 .
- The ham and cheese sandwich theorem: Let B, H, C be "nice" subsets of \mathbb{R}^{3} (bread, ham, cheese). Then there is a plane in \mathbb{R}^{3} that cuts all three of them to two equal volume parts.
- The Lusternik-Schnirelmann category theorem for $\mathbb{R P}^{2}$: Let A_{1}, A_{2}, A_{3} be closed subsets of S^{2} whose union is S^{2}. Then at least one of them contains a pair of antipodal points.
These statements will be explored in the homework assignments.

3.8. Fundamental group of a product.

Proposition 3.21. We have $\pi_{1}\left(X \times Y,\left(x_{0}, y_{0}\right)\right) \cong \pi_{1}\left(X, x_{0}\right) \times \pi_{1}\left(Y, y_{0}\right)$.
Proof. The map $\alpha \mapsto\left(p_{*}(\alpha), q_{*}(\alpha)\right)$ is a homomorphism from the left hand side to the right hand side $\boldsymbol{\oplus}$, where p, q are the projections. It is injective and surjective $\boldsymbol{\uparrow}$
We have $\pi_{1}\left(T^{2}\right)=\mathbb{Z}^{2}$

3.9. Homotopy invariance.

Theorem 3.22. Let $F: X \rightarrow Y$ be a homotopy equivalence, with $F\left(x_{0}\right)=y_{0}$. Then F_{*} is an isomorphism.

The proof depends on two arguments. The first one is a lemma.
Lemma 3.23. Let $f, g: X \rightarrow Y, f\left(x_{0}\right)=g\left(x_{0}\right)=y_{0}$. Assume that f and g are homotopic in such a way that during the homotopy x_{0} is mapped to y_{0}. Then $f_{*}=g_{*}: \pi_{1}\left(X, x_{0}\right) \rightarrow \pi_{1}\left(Y, y_{0}\right)$.
Proof. Let α be a loop on x_{0}, and let H be the homotopy assumed in the lemma. Then $(\alpha \times$ $\left.\operatorname{id}_{[0,1]}\right) \circ H$ proves that $f_{*}([\alpha])=g_{*}([\alpha])$
If we could disregard base-points, we would have

Applying the π_{1} functor, and using the lemma, we would get

Then using $(F \circ G)_{*}=F_{*} \circ G_{*},(G \circ F)_{*}=G_{*} \circ F_{*},\left(\operatorname{id}_{X}\right)_{*}=\operatorname{id}_{\pi_{1}(X)},\left(\operatorname{id}_{Y}\right)_{*}=\operatorname{id}_{\pi_{1}(Y)}$ from Section 3.4 would prove that $\pi_{1}(X) \cong \pi_{1}(Y) \boldsymbol{\oplus}$. The second argument needed to prove Theorem 3.22 is a modification of what we just described, but taking into account the base points -

We have $\pi_{1}\left(\mathbb{R}^{n}-\mathrm{pt}\right)=\pi_{1}\left(S^{n-1}\right) \boldsymbol{\phi}$. We have $\pi_{1}(\mathrm{Ms})=\pi_{1}\left(S^{1}\right)$
3.10. Free groups and finitely presented groups. Consider words in the letters

$$
x_{1}, x_{2}, \ldots, x_{n}, x_{1}^{-1}, x_{2}^{-1}, \ldots, x_{n}^{-1}
$$

up to the equivalence that consecutive $x_{i} x_{i}^{-1}$ can be deleted, as well as consecutive $x_{i}^{-1} x_{i}$ can be deleted. Call the empty word 1. These words (equivalence classes) form a group for concatenation $\boldsymbol{\oplus}$. We call this the free group on n letters, we denote it by F_{n} or $F\left(x_{1}, \ldots, x_{n}\right)$ or $\left\langle x_{1}, \ldots, x_{n} \mid\right\rangle$.
Let r_{1}, \ldots, r_{m} be words representing elements in F_{n} ("the relations"). Let N denote the normal subgroup of F_{n} generated by these elements. Define $\left\langle x_{1}, x_{2}, \ldots, x_{n} \mid r_{1}, r_{2}, \ldots, r_{m}\right\rangle$ to be the quotient group F_{n} / N.

Remark 3.24. The concept "generated normal subgroup" is not an easy one. Hence it is very difficult to say anything about $\left\langle x_{1}, x_{2}, \ldots, x_{n} \mid r_{1}, r_{2}, \ldots, r_{m}\right\rangle$ in general. Even the question whether such group is the trivial group or not is undecidable - in a precise mathematical sense in general.
We have $F_{1}=\langle x \mid\rangle=\mathbb{Z}, F_{2}$ is not commutative, $\left\langle x_{1}, x_{2} \mid x_{1} x_{2} x_{1}^{-1} x_{2}^{-1}\right\rangle=\mathbb{Z}^{2},\langle x \mid x x x x\rangle=\mathbb{Z}_{4}$
We will use obvious notation: eg. $x^{4}=x x x x$, and we will write equalities instead of words r_{i}, eg. $x_{1} x_{2}=x_{2} x_{1}$ instead of $x_{1} x_{2} x_{1}^{-1} x_{2}^{-1}$
Define the free product $G * H$ of $G=\left\langle x_{1}, x_{2}, \ldots, x_{a} \mid r_{1}, r_{2}, \ldots, r_{b}\right\rangle$ and $H=\left\langle y_{1}, y_{2}, \ldots, y_{c}\right|$ $\left.s_{1}, s_{2}, \ldots, s_{d}\right\rangle$ to be $\left\langle x_{1}, x_{2}, \ldots, x_{a}, y_{1}, y_{2}, \ldots, y_{c} \mid r_{1}, r_{2}, \ldots, r_{b}, s_{1}, s_{2}, \ldots, s_{d}\right\rangle$. This concept does not depend on the chosen presentations
3.11. Seifert-van Kampen theorem. Let $X=U \cup V, x_{0} \in U \cap V$. Assume that

- U, V are open,
- $U, V, U \cap V$ are path-connected;
and that
- $\pi_{1}\left(U, x_{0}\right)=\left\langle x_{1}, x_{2}, \ldots, x_{a} \mid r_{1}, r_{2}, \ldots, r_{b}\right\rangle$,
- $\pi_{1}\left(V, x_{0}\right)=\left\langle y_{1}, y_{2}, \ldots, y_{c} \mid s_{1}, s_{2}, \ldots, s_{d}\right\rangle$,
- $\pi_{1}\left(U \cap V, x_{0}\right)=\left\langle z_{1}, z_{2}, \ldots, z_{d} \mid *\right\rangle$,

