
University of North Carolina

Math 551

Euclidean and Non-Euclidean
Geometries
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Chapter 1

Introduction

Yes, there are hundreds of Geometry textbooks written and published. What is the reason
for this one then?

The present lecture notes is written to accompany the course math551, Euclidean and Non-
Euclidean Geometries, at UNC Chapel Hill in the early 2000s. The students in this course
come from high school and undergraduate education focusing on calculus. They have the
skills to work with functions and vectors, but typically have completed, no, or little, dedicated
geometry classes. Hence, I chose a vector based description of Euclidean geometry, and a
model based description of Hyperbolic geometry. Of course, there are still hundreds of
excellent Geometry textbooks with the same focus. I decided to write one that contains
exactly as much material as we cover in one semester, this way there is no awkward skipping
over sections and chapters, and the students are presented a compact set of material they
need to learn and practice.

Geometry is the cradle of modern mathematics, with countless faces and interfaces. A
student who takes this class early in their math education meets glimpses of other subjects
that they will study in future courses. Meeting those subjects early, in action, serves as a
motivation. Here is a list of such interfaces.

� Calculus. Trigonometric, exponential, and hyperbolic trigonometric functions, in ac-
tion.

� Linear algebra. Linear independence and span vs collinearity. Wedge product, de-
terminant. Bilinear forms, dot product, and Minkowski product. Sylvester’s Law of
Inertia.

� Algebraic geometry. Desargues and Pappus theorems are degenerate cases of natural
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6 CHAPTER 1. INTRODUCTION

Algebraic Geometry theorems. Menelaus and Ceva theorems are manifestations of
matroid realization problems.

� Transformation Groups. Groups of translations, rotations in Euclidean geometry,
SO(3), and the Lorenz group SO(2, 1).

� Real Analysis Dyadic rationals dense among reals.

� Analysis, differential geometry. Differentiation and integration (as area considerations
on S2, H2) all around. Tangent vectors as derivatives of curves. Geodesics. Length of
curves. Gauss-Bonnet theorems in three geometries.

� Complex numbers. The very last Exercise of the book.

� Topology. Projective plane.

� Number theory. The cyclotomic polynomials.

� Special Relativity. Our model of H2 lives in the space of Special Relativity. The Lorenz
boosts are used to show that H2 is homogeneous.

The fascinating philosophical, and historical aspects of Geometries are integral parts of the
course. They are not part of the text though—the instructor is encouraged to add their own
perspective, and the students are encouraged to do their own research on those faces of the
subject.



Chapter 2

Affine and Euclidean Geometry

2.1 Points and vectors

First we recall coordinate plane geometry from Calculus. The set R2 will be called the plane.
Elements of R2, that is ordered pairs (x, y) of real numbers, are called points.

Consider directed segments (also called “arrows”) between points of the plane. We allow the
start point and the end point of an arrow to coincide. Arrows up to translation are called
(plane) vectors. That is, the arrow from A = (1, 3) to B = (5, 6) represents the same vector

as the arrow from C = (−4,−4) to D = (0,−1). We write
−→
AB =

−−→
CD. The vector

−→
AA is

called the zero-vector and denoted by 0.

We can represent a vector by an ordered pair of real numbers as well: the vector
−→
AB where

A = (a1, a2) and B = (b1, b2) will be represented by ⟨b1−a1, b2−a2⟩. This is a fair definition,

because if
−→
AB =

−−→
CD then b1 − a1 = d1 − c1 and b2 − a2 = d2 − c2. The vector

−→
AB of the

paragraph above is ⟨4, 3⟩.
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8 CHAPTER 2. AFFINE AND EUCLIDEAN GEOMETRY

2.2 Linear operations on vectors

The sum and difference of two vectors are defined geometrically in Figure 2.1. In this context
real numbers will also be called scalars. A scalar multiple of a vector is defined in Figure 2.2.

a b

a+ b
u

v

u− v

Figure 2.1: Sum and difference of plane vectors

a

2a

−a

Figure 2.2: Scalar multiple

The operations above (addition, subtraction, multiplication by a scalar) are called the linear
operations on vectors. The geometric definitions above translate to the following algebraic
expressions.

� ⟨a1, a2⟩+ ⟨b1, b2⟩ = ⟨a1 + b1, a2 + b2⟩

� ⟨a1, a2⟩ − ⟨b1, b2⟩ = ⟨a1 − b1, a2 − b2⟩
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� λ · ⟨a1, a2⟩ = ⟨λa1, λa2⟩

Proposition 2.2.1 (Vector space “axioms”). The linear operations on vectors satisfy the
following properties.

� a+ b = b+ a

� (a+ b) + c = a+ (b+ c)

� a+ 0 = a

� a+ (−a) = 0

� λ · (a+ b) = λ · a+ λ · b

� (λ+ µ) · a = λ · a+ µ · a

� λ · (µ · a) = (λµ) · a

� 1 · a = a

Proof. The properties follow from the algebraic expressions for the linear operations.

Proposition 2.2.2 (2-dimensionality). Let a and b be non-parallel vectors (algebraically
a1b2 − a2b1 ̸= 0). For a vector c there are unique real numbers λ, µ such that c = λa+ µb.

The proof of this proposition is left to the readers (see the problems below).

Problems

2.2.1. Let a = ⟨a1, a2⟩ and b = ⟨b1, b2⟩ be plane vectors. Prove that they are parallel (that
is, at least one of them is a scalar multiple of the other) if and only if a1b2 − a2b1 = 0.

2.2.2. Let a,b be not parallel, and let c ∈ R2 be arbitrary. Prove that there are unique real
numbers λ, µ such that c = λa+ µb.