Theorem $3.25(\mathrm{SvK})$. Let $i: U \subset X, j: V \subset X$ be the inclusions. We have

$$
\begin{aligned}
\pi_{1}(X)=\left\langle x_{1}, x_{2}, \ldots, x_{a}, y_{1}, y_{2}, \ldots, y_{c}\right| & r_{1}, \\
& r_{2}, \ldots, r_{c}, s_{1}, s_{2}, \ldots, s_{d} \\
& \left.i_{*}\left(z_{1}\right)=j_{*}\left(z_{1}\right), i_{*}\left(z_{2}\right)=j_{*}\left(z_{2}\right), \ldots, i_{*}\left(z_{d}\right)=j_{*}\left(z_{d}\right)\right\rangle
\end{aligned}
$$

Some explanations are in order. Namely, the element $i_{*}\left(z_{k}\right)$ of $\pi_{1}(U)$ can be represented by a word in the letters x_{1}, \ldots, x_{a}. By $i_{*}\left(z_{k}\right)$ above we mean such a word (the statement does not depend on which representative we choose). Similarly, $j_{*}\left(z_{k}\right)$ means a (chosen) word in the letters y_{1}, \ldots, y_{c}.
The proof of the SvK theorem is based on the so-called "universality property" of the concept of "generated normal subgroup", as well as numerous applications of the Lebesgue number lemma. We will not give the details of the proof in this course.

Let $X \vee Y$ be the one-point union of the spaces X and Y, that is, the quotient space of $X \cup Y$ obtained by declaring one point of X equivalent to one point of Y. In practice the points chosen in X and Y do not matter, hence we do not indicate them in the notation.

We have $\pi_{1}\left(S^{2}\right)=0 \boldsymbol{\wedge}$ (we already had a proof using the Lebesgue number lemma, now we have another proof using the SvK theorem-which also depends on the Lebesgue number lemma). We have $\pi_{1}\left(S^{1} \vee S^{1}\right)=F_{2} \boldsymbol{\oplus}$. We have $\pi_{1}\left(S^{1} \vee S^{2}\right)=\mathbb{Z} \boldsymbol{\oplus}$. We have $\pi_{1}\left(S^{1} \vee T^{2}\right)=\mathbb{Z} * \mathbb{Z}^{2}$
Glue together (identify by a homeomorphism) the longitude of the torus with the longitude of a Klein bottle. The resulting space have

$$
\pi_{1}=\left\langle x, y, a, b \mid x y x^{-1} y^{-1}, a b a b^{-1}, x=b\right\rangle=\left\langle x, y, a \mid x y x^{-1} y^{-1}, a x a x^{-1}\right\rangle
$$

3.12. π_{1} of CW complexes. The fundamental group of a connected graph (1-skeleton of a CW complex) is a free group $\boldsymbol{母}$. (Hint: collapse a spanning tree.)
Assume X^{1} is connected, and $\pi_{1}\left(X^{1}\right)=\left\langle x_{1}, x_{2}, \ldots, x_{a} \mid\right\rangle$. Let $f_{i}: S^{1} \rightarrow X^{1}, i=1, \ldots, n$ be the attaching maps of the 2 -skeleton of a CW complex. To a loop f_{i} we associate a word $w\left(f_{i}\right)$ in the x-letters as follows: let s be a path connecting the base point x_{0} with $f_{i}(1)$, then the loop $s * f_{i} * \bar{s}$ is a loop on x_{0} hence it is represented by a word- $w\left(f_{i}\right)$.

The choice of s will not matter, hence we do not indicate it in notation.
Theorem 3.26. We have $\pi_{1}\left(X^{2}\right)=\left\langle x_{1}, x_{2}, \ldots, x_{a} \mid w\left(f_{1}\right), \ldots, w\left(f_{n}\right)\right\rangle$.
Theorem 3.27. Attaching 3- or higher dimensional cells do not change π_{1}.
Both theorems intuitively follow from the SvK theorem, by attaching the cells one by one $\boldsymbol{巾}$ The (quite tedious) details are left to the reader.

Corollary 3.28. We have

$$
\begin{aligned}
\pi_{1}\left(\#^{g} T^{2}\right) & =\left\langle a_{1}, b_{1}, a_{2}, b_{2}, \ldots, a_{g}, b_{g} \mid a_{1} b_{1} a_{1}^{-1} b_{1}^{-1} a_{2} b_{2} a_{2}^{-1} b_{2}^{-1} \cdots a_{g} b_{g} a_{g}^{-1} b_{g}^{-1}\right\rangle \\
\pi_{1}\left(\#^{g} \mathbb{R P}^{2}\right) & =\left\langle a_{1}, a_{2}, \ldots, a_{g} \mid a_{1}^{2} a_{2}^{2} \cdots a_{g}^{2}\right\rangle
\end{aligned}
$$

Think over what the abelianizations of these groups are $\boldsymbol{\uparrow}$, and conclude that the surfaces in the Classification Theorem 2.8 are indeed pairwise non-homeomorphic (even pairwise non homotopy equivalent)

Consider a triangle with gluing scheme aaa. Its fundamental group is \mathbb{Z}_{3}
Identify two points A and B of S^{2}. Use the picture

and Theorem 3.6 to find that $\pi_{1}=\mathbb{Z}$.
Let A_{1}, A_{2} be two points on a torus. Let B_{1}, B_{2} be two points on a Klein bottle. Let C_{1}, C_{2} be two points on a $\mathbb{R P}^{2}$. Let X be the union with $A_{1} \sim B_{2}, B_{1} \sim C_{2}, C_{1} \sim A_{2}$. Find π_{1} by tricks similar to the one above $\boldsymbol{\phi}$.
Cut out two small open 3-balls from a larger closed 3-ball, and identify 3 points on the resulting space as in the picture on the left. Use the pictures

to find that $\pi_{1}=F_{2}$.
3.13. Galois correspondence between covering spaces and fundamental groups. The covering spaces $p: E \rightarrow B$ of this lecture will be assumed to have extra properties:

- both E and B are path-connected;
- both E and B are locally path-connected (for every point x and every neighborhood U of x there is a path-connected neighborhood of x contained in U);
- B is semilocally simply connected (every point b has a neighborhood U such that i_{*} : $\pi_{1}(U, b) \rightarrow \pi_{1}(B, b)$ is the trivial homomorphism).
Lemma 3.29. The map $p_{*}: \pi_{1}\left(E, e_{0}\right) \rightarrow \pi_{1}\left(B, b_{0}\right)$ is injective.
Proof. Let f be a loop on e_{0} and H a path homotopy connecting $p \circ f$ with the constant loop b_{0}. The unique lift of H (Lemma 3.12) is a path homotopy between f and the constant e_{0} loop -
Let $H_{p}:=p_{*}\left(\pi_{1}\left(E, e_{0}\right)\right)$ be the subgroup associated with the covering p. It is a subgroup of $\pi_{1}\left(B, b_{0}\right)$ and is isomorphic to $\pi_{1}\left(E, e_{0}\right)$.

Remark 3.30. Note that the subgroup H_{p} depends on the choice of e_{0} (not indicated in notation). For a different choice of base point in $p^{-1}\left(b_{0}\right)$ the subgroup H_{p} gets conjugated $\boldsymbol{\oplus}$. Hence, H_{p} is a concrete subgroup if the base point e_{0} is fixed, or is only defined up to conjugation if the base point is not fixed. It should be clear from context which meaning we use.
Lemma 3.31. The index $\left[\pi_{1}\left(B, b_{0}\right): H_{p}\right]$ is equal to the number of sheets of p.

Proof. The lifting correspondence map induces a bijection between the right cosets of H_{p} in $\pi_{1}\left(B, x_{0}\right)$ and $p^{-1}\left(b_{0}\right)$
 In one of the examples you will see that F_{2} has an index 3 subgroup isomorphic to F_{4}. Name the generators of this subgroup in terms of a, b in $F_{2}=F(a, b)$
Definition 3.32. Let $p: E \rightarrow B$ and $p^{\prime}: E^{\prime} \rightarrow B$ be covering spaces of the same base B. We define them equivalent if there is a homeomorphism $f: E \rightarrow E^{\prime}$ with $p=f \circ p^{\prime}$.

Theorem 3.33 (Part 1 of Galois correspondence). There is a bijection between

- covering spaces over B, up to equivalence, and
- subgroups of $\pi_{1}(B)$ up to conjugation.

The subgroup associated with a covering space $p: E \rightarrow B$ is H_{p} (c.f. Remark 3.30).
In particular, the identity map $B \rightarrow B$ is the covering space associated with the "subgroup" $\pi_{1}(B) \subset \pi_{1}(B)$
The covering space $p: E \rightarrow B$ associated with the trivial subgroup $0 \subset \pi_{1}(B)$ is called the universal covering. That is, a covering is universal if E is simply connected

Theorem 3.34 (Part 2 of Galois correspondence). Let $p: E \rightarrow B$ and $q: F \rightarrow B$ be covering spaces. There exists a covering $r: E \rightarrow F$ with $q \circ r=p$ if and only if $H_{p} \subset H_{q}$.

Note that H_{p} and H_{q} are only defined up to conjugation, hence $H_{p} \subset H_{q}$ really means that there are representative subgroups satisfying the condition. There are pairs of subgroups in Example 3.36 illustrating this phenomenon $\boldsymbol{\uparrow}$.

In particular, the total space of the universal covering covers the total space of all other coverings. Hence that name "universal."

Example 3.35. Let $B=\mathbb{R P}^{2} \times \mathbb{R P}^{2}$, and hence $\pi_{1}(B)=\mathbb{Z}_{2} \times \mathbb{Z}_{2}$. Its subgroups are: itself, the trivial subgroup 0 , and three order 2 subgroups $H_{1}, H_{2}, H_{3} \boldsymbol{\uparrow}$. According to Theorem 3.33 they correspond to covering maps. Let the total spaces of these covering maps be denoted by $B, E_{0}, E_{H_{1}}, E_{H_{2}}, E_{H_{3}}$, respectively. The content of Theorem 3.34 is illustrated in the diagram below (all dashed arrows, black or red, and their compositions indicate covering maps).

Note the "upside down" correspondence between the topological objects and the algebraic objects. Find explicit descriptions of all the spaces $E_{*} \boldsymbol{\phi}$, and all the dashed arrows $\boldsymbol{\phi}$. In this example the fundamental group of B is Abelian, hence the "up to conjugacy" part of the Galois correspondence is trivial.

Example 3.36. Consider $D_{4}=\langle r, t| r^{4}=1, t^{2}=1$, trt $\left.=r^{3}\right\rangle$ (the dihedral group of order 8) and define $t_{1}=t, t_{2}=r^{-1} t r, t_{3}=r^{-2} t r^{2}, t_{4}=r^{-3} t r^{3}$. The hierarchy of its subgroups is

where () means "generated subgroup", and we connected conjugate subgroups by green squiggly lines. Therefore the hierarchy of covering spaces over a space B with $\pi_{1}(B)=D_{4}$ (find such a space $\boldsymbol{\oplus}$) is

The proof of Theorems 3.33 and 3.34 are in the textbook. One of the key steps is the construction of the universal covering over (path-connected, locally path-connected, semilocally simply connected) B. Most of the rest of the proof depends on the following lemma (which is important on it own right too).

Lemma 3.37 (General Lifting Lemma). Consider a map f into the base of a covering map, as in the picture on the left

There is a lifting $\tilde{f}: Y, y_{0} \rightarrow E, e_{0}$ (that is, a map \tilde{f} making the diagram on the right commutative) if and only if

$$
\begin{equation*}
f_{*}\left(\pi_{1}\left(Y, y_{0}\right)\right) \subset p_{*}\left(\pi_{1}\left(E, e_{0}\right)\right) \tag{1}
\end{equation*}
$$

Proof. If \tilde{f} exists then the diagram of group homomorphisms

is commutative; which proves (1) $\boldsymbol{\phi}$. To prove the reverse direction, let $y \in Y$, and choose a path α in Y connecting y_{0} to y. Denote the unique lift of $f \circ \alpha:[0,1] \rightarrow B$, starting at e_{0}, by $\tilde{\alpha}:[0,1] \rightarrow E$. Define $\tilde{f}(y)=\tilde{\alpha}(1)$. The key part of the proof is to show that this definition does not depend on the choice of α. Namely, let β be another path connecting y_{0} to y, and consider $\tilde{\beta}$. Use the condition (1) to argue that $\tilde{\alpha}(1)=\tilde{\beta}(1) \boldsymbol{\phi}$. Once \tilde{f} is well defined as above, its continuity and the fact that it is a covering map follow from the construction