2.2.3. Let a,b be not parallel. Prove that a+ b, a− b are also not parallel.

2.2.4. For which real numbers k1,1, k1,2, k2,1, k2,2 is it true that if a,b are not parallel then
k1,1a+ k1,2b and k2,1a+ k2,2b are also not parallel.
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2.3 Convention on identifying points with vectors

To a point A ∈ R2 we can associate its “position vector”
−→
OA where O = (0, 0) is the origin.

To a vector v we can associate a point P by considering an arrow
−→
OP representing v.

The above two associations are inverses of each other, they define a one-to-one corre-
spondence between points and vectors. Algebraically this one-to-one correspondence is
(a, b) ↔ ⟨a, b⟩.
Throughout this text we will build in this identification in our notation, without further
explanation. For example, if A is a point, and we write 5A then we really mean either the

vector 5
−→
OA or its endpoint. Or, if we say A/2 + B/2 is the midpoint of the segment AB

then here is how to read it precisely: the midpoint of the segment AB is the endpoint of the

vector 1
2

−→
OA+ 1

2

−−→
OB.

2.4 Algebraic conditions expressing collinearity

The word “collinear” is a shorthand expression for “on the same line”. The word “concur-
rent” is a shorthand expression for “intersecting in one point”.

Proposition 2.4.1. Let A and B be two different points. Point C is on the line through A
and B if and only if there is a real number t such that

C = (1− t)A+ tB. (2.1)

Moreover, t and C uniquely determine each other (i.e. for any C on the AB line there is a
unique real number t satisfying (2.1), and for any real number t there is a unique point C
on the AB line satisfying (2.1).)

Proof. To obtain the position vector of a point C on the line AB we need to add the vector−→
A and a multiple of

−→
AB, see Figure 2.3.

Conversely, the end point of any such vector is obviously on the line AB. Observe that−→
A + t ·

−→
AB = (1− t)A+ tB, which proves the proposition.

The proof that C and t determine each other is left as an exercise.

If A = B then for any t the point (1− t)A+ tB obviously coincides with A and B.
A useful rephrasing of Proposition 2.4.1 is that if A ̸= B then C is on their line if and only
if there exist numbers x and y such that

C = xA+ yB, x+ y = 1.
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A

B

O

C1

C2
0.6

−→
AB

−0.2
−→
AB

−→
OA

−−→
OC1

−−→
OC2

Figure 2.3: C1 and C2 on the line through A and B

Proposition 2.4.2. The points A,B,C are collinear if and only if there exist real numbers
x, y, z not all 0, such that

xA+ yB + zC = 0, x+ y + z = 0.

Proof. Suppose A,B,C are collinear.
If A and B are different points, then C is on their line. According to Proposition 2.4.1 then
there is a t such that C = (1 − t)A + tB. After rearrangement we obtain (1 − t)A + tB +
(−1)C = 0 and hence 1− t, t,−1 serve as x, y, z.
If A = B then x = 1, y = −1, z = 0 satisfy the requirements.
To prove the opposite direction let us now assume that xA + yB + zC = 0, x + y + z = 0,
and not all x, y, z are 0. Let us pick one non-zero among x, y, z. Without loss of generality
we may assume that it is z. Rearrangement gives C = (−x/z)A+ (−y/z)B. The condition
x+y+z = 0 translates to (−x/z)+(−y/z) = 1. IfA andB are different then Proposition 2.4.1
implies that C is on the AB line. If A and B coincide then the remark after Proposition 2.4.1
implies that all A,B,C are the same point, so they are collinear.

An important logical consequence of Proposition 2.4.2 is the following Corollary.

Corollary 2.4.3. If A,B,C are not collinear (i.e. they form a triangle), and x, y, z are real
numbers with

xA+ yB + zC = 0 and x+ y + z = 0,

then x = y = z = 0.
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Problems

2.4.1. In the formula C = (1− t)A+ tB, trace the position of C on the line as t varies from
−∞ to ∞.

2.4.2. Prove that in Proposition 2.4.1 the point C and the real number t uniquely determine
each other.

2.4.3. In △ABC let U be the midpoint of AB and let V be the midpoint of AC. Prove

that 2
−−→
UV =

−−→
BC.

2.5 The ratio (A⃗C : C⃗B) for some collinear points

Let A and B be different points, and let C be on their line. Let us assume that C ̸= B. We

will write that (
−→
AC :

−−→
CB) = λ if

−→
AC = λ

−−→
CB. Such a λ exists (and is unique) since

−→
AC and

−−→
CB are collinear vectors with

−−→
CB ̸= 0.

Lemma 2.5.1. Let A,B,C be collinear, A ̸= B ̸= C, and write C = xA+yB with x+y = 1

(cf. Proposition 2.4.1). Then we have (
−→
AC :

−−→
CB) = y/x.

Proof. From C = xA + yB we obtain
−→
AC = y

−→
AB and

−−→
CB = x

−→
AB (verify!). Also, since

B ̸= C we know that x ̸= 0. Thus we have
−→
AC = y

−→
AB = y 1

x

−−→
CB, what we wanted to

prove.

Remark 2.5.2. If we extended the notion of (
−→
AC :

−−→
CB) to the case of C = B, by defining

(
−→
AB :

−−→
BB) = ∞, then the last proposition would say 1/0 = ∞, which agrees with our

intuition.

In fact we can interpret the ratio (
−→
AC :

−−→
CB) without mentioning vectors. It is the ratio of

the length of the segment AC over the length of the segment CB, with a sign convention.

The sign convention is that if C is in between A and B, then (
−→
AC :

−−→
CB) is positive, and if

C is outside of the segment AB then (
−→
AC :

−−→
CB) is negative.

Proposition 2.5.3. Let A ̸= B be fixed. The ratio (
−→
AC :

−−→
CB) uniquely determines C.