Let X be the space obtained from a solid triangle by the gluing scheme $x x x$. To illustrate the power of the General Lifting Lemma 3.37 prove that every map from X to the torus is homotopic to the constant map

Definition 3.38. Let $p: E \rightarrow B$ be a covering map. Call a homeomorphism $f: E \rightarrow E a$ covering transformation (deck transformation) if the diagram

is commutative.
Covering transformations of p form a group $\boldsymbol{\uparrow}$, denote it by $\mathcal{C}(p)$. Identify this group for all the

Theorem 3.39 (Part 3 of Galois correspondence). For a covering map $p: E \rightarrow B$ we have

$$
\mathcal{C}(p) \cong N\left(H_{p}\right) / H_{p} .
$$

Here $N\left(H_{p}\right)$ is the normalizer of H_{p} in $\pi_{1}(B)$, that is, the largest subgroup N such that $H_{p} \leq$ $N \leq \pi_{1}(B)$ and H_{p} is a normal subgroup of $N \boldsymbol{\oplus}$. For example, if the group $\pi_{1}(B)$ is Abelian (or more generally, if H_{p} is a normal subgroup) then

$$
\mathcal{C}(p) \cong \pi_{1}(B) / H_{p}
$$

Verify Theorem 3.39 for all the examples of Section $3.5 \mathbf{A} \boldsymbol{\phi} \boldsymbol{\phi} \boldsymbol{\phi} \boldsymbol{\phi} \boldsymbol{\phi}$. In particular, you will see two index 3 subgroups of F_{2}, both isomorphic with F_{4}; one of them is a normal subgroup of F_{2}, the other one is its own normalizer

4. Homology

4.1. Simplicial homology. Let Δ^{n} be the convex hull of the elementary basis vectors v_{0}, v_{1}, \ldots, v_{n} of \mathbb{R}^{n+1}. It is called the standard n-simplex, and we will mean the total order $v_{0}<v_{1}<\ldots<$ v_{n} be part of this concept. To emphasize this convention we use the notation $\Delta^{n}=\left[v_{0}, v_{1}, \ldots, v_{n}\right]$. A subsimplex $\left[v_{i_{0}}, v_{i_{1}}, \ldots, v_{i_{k}}\right]$ can be identified with the standard k-simplex $\left[v_{0}, v_{1}, \ldots, v_{k}\right]$ by mapping $v_{i_{k}}$ to v_{k} and extending this correspondence linearly. In other words the identification is linear that keeps the total order of the vertices $\boldsymbol{\uparrow}$.
The $n-1$ subsimplices will be called faces. Let $\partial \Delta^{n}:=$ Ufaces, $\Delta^{n \circ}:=\Delta^{n}-\partial \Delta^{n}$.
Definition 4.1. A finite Δ-complex structure on a topological space X is a finite collection of maps $\sigma_{\alpha}: \Delta^{n} \rightarrow X$ (n depends on α) such that

- the restriction $\left.\sigma_{\alpha}\right|_{\Delta^{n}}$ is injective, and every $x \in X$ is covered by exactly one such restriction (" X is the union of the open simplices");
- σ_{α} restricted to a face is one of the σ_{β} 's (recall the identification of a face with a standard $n-1$ simplex);
- $U \subset X$ is open if and only if $\sigma_{\alpha}^{-1}(U)$ is open for all α.

The pictures below indicate Δ-compex structures on $T^{2}, \mathbb{R P}^{2}, \mathrm{~Kb}$.

Decode what the decorations $0,1,2$ mean $\boldsymbol{\uparrow}$. The arrows got a new meaning too $\boldsymbol{\uparrow}$. Verify that these are indeed Δ-complexes $\boldsymbol{\varphi}$.
Find a few different Δ-complex structures on $S^{1} \boldsymbol{\oplus}$, on the triangle with gluing scheme $x x x \boldsymbol{\oplus}$. Find a Δ-complex structure on S^{n} with exactly two n-simplices $\boldsymbol{\phi}$.
Let us fix an Abelian group $(G,+)$. For the first reading you may focus on the special case $G=\mathbb{Z}$.

Definition 4.2. Let X be endowed with a Δ-complex structure.

- Formal G-linear combinations of those σ_{α} 's whose domain is an n-simplex will be called n-chains.
- n-chains form an abelian group for addition denote it by $C_{n}(X ; G)$ (precisely speaking we should include the Δ-complex structure on X in the notation; we omit that, but keep it in mind).

Definition 4.3. Define the boundary map $\partial_{n}: C_{n}(X ; G) \rightarrow C_{n-1}(X ; G)$ by linearly extending

$$
\begin{equation*}
\partial_{n}\left(\sigma_{\alpha}\right)=\left.\sum_{i=0}^{n}(-1)^{i} \sigma_{\alpha}\right|_{\left[v_{0}, \ldots, \hat{v}_{i}, \ldots, v_{n}\right]} . \tag{2}
\end{equation*}
$$

The hat ^ denotes a missing index.
Lemma 4.4 (Main Equation of Mathematics). We have $\partial^{2}=0$.
In fact what we really mean is that the composition $\partial_{n-1} \circ \partial_{n}$ as a map $C_{n}(X ; G) \rightarrow C_{n-2}(X ; G)$ is the zero-map, for all n (prove it $\boldsymbol{\uparrow}$). Similar economic notation is common in homology theory. We obtain the sequence of Abelian groups and homomorphisms

$$
\ldots \xrightarrow{\partial_{4}} C_{3}(X ; G) \xrightarrow{\partial_{3}} C_{2}(X ; G) \xrightarrow{\partial_{2}} C_{1}(X ; G) \xrightarrow{\partial_{1}} C_{0}(X ; G) \xrightarrow{\partial_{0}} 0 .
$$

Such sequences, if $\partial^{2}=0$, are called (algebraic) complexes.
Observe that $\partial^{2}=0$ is equivalent to $\operatorname{im} \partial \subset \operatorname{ker} \partial \boldsymbol{\phi}$. Let $Z_{n}(X ; G)=\operatorname{ker} \partial_{n}$ be the group of cycles. Let $B_{n}(X ; G)=\operatorname{im} \partial_{n+1}$ be the group of boundaries.