The proof is left as an exercise.
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Remark 2.5.4. We may be sloppy in notation and decide to write
−→
AC/

−−→
CB instead of (

−→
AC :

−−→
CB), but we must be careful that this ratio is only defined in the very special situation
where A,B,C are collinear (and some coincidences do not happen). In general there is no
such operation where we divide a plane vector by another plane vector!

Problems

2.5.1. Prove Proposition 2.5.3.

2.5.2. For three (distinct) points A,B,C on a line prove that

(
−→
AB :

−−→
BC) · (

−−→
BC :

−→
CA) · (

−→
CA :

−→
AB) = 1.

2.5.3. For four (distinct) points A,B,C,D on a line prove that

(
−−→
AD :

−−→
DB) · (

−−→
BD :

−−→
DC) · (

−−→
CD :

−−→
DA) = −1

2.6 First applications

A quadrilateral ABCD is a parallelogram if
−→
AB =

−−→
DC. This condition can be phrased as

B − A = C −D, or rearranged to D − A = C −B, which means
−−→
AD =

−−→
BC also holds.

Proposition 2.6.1. The diagonals of a parallelogram bisect each other.

A

D C

B

Figure 2.4: The diagonals of a parallelograph bisect each other.
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Proof. Since ABCD is a parallelogram, we have B − A = C −D, or equivalently A + C =
B + D. Consider the point P = (A + C)/2 = (B + D)/2. The first defining expression
implies that P is the midpoint of A and C. The second expression implies that P is the
midpoint of B and D. Since they agree, P is the intersection of AC and BD, and it bisects
both diagonals.

The median of a triangle is a segment connecting a vertex to the midpoint of the opposite
side. A triangle has three medians.

Proposition 2.6.2. The medians of a triangle are concurrent. Moreover they divide each
other by 2:1.

A

B

C

2x x

Figure 2.5: The medians of a triangle are concurrent.

Proof. Let ABC be a triangle. Consider the point P = (A + B + C)/3, and its equivalent
expressions

P =
2

3
· A+B

2
+

1

3
· C =

2

3
· B + C

2
+

1

3
· A =

2

3
· C + A

2
+

1

3
·B.

The first expression claims that P is on the segment connecting the midpoint of A and B
with C, that is, on the median corresponding to C. The second expression claims that P is
on the median corresponding to A, and the third expression claims that P is on the median
corresponding to B. Since they are all equal, there is a point, namely P , that in on all three
medians; and we proved that the medians are concurrent.
A byproduct of the above argument is that the intersection P of the three medians is ex-
pressed as 2/3 of the midpoint of a side plus 1/3 the opposite vertex. According to Section 2.5
this proves that P cuts the median 2 : 1.
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Remark 2.6.3. In the above two propositions we needed to make arguments about the in-
tersections of certain lines. In our proofs we used a trick: we did not “compute” the in-
tersections, but rather we “named” a point and then proved that this point is on the lines,
and hence this point must be the intersection. You will find this trick useful when solving
exercises.

PROJECT 1. Invent and prove the 3D, 4D, . . . versions of Proposition 2.6.2.

Problems

2.6.1. For the points O,A,A′, B,B′ assume that
−−→
OA′ = λ

−→
OA,

−−→
OB′ = λ

−−→
OB, see Fig-

ure 2.6(a). Prove that
−−→
A′B′ = λ

−→
AB.

2.6.2. Assume that in Figure 2.6(b) the lines x, y are parallel. Prove that there exists a real

number λ such that
−−→
OA′ = λ

−→
OA,

−−→
OB′ = λ

−−→
OB.

2.6.3. Assume
−−−→
O1A

′ = λ
−−→
O1A,

−−−→
O1B

′ = λ
−−→
O1B and

−−−→
O2B

′ = µ
−−→
O2A,

−−−→
O2A

′ = µ
−−→
O2B, see the

Figure 2.6(c). Prove that λ = −µ.

Figure 2.6: Figures for Problems 1.6.1, 1.6.2, 1.6.3

2.6.4. In a quadrilateral let U and V be the midpoints of two opposite sides. Prove that the
segment UV and the segment connecting the midpoints of the diagonals bisect each other.

2.6.5. Let S be the centroid of the △ABC. Calculate
−→
SA+

−→
SB +

−→
SC.

2.6.6. Let R be an arbitrary point in the plane and ABCD a parallelogram. Prove that−→
RA+

−→
RC =

−→
RB +

−−→
RD.
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2.6.7. Let ABCD four point of the plane, and let U be the midpoint of AB, and V the

midpoint of CD. Express the vector
−−→
UV in terms of the vectors

−−→
AD and

−−→
BC.

2.6.8. In the ABCD quadrilateral let
−→
AB = a,

−−→
DC = b. Let the points A,X1, X2, X3, D

divide the AD side into four equal parts. Let the points B, Y1, Y2, Y3, C divide the BC

segment into four equal parts. Express
−−−→
X1Y1,

−−−→
X2Y2,

−−−→
X3Y3 in terms of a and b.

2.6.9. Let ABCDA′B′C ′D′ be a cube (ABCD is a square and A′B′C ′D′ is a translated

copy of ABCD). Let a =
−→
AB,b =

−−→
AD, c =

−−→
AA′. Let P be the midpoint of C ′D′. Let Q be

the center of the BCC ′B′ square. Express
−→
AP ,

−→
AQ,

−−→
AD′,

−−→
BD in terms of a,b, c.

2.6.10. Let ABCD be a parallelogram. Let the points A,X1, X2, B divide AB into three
equal parts. Let C, Y1, Y2, D divide CD into three equal parts. Let X2, U, V, Y2 divide X2Y2

into three equal parts. Express
−→
AV in terms of

−→
AB and

−−→
AD.