Definition 4.5. Define the n 'th homology group with G coefficients $H_{n}(X ; G)$ of the Δ-complex X to be $Z_{n}(X ; G) / B_{n}(X ; G)$.
If $G=\mathbb{Z}$ then we do not write it, ie. $C_{n}(X)=C_{n}(X, \mathbb{Z}), Z_{n}(X)=Z_{n}(X, G), B_{n}(X)=B_{n}(X, G)$, $H_{n}(X)=H_{n}(X, G)$.
For the Δ-complex structures of $T^{2}, \mathbb{R P}^{2}, \mathrm{~Kb}$ above we obtain $\boldsymbol{\uparrow} \cdots$

$H_{0}\left(T^{2}\right)=\mathbb{Z}$	$H_{1}\left(T^{2}\right)=\mathbb{Z}^{2}$	$H_{2}\left(T^{2}\right)=\mathbb{Z}$
$H_{0}\left(\mathbb{R P} P^{2}\right)=\mathbb{Z}$	$H_{1}\left(\mathbb{R} P^{2}\right)=\mathbb{Z}_{2}$	$H_{2}\left(\mathbb{R P} P^{2}\right)=0$
$H_{0}(\mathrm{~Kb})=\mathbb{Z}$	$H_{1}(\mathrm{~Kb})=\mathbb{Z} \oplus \mathbb{Z}_{2}$	$H_{2}(\mathrm{~Kb})=0$
$H_{0}\left(T^{2} ; \mathbb{Z}_{2}\right)=\mathbb{Z}_{2}$	$H_{1}\left(T^{2} ; \mathbb{Z}_{2}\right)=\mathbb{Z}_{2}^{2}$	$H_{2}\left(T^{2} ; \mathbb{Z}_{2}\right)=\mathbb{Z}_{2}$
$H_{0}\left(\mathbb{R P} \mathrm{P}^{2} ; \mathbb{Z}_{2}\right)=\mathbb{Z}_{2}$	$H_{1}\left(\mathbb{R} P^{2} ; \mathbb{Z}_{2}\right)=\mathbb{Z}_{2}$	$H_{2}\left(\mathbb{R P}^{2} ; \mathbb{Z}_{2}\right)=\mathbb{Z}_{2}$
$H_{0}\left(\mathrm{~Kb} ; \mathbb{Z}_{2}\right)=\mathbb{Z}_{2}$	$H_{1}\left(\mathrm{~Kb} ; \mathbb{Z}_{2}\right)=\mathbb{Z}_{2}^{2}$	$H_{2}\left(\mathrm{~Kb} ; \mathbb{Z}_{2}\right)=\mathbb{Z}_{2}$
$H_{0}\left(T^{2} ; \mathbb{R}\right)=\mathbb{R}$	$H_{1}\left(T^{2} ; \mathbb{R}\right)=\mathbb{R}^{2}$	$H_{2}\left(T^{2} ; \mathbb{R}\right)=\mathbb{R}$
$H_{0}(\mathbb{R P} ; \mathbb{R})=\mathbb{R}$	$H_{1}\left(\mathbb{R P} P^{2} ; \mathbb{R}\right)=0$	$H_{2}(\mathbb{R P} ; \mathbb{R})=0$
$H_{0}(\mathrm{~Kb} ; \mathbb{R})=\mathbb{R}$	$H_{1}(\mathrm{~Kb} ; \mathbb{R})=\mathbb{R}$	$H_{2}(\mathrm{~Kb} ; \mathbb{R})=0$.

One possible way of calculating $H_{1}(\mathrm{~Kb})$ is

$$
\begin{aligned}
& \mathbb{Z}^{3}\langle a, b, c\rangle /\langle b-c+a, c-a+b\rangle=\mathbb{Z}^{3}\left\langle a^{\prime}, b^{\prime}, c^{\prime}\right\rangle /\left\langle b^{\prime}-c^{\prime}, b^{\prime}+c^{\prime}\right\rangle= \\
& \mathbb{Z}\left\langle a^{\prime}\right\rangle \oplus \mathbb{Z}^{2}\left\langle b^{\prime}, c^{\prime}\right\rangle /\left\langle b^{\prime}-c^{\prime}, b^{\prime}-c^{\prime}\right\rangle=\mathbb{Z}\left\langle a^{\prime}\right\rangle \oplus \mathbb{Z}^{2}\left\langle b^{\prime \prime}, c^{\prime \prime}\right\rangle /\left\langle b^{\prime \prime}, b^{\prime \prime}+2 c^{\prime \prime}\right\rangle= \\
& \mathbb{Z}\left\langle a^{\prime}\right\rangle \oplus \mathbb{Z}\left\langle c^{\prime \prime}\right\rangle /\left\langle 2 c^{\prime \prime}\right\rangle=\mathbb{Z} \oplus \mathbb{Z}_{2} .
\end{aligned}
$$

The point is that when we changed basis, eg.

$$
\begin{array}{ll}
a^{\prime}=a & \\
b^{\prime}=b & b^{\prime \prime}=b^{\prime}-c^{\prime} \\
c^{\prime}=c-a & c^{\prime \prime}=c^{\prime}
\end{array}
$$

we needed to make sure that our transformations were invertible over the integers $\boldsymbol{\uparrow}$. Recall that an $n \times n$ integer matrix is invertible over the integers if and only if its determinant is $\pm 1 \boldsymbol{\uparrow}$. For example, the $b^{\prime \prime}=b^{\prime}-c^{\prime}, c^{\prime \prime}=b^{\prime}+c^{\prime}$ transformation would not be invertible over the integers (so it is not a legal change of basis over \mathbb{Z}), but it is invertible over \mathbb{R} (so it is a legal change of basis if $G=\mathbb{R}$)

Experiment with other coefficient groups, eg. $G=\mathbb{Z}_{3}, \mathbb{Z}_{4} \boldsymbol{\uparrow}$. Is there much difference between the coefficient groups $G=\mathbb{Q}, \mathbb{R}, \mathbb{C}$?
4.2. Singular homology. Let us fix a topological space X, and an Abelian group G.