2.6.11. Let P1, . . . , Pn be points, and µ1, . . . , µn be real numbers with
∑n

i=1 µi = 1. For a

point O consider v =
∑n

i=1 µi

−−→
OPi. Let S be the end point of the vector v if it is measured

from O. Prove that the point S does not depend on the choice of O. (Hint: choose two
different O1 and O2 and calculate the vector between the obtained “two” S points. You
should get 0.)

2.6.12. Let the reflection of the point A over the point B be C. Express C in terms of A
and B.

2.6.13. (cont.) Let △ABC be a triangle. The reflection of A over B is A′. The reflection
of B over C is B′. The reflection of C over A is C ′. Prove that the centroid of △ABC and
the centroid of △A′B′C ′ coincide.

2.6.14. Let P be different from the vertices of the triangle △ABC. Let PBLC, PCMA,
PANB be parallelograms. Prove that the segments AL, BM , CN bisect each other.

2.6.15. Points P,Q,R lie on the sides of the △ABC and are such that

(
−−→
BP :

−→
PC) = (

−→
CQ :

−→
QA) = (

−→
AR :

−→
RB).

Prove that the centroids of the triangles PQR and ABC coincide.
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2.7 Menelaus’ theorem

Theorem 2.7.1 (Menelaus’ theorem). Let ABC be a triangle and let a transversal line ℓ
intersect the lines of the sides AB, BC, CA in M , K, L, respectively. We assume that none
of K,L,M coincide with A,B, or C. Then

(
−−→
AM :

−−→
MB) · (

−−→
BK :

−−→
KC) · (

−→
CL :

−→
LA) = −1.

Proof. We haveK = xB+x′C, L = yC+y′A, M = zA+z′B with x+x′ = y+y′ = z+z′ = 1.
Since K,L,M are collinear, according to Proposition 2.4.2 we know that there are real
numbers p, q, r not all 0 such that p+ q + r = 0 and pK + qL+ rM = 0. We have

p(xB + x′C) + q(yC + y′A) + r(zA+ z′B) = 0,

or rearranged, we have

(rz + qy′)A+ (px+ rz′)B + (qy + px′)C = 0. (2.2)

The sum of the coefficients in this last expression is

(rz+ qy′) + (px+ rz′) + (qy+ px′) = p(x+ x′) + q(y+ y′) + r(z+ z′) = p+ q+ r = 0. (2.3)

According to Corollary 2.4.3 (2.2) and (2.3) can only hold if all three

rz + qy′ = px+ rz′ = qy + px′ = 0.

Therefore we have

y′/z = −r/q, z′/x = −p/r, x′/y = −q/p
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(verify that from the hypotheses we know that none of the x, y, z, p, q, r are 0). Therefore

(
−−→
AM :

−−→
MB) · (

−−→
BK :

−−→
KC) · (

−→
CL :

−→
LA) =

z′

z
· x

′

x
· y

′

y
=

z′

x
· x

′

y
· y

′

z
=

−p

r
· −q

p
· −r

q
= −1

what we wanted to prove.

Theorem 2.7.2 (reverse Menelaus’ theorem). Let ABC be a triangle and let M,K,L be
points on the lines AB,BC,CA (but different from A,B,C) such that

(
−−→
AM :

−−→
MB) · (

−−→
BK :

−−→
KC) · (

−→
CL :

−→
LA) = −1. (2.4)

Then K,L,M are collinear.

Proof. Let ℓ be the line connecting L and K. We claim that ℓ is not parallel with the AB
line—this will be proved in Problem 2.7.1 below.

Let the intersection point be M ′. According to Menelaus’ theorem we have

(
−−→
AM ′ :

−−→
M ′B) · (

−−→
BK :

−−→
KC) · (

−→
CL :

−→
LA) = −1.

Comparing this with the assumption (2.4) on K,L,M we conclude that

(
−−→
AM ′ :

−−→
M ′B) = (

−−→
AM :

−−→
MB).

Proposition 2.5.3 then implies that M = M ′, hence the fact that K,L,M are collinear.

Problems

2.7.1. Let ABC be a triangle and let M,K,L be points on the lines AB,BC,CA (but

different from A,B,C) such that (
−−→
AM :

−−→
MB) · (

−−→
BK :

−−→
KC) · (

−→
CL :

−→
LA) = −1. Prove that

the line ℓ connecting L and K is not parallel with AB. [Hint: Problem 2.6.2 may be of use.]

2.7.2. Let D be a point on the line of BC, and let E be a point on the line of AC of the
△ABC (but let D,E be distinct from the vertices). Assume the lines AD and BE intersect

in a point P . Prove that if (
−−→
BD :

−−→
DC) · (

−−→
CE :

−→
EA) = −1 then CP is parallel with AB.
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2.8 Barycentric coordinates

Theorem 2.8.1. Let A, B and C be non-collinear points in the plane. For any point P we
may write

P = xA+ yB + zC

where the real coefficients x, y, z satisfy

x+ y + z = 1.

Moreover, x, y, z are uniquely determined by the point P .

We call x, y, z the barycentric coordinates of P with respect to the triangle ABC.

Proof. The vectors
−→
AB and

−→
AC are not parallel. Hence any vector can be written as a linear

combination of them, for example
−→
AP = p

−→
AB + q

−→
AC (cf. Proposition 2.2.2). Using that

−→
AP = P − A,

−→
AB = B − A,

−→
AC = C − A we can rearrange it to

P = (1− p− q)A+ pB + qC,

and hence x = 1− p− q, y = p, z = q satisfy the requirements.
To prove the uniqueness of barycentric coordinates assume that x, y, z and x′, y′, z′ are such
that

P = xA+ yB + zC, x+ y + z = 1,

P = x′A+ y′B + z′C, x′ + y′ + z′ = 1.
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A B

C

D
E

F

P

Figure 2.7: The Ceva configuration

Then we have

0 = (x− x′)A+ (y − y′)B + (z − z′)C, (x− x′) + (y − y′) + (z − z′) = 0.