Definition 4.6. A singular n-simplex is a continuous map $\sigma: \Delta^{n} \rightarrow X$. Singular n-chains are formal G-linear combinations of singular n-simplices. They form a group $C_{n}(X ; G)$. (Now the notation is fair, because this $C_{n}(X ; G)$ does not depend on any other structure of X, only its topological space structure.) Define the boundary $\partial=\partial_{n}$ of a singular n-chain by the same formula (2), yielding a homomorphism $C_{n}(X ; G) \rightarrow C_{n-1}(X ; G)$.
We have $\partial^{2}=0 \boldsymbol{\phi}$. Hence we have the group $Z_{n}(X ; G)=\operatorname{ker} \partial_{n}$ of (singular) cycles, the group $B_{n}(X ; G)=\operatorname{im} \partial_{n-1}$ of (singular) boundaries, and we have the singular homology groups $H_{n}(X ; G)=Z_{n}(X ; G) / B_{n}(X ; G)$.
Advantage: the singular groups $H_{n}(X ; G)$ only depend on the topological space. Disadvantage: the groups $C_{n}(X ; G), Z_{n}(X ; G), B_{n}(X ; G)$ are typically huge, we can just hope that the hugeness of $Z_{n}(X ; G)$ and $B_{n}(X ; G)$ cancel in the definition of $H_{n}(X ; G)$ to something manageable-we will see that this is often true.

Proposition 4.7. We have

$$
H_{n}(\mathrm{pt} ; G)= \begin{cases}G & \text { if } n=0 \\ 0 & \text { if } n \neq 0\end{cases}
$$

Proof. For the one-point space we can list all the singular simplices, and calculate $H_{n}(\mathrm{pt})$ from the definition $\boldsymbol{\phi}$.

Proposition 4.8. If X_{α} are the path components of X then $H_{n}(X ; G)=\oplus_{\alpha} H_{n}\left(X_{\alpha} ; G\right)$
Proof. The standard simplices are path-connected, hence their continuous images are contained in a path component. Hence $C_{n}(X ; G)$ has the \oplus_{α} structure, and the ∂ maps respect it
Proposition 4.9. For a path-connected space X we have $H_{0}(X ; G)=G$.
Proof. Consider the map $\epsilon: C_{0}(X) \rightarrow G, \sum n_{i} p_{i} \mapsto \sum n_{i} \boldsymbol{\phi}$. It is surjective $\boldsymbol{\uparrow}$, and its kernel equals the image of ∂_{1}

Corollary 4.10. We have $H_{0}(X ; G)=G^{\{p a t h}$ components of $\left.X\right\}$.
Replacing the standard chain complex $\ldots \rightarrow C_{2}(X ; G) \rightarrow C_{1}(X ; G) \rightarrow C_{0}(X ; G) \rightarrow 0$ with

$$
\ldots \xrightarrow{\partial} C_{2}(X ; G) \xrightarrow{\partial} C_{1}(X ; G) \xrightarrow{\partial} C_{0}(X ; G) \xrightarrow{\epsilon} G
$$

we still have a complex $\boldsymbol{\uparrow}$, and its ker / im groups are called the reduced homology groups of X; denoted by $\tilde{H}_{n}(X ; G)$. Reduced homology is only different from ordinary homology in degree 0 , where it is one G less $\boldsymbol{\phi}$. The content of the two concepts are the same, but some theorems are more convenient to phrase in terms of \tilde{H}.
4.3. Functor. Let $f: X \rightarrow Y$ be continuous. "Composing with f " induces a homomorphism $f_{\#}: C_{n}(X ; G) \rightarrow C_{n}(Y ; G) \boldsymbol{\oplus}$ (more precisely $f_{n \#}$). This map commutes with the ∂ 's $\boldsymbol{\oplus}$, giving a commutative diagram

Such a commutative "ladder diagram" induces a homomorphism between the respective ker $\partial / \mathrm{im} \partial$ groups $\boldsymbol{\oplus}$. Therefore $f: X \rightarrow Y$ induces a homomorphism $f_{*}: H_{n}(X ; G) \rightarrow H_{n}(Y ; G)$ (more precisely $f_{n *}$).
Theorem 4.11. We have $(f \circ g)_{*}=f_{*} \circ g_{*}, \mathrm{id}_{*}=\mathrm{id}$
4.4. Homology is homotopy invariant. Let the maps $f, g: X \rightarrow Y$ be homotopic, that is, we assume the existence of a map $H: X \times[0,1] \rightarrow Y$ such that $\left.H\right|_{X \times\{0\}}=f,\left.H\right|_{X \times\{1\}}=g$. Consider the following "prism" construction

$$
\sigma: \Delta^{n} \rightarrow X \quad \xrightarrow{P} \quad H \circ\left(\sigma \times \operatorname{id}_{[0,1]}\right) \in C_{n+1}(Y ; G)
$$

c.f. the picture below.

For this to be precise we would need to fix a subdivision of the prism $\Delta^{n} \times[0,1]$ into $(n+1)$ simplices and consider their sum with the right plus/minus signs - that is, in such a way that in the boundary of this chain the inside faces cancel. We will skip this detail.

From the picture

we see that

If we worked out the details (namely, the signs), we would obtain $\partial(P(\sigma))=g_{\#}(\sigma)-f_{\#}(\sigma)-$ $P(\partial(\sigma))$, and in effect

$$
\begin{equation*}
g_{\#}-f_{\#}=\partial \circ P+P \circ \partial \tag{3}
\end{equation*}
$$

for the diagram

Chasing elements around this diagram - and using (3) -implies that the map induced by $g_{\#}-f_{\#}$ is the zero map on the ker / im groups $\boldsymbol{\oplus}$. Thus we obtained

Theorem 4.12. If $f \simeq g: X \rightarrow Y$ then $f_{*}=g_{*}: H_{n}(X ; G) \rightarrow H_{n}(Y ; G)$.
Corollary 4.13. If $X \simeq Y$ (homotopy equivalent spaces) then $H_{n}(X ; G) \cong H_{n}(Y ; G)$.
Proof. Let $f: X \rightarrow Y$ and $g: Y \rightarrow X$ be the homotopy equivalence. Apply the $H_{n}(-; G)$ functor to $f \circ g \simeq \operatorname{id}_{Y}, g \circ f \simeq \operatorname{id}_{X}$, and use Theorems 4.11, 4.12

We have $\tilde{H}_{n}\left(\mathbb{R}^{m} ; G\right)=0, \tilde{H}_{n}\left(D^{m} ; G\right)=0, \tilde{H}_{n}\left(\mathbb{R}^{m+1}-\mathrm{pt} ; G\right)=\tilde{H}_{n}\left(S^{m} ; G\right)$.

In the rest of the semester we will present some properties of $H_{n}(-; G)$ without proofs. The goal is that the reader has enough tools to calculate homology groups efficiently. The proofs and further development of the theory will be given in the follow-up course.
4.5. Long exact sequences: pair and Mayer-Vietoris. Let $A \subset X$ be a non-empty closed subset, and we also assume that it is the deformation retract of a neighborhood of it. For example X is a finite CW complex and A is a subcomplex.

Theorem 4.14 (Long exact sequence of a pair). The (infinitely) long sequence of Abelian groups and group homomorphisms

is exact, where $i: A \subset X$ is the inclusion, and $q: X \rightarrow X / A$ is the quotient map.
Some explanations: We have not defined the map $\partial: H_{k+1}(X / A) \rightarrow H_{k}(A)$ (it is not the boundary map between chain groups, it is just traditionally denoted the same way, sorry). Hence, at this point the theorem reads "there exist ∂ maps making the sequence exact." In fact, ∂ is defined "in the proof", so we could have started with that definition and claim that the sequence is exact with that definition. However, in practice the definition of ∂ is rarely needed.
A sequence is exact (by definition) if at every term we have im $=$ ker (of the appropriate maps). In particular the sequence $0 \rightarrow G_{1} \rightarrow G_{2}$ is exact iff the map $G_{1} \rightarrow G_{2}$ is injective, the sequence $G_{1} \rightarrow G_{2} \rightarrow 0$ is exact iff the map $G_{1} \rightarrow G_{2}$ is surjective, the sequence $0 \rightarrow G_{1} \rightarrow G_{2} \rightarrow 0$ is exact iff the map $G_{1} \rightarrow G_{2}$ is an isomorphism

Let $m \geq 1$. Apply the theorem for $X=D^{m}, A=\partial D^{m}=S^{m-1}$ to obtain that $\tilde{H}_{n}\left(S^{m} ; G\right)=$ $\tilde{H}_{n-1}\left(S^{m-1} ; G\right) \boldsymbol{\uparrow}$. Use our knowledge about the homology of the two point space S^{0} to conclude that

$$
\tilde{H}_{n}\left(S^{m} ; G\right)= \begin{cases}G & \text { if } n=m \\ 0 & \text { otherwise }\end{cases}
$$

We have an immediate application.
Theorem 4.15 (n dimensional Brouwer fixed point theorem). Every $f: D^{n} \rightarrow D^{n}$ continuous map has a fixed point. ($\exists x \in D^{n}$ such that $f(x)=x$.)

We proved the 2 d version, Theorem 3.18, using the following properties of the π_{1} functor: $\pi_{1}\left(S^{1}\right) \neq 0, \pi_{1}\left(D^{2}\right)=0$. Now we have infinitely many functors $H_{m}(-; G)$, one for each m and each G. Replace π_{1} with one of these so that the proof of Theorem 3.18 generalizes to n dimensions

Theorem 4.16 (Mayer-Vietoris). Let $A, B \subset X$ such that int $A \cup \operatorname{int} B=X$. Then the (infinitely) long sequence of Abelian groups and group homomorphisms

$$
\begin{aligned}
& \ldots \xrightarrow{i_{*}-j_{*}} H_{n+1}(X ; G) \\
& H_{n}(A \cap B ; G) \underset{\left(k_{*}, l_{*}\right)}{\leftrightarrows} H_{n}(A ; G) \oplus H_{n}(B ; G) \xrightarrow{i_{*}-j_{*}} H_{n}(X ; G) \\
& \text { д } \\
& H_{n-1}(A \cap B ; G) \stackrel{\leftrightarrows}{\left(k_{*}, l_{*}\right)} H_{n-1}(A ; G) \oplus H_{n-1}(B ; G) \xrightarrow{i_{*}-j_{*}} H_{n-1}(X ; G) \\
& H_{n-2}(A \cap B ; G) \stackrel{\partial}{\left(k_{*}, l_{*}\right)} \stackrel{\partial}{\leftrightarrows}
\end{aligned}
$$

is exact. Here $i: A \subset X, j: B \subset X, k: A \cap B \subset A, l: A \cap B \subset B$. The same statement holds for reduced homology \tilde{H}.

Word by word the same explanations are in order as the paragraph after Theorem 4.14.
Let $X \vee Y$ mean the "1-point union" of X and Y (gluing a point of X to a point of Y). For example $S^{1} \vee S^{1}$ is the figure-8 space. We have $\boldsymbol{\uparrow} \boldsymbol{\uparrow}$

$$
H_{n}\left(S^{1} \vee S^{1} ; G\right)=\left\{\begin{array}{ll}
G & \text { if } n=0 \\
G \oplus G & \text { if } n=1 \\
0 & \text { otherwise },
\end{array} \quad \tilde{H}_{n}\left(\vee_{\alpha} X_{\alpha} ; G\right)=\oplus_{\alpha} \tilde{H}_{n}\left(X_{\alpha} ; G\right)\right.
$$

for path-connected X_{α} if the special point in each X_{α} is the deformation retract of a neighborhood of it. We have

$$
H_{n}\left(T^{2} ; G\right)= \begin{cases}G & \text { if } n=0 \\ G \oplus G & \text { if } n=1 \\ G & \text { if } n=2 \\ 0 & \text { otherwise }\end{cases}
$$

Theorem 4.16 (but also Theorem 4.14) intuitively claims that homology can be computed from pieces. This phenomenon can be developed further to obtain the following theorem.
Theorem 4.17. Let the topological space X be endowed with a Δ-complex structure. Then we have two homology concepts defined for it: the simplicial homology using the (combinatorial) Δ-complex structure, and the singular homology using only the topological structure. These two homology groups coincide.

One way of looking at this theorem is that even though the definition of singular homology uses infinitely generated Abelian groups (the chain groups), if X has a combinatorial structure then there is another definition that avoids those huge groups. Another advantage of the theorem is

Corollary 4.18. If the underlying topological space of two Δ-complexes are the same, then their simplicial homologies are the same.

It is remarkable that while this corollary sounds fully combinatorial, its proof goes through the non-combinatorial concept of singular homology.

There is a further important theorem along the line of "combinatorial homology vs singular homology".