Corollary 2.4.3 implies that x− x′ = y − y′ = z − z′ = 0 which proves uniqueness.

PROJECT 2. Observe the similarity between Proposition 2.4.1 and Theorem 2.8.1. They
are the 1D and 2D cases of a general n-dimensional theorem. If you learned linear algebra
(specifically the notions of linear independence, generating set, basis) then find and prove
this general n-dimensional theorem.

2.9 Ceva’s theorem

Theorem 2.9.1 (Ceva’s Theorem1). Let ABC be a triangle and let P be a point in the plane
which does not lie on any of the sides of △ABC. Suppose the lines AP , BP and CP meet
the opposite sides of ABC at D, E and F , respectively. Then

(
−→
AF :

−−→
FB) · (

−−→
BD :

−−→
DC) · (

−−→
CE :

−→
EA) = 1.

Note that P does not need to lie inside the triangle.

Proof. Using barycentric coordinates, we write P as

P = xA+ yB + zC,

1Geometer Giovanni Ceva (1647–1734) is credited with this theorem
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where x+ y + z = 1. From our assumptions it follows that none of x, y, z, x+ y, x+ z, y + z
are 0 (verify!). Let us consider the point

V =
x

x+ y
A+

y

x+ y
B. (2.5)

This expression implies that V is on the line AB. Calculation shows that

V =
1

x+ y
P +

−z

x+ y
C,

and the sum of the coefficients 1/(x+y)+(−z)/(x+y) = (1−z)/(x+y) = (x+y)/(x+y) = 1.
Hence V is also on the line CP . We conclude that the point V is the intersection of AB and
CP , hence V = F . Moreover, from (2.5) we obtain that

(
−→
AF :

−−→
FB) =

y
x+y
x

x+y

=
y

x
.

Similarly, we find that

(
−−→
BD :

−−→
DC) =

z

y
, (2.6)

(
−−→
CE :

−→
EA) =

x

z
. (2.7)

Hence
(
−→
AF :

−−→
FB) · (

−−→
BD :

−−→
DC) · (

−−→
CE :

−→
EA) =

y

x

z

y

x

z
= 1.

Theorem 2.9.2 (Reverse Ceva’s theorem). Suppose ABC is a triangle, D,E, F are points
on the lines of the sides (but none of them coincide with a vertex) such that

(
−→
AF :

−−→
FB) · (

−−→
BD :

−−→
DC) · (

−−→
CE :

−→
EA) = 1.

Then AD, BE, CF are either concurrent, or they are pairwise parallel.

Proof. If AD, BE, CF are pairwise parallel, then the theorem is proved. Assume that two
of these three lines intersect. Without loss of generality we assume that it is AD and BE.
Let P = AD ∩ BE, and assume that CP intersects AB in the point F ′ (verify that our
assumpitons imply that AB is not parallel with CP !). By Ceva’s Theorem 2.9.1 we have

(
−−→
AF ′ :

−−→
F ′B) · (

−−→
BD :

−−→
DC) · (

−−→
CE :

−→
EA) = 1.
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Comparing this with the condition in the theorem we obtain that

(
−−→
AF ′ :

−−→
F ′B) = (

−→
AF :

−−→
FB).

Proposition 2.5.3 then implies that F = F ′, hence the fact that AD,BE,CF are concurrent.

For fun, let us include here another “high-school style” proof of Ceva’s Theorem 2.9.1. This
proof does not use vectors at all. Instead it uses the notion of area, and the obvious fact
that the area of a triangle is half the product of base and height.

Proof. For simplicity let D,E, F be on the sides (and not outside) of the triangle ABC, and
let P = AB ∩ CF = BC ∩ AD = CA ∩ BE. The triangles AFC and FBC have “bases”
AF and FB and they share the same height mC . Hence the ratio of their areas equals the
ratio of their bases:

Area(AFC)

Area(FBC)
=

AF

FB
.

Similar argument for the triangles AFP and FBP gives

Area(AFP )

Area(FBP )
=

AF

FB
.

From the two equations above simple algebra implies

Area(AFC)− Area(AFP )

Area(FBC)− Area(FBP )
=

AF

FB
.

The difference of the triangles AFC and AFP is the triangle CAP . The difference of the
triangles FBC and FBP is the triangle BCP . Hence we obtained

Area(CAP )

Area(BCP )
=

AF

FB
. (2.8)

We obtained (2.8) by considering the AB side of the triangle the “base”. Repeating the
same argument but now considering the BC side or the CA side to be the “base” we obtain
the equations.

Area(ABP )

Area(CAP )
=

BD

DC
,

Area(BCP )

Area(ABP )
=

CE

EA
.
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From the last three equations we obtain

(
−→
AF :

−−→
FB) · (

−−→
BD :

−−→
DC) · (

−−→
CE :

−→
EA) =

AF

FB
· BD

DC
· CE

EA
=

=
Area(CAP )

Area(BCP )
· Area(ABP )

Area(CAP )
· Area(BCP )

Area(ABP )
= 1,

which proves Ceva’s theorem in the case when P is inside the triangle. Similar arguments
work when P is outside.

Problems

2.9.1. Consider the △ABC and non-zero real numbers k1, k2, k3. Let PAB and P ′
AB be on

the AB line, the first in the AB segment, the second outside of the AB segment, such that

|APAB|
|PABB|

=
|AP ′

AB|
|P ′

ABB|
=

k1
k2

.

Define PBC and P ′
BC on the BC line similarly with the ratio k2/k3; and define PCA and P ′

CA

on the CA line similarly with the ratio k3/k1. Show that the lines APBC , BPCA, CPAB are
concurrent.

2.9.2. (cont.) Prove that the line PCAPAB contains the point P ′
BC .