Theorem 4.19 (Cellular homology). If the topological space X is endowed with a finite $C W$ complex structure then $H_{*}(X ; G)$ can be calculated from an algebraic complex

$$
\ldots \xrightarrow{\partial} G^{(n+1) \text {-cells }} \xrightarrow{\partial} G^{n \text {-cells }} \xrightarrow{\partial} G^{(n-1) \text {-cells }} \xrightarrow{\partial} \ldots
$$

by the $\operatorname{ker} \partial / \operatorname{im} \partial$ definition.
The full theorem on cellular homology includes the description of the ∂ maps, in terms of a notion called "degree". We will not define degree or the ∂ maps here. The cellular homology theorem is still powerful. For example, use this theorem to trivially calculate $\tilde{H}_{n}\left(S^{m} ; G\right)$
4.6. Euler characteristic, the right approach. Recall the notion of $\mathrm{rk} A$ for a finitely generated Abelian group, as $\operatorname{dim}_{\mathbb{R}}\left(A \otimes_{\mathbb{R}} \mathbb{R}\right) \boldsymbol{\uparrow}$. We have $A=\mathbb{Z}^{\text {rk } A} \oplus$ torsion $\boldsymbol{\phi}$. If $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ is a short exact sequence then $\operatorname{rk} B=\operatorname{rk} A+\operatorname{rk} C$

Lemma 4.20. Assume $\ldots \xrightarrow{\partial} C_{n+1} \xrightarrow{\partial} C_{n} \xrightarrow{\partial} C_{n-1} \xrightarrow{\partial} \ldots$ is a complex of Abelian groups for which $\sum_{n}(-1)^{n}$ rk C_{n} makes sense. Let Z_{n}, B_{n}, H_{n} denote the groups of cycles, boundaries, and homologies of this complex. Then we have

$$
\sum_{n}(-1)^{n} \operatorname{rk} C_{n}=\sum_{n}(-1)^{n} \operatorname{rk} H_{n}
$$

Proof. We have the $0 \rightarrow Z_{n} \rightarrow C_{n} \rightarrow B_{n-1} \rightarrow 0$ short exact sequences $\boldsymbol{\phi}$, as well as the $0 \rightarrow B_{n} \rightarrow Z_{n} \rightarrow H_{n} \rightarrow 0$ short exact sequences $\boldsymbol{\natural}$. These have consequences on the ranks of the groups involved (see the paragraph above the lemma), and we get rk $C_{n}=\operatorname{rk} B_{n-1}+\operatorname{rk} B_{n}+\operatorname{rk} H_{n}$ $\boldsymbol{\phi}$. Adding these equations with alternating signs proves the lemma

Putting together Corollary 4.18, Theorem 4.19, and Lemma 4.20 now we have the right definition of Euler characteristic, together with its crucial properties.

Definition-Theorem 4.21. For a topological space X, if the number

$$
\sum_{n}(-1)^{n} \operatorname{rk} H_{n}(X ; \mathbb{Z})
$$

is defined (that is, if this is a finite sum of finite numbers), then we call it the Euler characteristic $\chi(X)$ of the space ($c f$. Theorem 2.12). The notion $\chi(X)$ is invariant under homotopy equivalence
(c.f. Theorem 3.3) 円. If the space is endowed with a Δ-complex structure, then $\chi(X)$ can also be calculated as (c.f. Definition 2.11)

$$
\sum_{n}(-1)^{n} \mid\{n \text {-simplices }\} \mid .
$$

If the space is endowed with a CW complex structure, then $\chi(X)$ can also be calculated as (c.f. Theorem 3.5)

$$
\sum_{n}(-1)^{n} \mid\{n \text {-cells }\} \mid
$$

Remark 4.22. Our definition of Euler characteristic can be rephrased $\sum_{n}(-1)^{n} \operatorname{dim}_{\mathbb{R}} H_{n}(X ; \mathbb{R})$ $\boldsymbol{\phi}$. For a field \mathbb{F} the groups $H_{n}(X ; \mathbb{F})$ turn out to be \mathbb{F} vector spaces $\boldsymbol{\phi}$, and the sum

$$
\sum_{n}(-1)^{n} \operatorname{dim}_{\mathbb{F}} H_{n}(X ; \mathbb{F})
$$

turns out to be the same Euler characteristic. Verify this for $\mathbb{F}=\mathbb{Z}_{2}$ in the examples of Section 4.1 ©. The dimensions $b_{n, \mathbb{F}}(X)=\operatorname{dim}_{\mathbb{F}} H_{n}(X ; \mathbb{F})$ are called the \mathbb{F}-Betti numbers; for $\mathbb{F}=\mathbb{R}$ just Betti numbers $b_{n}(X)$.
4.7. $H_{1}(-; \mathbb{Z})$ vs $\pi_{1}(X)$.

Theorem 4.23. Let X be path-connected. Then $H_{1}(X ; \mathbb{Z}) \cong \pi_{1}(X)^{A b}$.
By $G^{A b}$ we denote the Abelianization of the group G. It is the "largest" (in a precise sense) commutative quotient of G. It is equal to the quotient $G /[G, G]$ where $[G, G]$ is the normal subgroup generated by the commutators $g_{1} g_{2} g_{1}^{-1} g_{2}^{-1}$ for all $g_{1}, g_{2} \in G$. If $G=\left\langle x_{1}, x_{2}, \ldots, x_{n} \mid r_{1}, r_{2}, \ldots r_{m}\right\rangle$ then

$$
\left.\left\langle x_{1}, x_{2}, \ldots, x_{n}\right| r_{1}, r_{2}, \ldots, r_{m}, \quad x_{i} x_{j} x_{i}^{-1} x_{j}^{-1}(\text { for all } i \neq j)\right\rangle
$$

is a presentation of $G^{A b}$. Use this theorem to reprove $H_{1}\left(T^{2} ; \mathbb{Z}\right)=\mathbb{Z}^{2} \boldsymbol{\oplus}$. Find $H_{1}\left(T^{2} \# T^{2} ; \mathbb{Z}\right)$

Homology, and its friend, cohomology, are essential tools in half of mathematics. The fields where homology appears include, but are not restricted to, algebraic topology, manifold theory, algebraic geometry, complex analysis, graph theory, dynamical systems, group theory, Lie algebras, statistics. In this course we only introduced the basic concepts. The natural next step is to take an algebraic topology course.