2.9.3. (cont.) Prove that P ′
AB, P

′
BC , and P ′

CA are collinear.

2.9.4. Let P be an interior point of △ABC. The lines connecting P with the vertices cut
△ABC into six smaller triangles. We color every second of these six triangles with red, the
rest with blue. Prove that the product of the areas of the red triangles is the same as the
product of the areas of the blue triangles.

2.10 Desargues’ theorem—a few affine versions

Desargues’ theorem is a remarkable theorem on incidences of certain lines and points involv-
ing two triangles. The key notions are as follows.

� For△ABC and△A′B′C ′ we may consider the three lines connecting the corresponding
vertexes: AA′, BB′, and CC ′. We will consider the condition that these three lines
are concurrent (or are pairwise parallel). If concurrent, we call the intersection point
the center of perspectivity.
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� For △ABC and △A′B′C ′ we may consider the intersections of the corresponding sides
AB ∩ A′B′, BC ∩ B′C ′, and CA ∩ C ′A′. We will consider the condition that these
three points (exist and) are collinear—or none of the three exist. If collinear, we call
the obtained line the axis of perspectivity.

Theorem 2.10.1. Let ABC and A′B′C ′ be triangles such that AB||A′B′, AC||A′C ′, BC||B′C ′.
Then the three lines AA′, BB′, CC ′ are either concurrent or pairwise parallel.

Proof. Because of the conditions on parallel lines we can write

B − C = k1(B
′ − C ′), C − A = k2(C

′ − A′), A−B = k3(A
′ −B′), (2.9)

for some real numbers k1, k2, k3. Adding together these three equalities (and rearranging the
right hand side) we obtain

0 = (k2 − k3)A
′ + (k3 − k1)B

′ + (k1 − k2)C
′. (2.10)

The coefficients of (2.10) add up to 0, hence Corollary 2.4.3 implies that

k2 − k3 = k3 − k1 = k1 − k2 = 0, and hence k1 = k2 = k3.

Let k be the common value of k1, k2 and k3. Then from (2.9) we can deduce

A− kA′ = B − kB′ = C − kC ′. (2.11)

We can consider two cases. If k = 1 then (2.11) implies that the lines AA′, BB′, CC ′ are
pairwise parallel. If k ̸= 1 then (2.11) can be rearranged to

P =
1

1− k
A+

−k

1− k
A′ =

1

1− k
B +

−k

1− k
B′ =

1

1− k
C +

−k

1− k
C ′

showing that the point P is on all three lines AA′, BB′, CC ′—proving that AA′, BB′, CC ′

are concurrent.

Theorem 2.10.2. Let ABC and A′B′C ′ be triangles such that AA′, BB′, CC ′ are concur-
rent. Assume that the point K = AB ∩A′B′, L = BC ∩B′C ′, M = CA ∩ C ′A′ exist. Then
the points K,L,M are collinear.

Proof. The intersection point on AA′, BB′, CC ′ can be written as

k1A+ (1− k1)A
′ = k2B + (1− k2)B

′ = k3C + (1− k3)C
′. (2.12)
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Rearranging, say, the first equality we obtain

k1A− k2B = (1− k2)B
′ − (1− k1)A

′.

If k1 = k2 then this formula says k1(A − B) = (1 − k1)(B
′ − A′), meaning that AB||A′B′

which is not the case. So we know that k1 ̸= k2. Hence, we may divide by k1 − k2 and write

k1
k1 − k2

A+
−k2

k1 − k2
B =

1− k2
k1 − k2

B′ +
−(1− k1)

k1 − k2
A′.

The sum of the coefficients on the left hand side is 1, and the sum of the coefficients on the
right hand side is also 1 (check it!). Therefore the left hand side expression is a point on the
AB line, and the right hand side expression is a point on the A′B′ line. Hence the common
value must be the intersection AB ∩ A′B′. We obtained that

K =
k1

k1 − k2
A+

−k2
k1 − k2

B,

equivalently
(k1 − k2)K = k1A− k2B. (2.13)

We deduced (2.13) from the fact that the first expression and the second expression in
(2.12) are equal. Similarly, the fact that the second and third, as well as the first and third
expressions in (2.12) are equal we obtain

(k2 − k3)L = k2B − k3C, (k3 − k1)M = k3C − k1A. (2.14)

Adding together all three equalities in (2.13) and (2.14) we get

0 = (k1 − k2)K + (k2 − k3)L+ (k3 − k1)M.

Observe that none of the three coefficients are 0, and they add up to 0. According to
Proposition 2.4.2 this means that K,L,M are collinear, what we wanted to prove.

Theorem 2.10.3. Let ABC and A′B′C ′ be triangles such that K = AB ∩ A′B′, L =
BC ∩ B′C ′, M = CA ∩ C ′A′ exist and are collinear. Then AA′, BB′, CC ′ are either
concurrent or are pairwise parallel.

It is possible to prove this theorem with the techniques we used in the last two proofs—and
it may be a good practice for students to write down such a proof. However, for a change we
are going to prove it by reduction to Theorem 2.10.2—showing that in some sense Desargues’
theorem and its reverse are the same, in other words, Desargues’ theorem is “self-dual”.
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Proof. If AA′, BB′, CC ′ are pairwise parallel, then we are done. If not, then two of them
intersect, say, AA′ intersects BB′.

Consider the triangles AA′M and BB′L. By looking at the picture one can see that the
lines AB, A′B′, ML connecting the corresponding vertexes are concurrent. Theorem 2.10.2
can be applied to the triangles AA′M and BB′L, and we obtain that C = AM ∩ BL,
C ′ = MA′ ∩LB′, and AA′ ∩BB′ are collinear. That is, CC ′ passes through the intersection
of AA′ ∩BB′, and hence AA′, BB′, and CC ′ are concurrent.

In a later chapter we will see a simple and elegant way of phrasing Desargues’ theorem—in
projective geometry. All of the three theorems above (and more) are some special cases of
that projective Desargues’ theorem.

PROJECT 3. We can connect two points A and B of the plane if we have a straightedge.
Now suppose that B is “hidden”, it is only given by portions of two intersecting lines, but
we cannot go close to the intersection point B; for example it is outside of the margin of
our paper. How can we connect A and B with a straightedge? How to connect two hidden
points?
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Problems

2.10.1. Assume that for △ABC and △A′B′C ′ we have AA′||BB′||CC ′, and that the points
K = AB ∩ A′B′, L = BC ∩B′C ′, M = CA ∩ C ′A′ exist. Prove that K,L,M are collinear.

2.10.2. The triangles △A1B1C1, △A2B2C2, and △A3B3C3 have their corresponding sides
parallel. Hence each pair of triangles has a center of perspectivity (assume that these centers
of perspectivities exist). Prove that the three centers of perspectivities are collinear.

2.10.3. Use a search engine to learn about “Monge’s theorem”. Try to relate it to Prob-
lem 2.10.2.

2.10.4. A line drawn through the vertex A of a parallelogram ABCD cuts CB in P and
CD in Q. A line through C cuts AB in R and AD in S. Prove that PR and QS are parallel.

2.11 Desargues triangles in intersecting planes

In this section we go out of our way again and show an interesting “high-school style”
argument in relation with Desargues’ theorem.

Consider two planes P1 and P2 in 3 dimensions, intersecting in the line ℓ. Let △ABC be in
P1 and let△A′B′C ′ be in P2. We will analyse the conditions and the claim of Theorem 2.10.3
for these two triangles.
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The condition is about the three points K = AB ∩ A′B, L = BC ∩ B′C ′, M = CA ∩ C ′A′.
Observe that AB ⊂ P1, A

′B′ ⊂ P2, hence K ∈ P1 ∩ P2 = ℓ. Similarly, L and M must also
lie on ℓ. So the assumption of Theorem 2.10.3 that K,L,M are collinear does not even have
to be assumed! It automatically holds.

The statement of Theorem 2.10.3 is about the three lines AA′, BB′, CC ′. It will be useful
to consider three more planes. Let SK be the plane containing the intersecting lines AB,
A′B′. Let SL be the plane containing the intersecting lines BC, B′C ′. Let SM be the plane
containing the intersecting lines AC, A′C ′.

Observe that both A and A′ are contained in SK and in SM . If two point are contained in
two planes, then their connecting line must be the intersection of the two planes. We have
AA′ = SK ∩ SM . Similarly BB′ = SK ∩ SL, and CC ′ = SL ∩ SM .

We obtained that the three lines AA′, BB′, CC ′ are the pairwise intersections of three
planes in space. Let’s see how can three (pairwise intersecting) planes look like in three
space. There are two possibilities: (i) either the third one is parallel with the intersection
line of the first two, or (ii) the third one intersects the intersection line of the first two.
Theses two configurations are illustrated in the picture.
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In the first case the three intersection lines are pairwise parallel: AA′, BB′, CC ′ are pairwise
parallel. In the second case the three intersection lines are concurrent: AA′, BB′, CC ′ are
concurrent.
What we found is that the 3D version of Desargues theorem 2.10.3 is a tautology.

PROJECT 4. Analyses 3D versions of the other two versions of Desargues’ theorem above.

PROJECT 5. Find a no-calculation proof of e.g. Theorem 2.10.3, by first moving one of
the triangles out of plane into 3D.

2.12 Dot product: algebra and geometry

Let us recall the notion of dot product from Calculus. The dot product of two vectors a and
b is a number denoted by a · b or ab.
Geometrically ab = |a||b| cosϕ, where |x| denotes the length of a vector x and ϕ is the
angle between the vectors a and b. Especially, ab = 0 if and only if a and b are orthogonal.
Algebraically ⟨a1, a2⟩ · ⟨b1, b2⟩ = a1b1 + a2b2.
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Problem: recall from calculus why the above geometric and algebraic definition agree.
The following properties are easily verified from the algebraic definition.

� ab = ba

� (a+ b)c = ac+ bc

� (λa)b = λ(ab)

� aa ≥ 0, and aa = 0 if and only if a = 0

� ab = 0 for all b implies that a = 0.

The power of dot product that we will repeatedly use in geometry is the duality: its clear
geometric meaning and its simple algebraic properties. (What we will not use any further is
the a1b1 + a2b2 expression.)

Definition 2.12.1. The length of a vector a is defined to be |a| =
√
aa. (The square

root makes sense because of the the non-negativity property above. Also this definition is
consistent with the geometric interpretation of dot product above.) The length of a segment

AB is defined to be d(AB) = |
−→
AB|. The distance of two sets P,Q ⊂ R2 is defined to be

inf{d(A,B) : A ∈ P,B ∈ Q}.

Problems

2.12.1. Verify the algebraic properties of the dot product above.

2.12.2. Prove that for a parallelogram the sum of squares of the sides is equal to the sum
of the squares of the diagonals.

2.12.3. Let O be the center of the ABCDEF regular hexagon whose side length is 1. Find

−→
AB ·

−→
AO,

−→
AB ·

−→
AC,

−−→
BC ·

−→
EF,

−→
FC ·

−−→
BD,

−→
FC ·

−→
EF.

2.12.4. Let A,B,C,D be points in the plane, let A′ be the midpoint of BC, let B′ be the
midpoint of CA, and let C ′ be the midpoint of AB. Prove that

(D − A′)(C −B) + (D −B′)(A− C) + (D − C ′)(B − A) = 0.
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2.13 Altitudes of a triangle are concurrent

Let ABC be a triangle. A line passing through the vertex and perpendicular to the opposite
side is called an altitude. A triangle has three altitudes.

Theorem 2.13.1. The three altitudes of a triangle are concurrent.

Proof. Let D be the intersection of the altitudes containing the vertexes A and B. Then
AD ⊥ BC and BD ⊥ AC. Hence we have

(D − A)(B − C) = 0, (D −B)(C − A) = 0.

Adding these two equations together, and using the algebraic properties of dot product we
obtain

0 = (D − A)(B − C) + (D −B)(C − A) = ... = −(D − C)(A−B).

Therefore D − C ⊥ A − B, that is, the line DC is the altitude containing C. All three
altitudes pass through D.

The intersection of the three altitudes is called the orthocenter of the triangle.
Consider the vertexes and the orthocenter. It is remarkable that each of theses four points
is the orthocenter of the triangle formed by the other three points. Such a set of four points
will be called an orthocentric tetrad.

Problems

2.13.1. Suppose that the segment connecting the midpoints of AB with CD, and the seg-
ment connecting the midpoints of BC with DA are of the same length. Prove that AC is
perpendicular to BD.
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2.14 The Feuerbach circle

Lemma 2.14.1. If A,B,C,D is an orthocentric tetrad then

(A+B − C −D)2 = (A−B + C −D)2 = (A−B − C +D)2 =

(−A+B + C −D)2 = (−A+B − C +D)2 = (−A−B + C +D)2.

Proof. The six numbers above are in fact three pairs, e.g. (A + B − C − D)2 and (−A −
B + C +D)2 are clearly equal, because they are length squares of a vector and its opposite
vector. What we need to prove is that two numbers not in the same pair are also equal.
Without loss of generality let us choose the first two. Calculation shows that

(A+B − C −D)2 − (A−B + C −D)2 = 4(A−D)(B − C).

Since A,B,C,D is an orthocentric tetrad A − D is orthogonal to B − C, and hence (A −
D)(B − C) = 0, showing that (A+B − C −D)2 = (A−B + C −D)2.

Theorem 2.14.2 (Feuerbach circle). Let D be the orthocenter of the ABC triangle. Con-
sider the following nine points (a) the midpoints of the sides, (b) the midpoints of the seg-
ments connecting vertexes to the orthocenter, (c) the feet of the altitudes. These nine points
are on one circle.
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Proof. We will only prove that points (a) and (b) are on one circle. The fact that points (c)
are also on the same circle is left as an exercise.
Observe that the six points in (a) and (b) are the midpoints of the six segments connecting
two of A,B,C,D where A,B,C,D form an orthocentric tetrad. Hence these points are

(A+B)/2, (A+ C)/2, (A+D)/2, (B + C)/2, (B +D)/2, (C +D)/2.

Let N = (A+B + C +D)/4. The vectors connecting N to the six points are

(−A−B + C +D)/4, (−A+B − C +D)/4, (−A+B + C −D)/4,

(A−B − C +D)/4, (A−B + C −D)/4, (A+B − C −D)/4.

These six vectors have the same length because of Lemma 2.14.1. Therefore all six points
are of the same distance from N : they are on one circle.

Problems

2.14.1. (Thales’ theorem) Let O be the midpoint of AC. Prove that ∠(ABC) = π/2 if and
only if d(AO) = d(BO). (That is ∠(ABC) = π/2 if and only if B is on the circle with center
O and radius d(AO).)

2.14.2. Finish the proof of Feuerbach’s Theorem 2.14.2, i.e. prove that points (c) are also
on the same circle as points (a) and (b). [Hint: Thales’ theorem is useful.]

2.15 Angle sum of a triangle

Lemma 2.15.1. Let the line m intersect a pair of parallel lines ℓ, ℓ′; and let α and α′ be
the angles obtained as in Figure 2.8 (a). Then α = α′.

Proof. Take unit vectors x, −x and u in the lines ℓ, ℓ′, and m as in the picture. Then

α = arccos(x · u), α′ = arccos((−x) · (−u)),

so they obviously agree.

Theorem 2.15.2. The sum of the angles of a triangle is π.

Proof. Let the line ℓ′ be parallel to AB and pass through the point C, see Figure 2.8 (b).
According to Lemma 2.15.1 α = α′ and β = β′ hence we have

α + β + γ = α′ + β′ + γ = π.
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Figure 2.8: The sum of the angles of a triangle

2.16 Law of cosines, law of sines

For a triangle △ABC the sides opposite to A,B,C will be denoted by a, b, c respectively,
and the angles at A,B,C will be called α, β, γ respectively.

Theorem 2.16.1 (Law of Cosines). We have

c2 = a2 + b2 − 2ab cos γ.

Proof. We have c2 = c2 = (a− b)2 = a2 + b2 − 2ab = a2 + b2 − 2ab cos γ.

Corollary 2.16.2 (Pythagorean theorem). In a right triangle with hypothenuse c we have
c2 = a2 + b2.

Proof. This is the Law of Cosines for γ = π/2.

Corollary 2.16.3 (Triangle inequality). For three points A,B,C in the plane we have

d(AB) ≤ d(BC) + d(CA).

The proof follows from the Law of Cosines, details are left as an exercise.

Theorem 2.16.4 (Law of Sines). We have

sinα

a
=

sin β

b
=

sin γ

c
.

We will give two proves: the first one shows that the Law of Sines is a formal consequence
of the Law of Cosines. The second proof is geometric.
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Proof. Proof1. From the Law of Cosines we get cos γ = (a2 + b2 − c2)/(2ab). Using sin γ =√
1− cos2 γ we have

sin γ =

√
1−

(
a2 + b2 − c2

2ab

)2

=

√
4a2b2 − (a4 + b4 + c4 + 2a2b2 − 2a2c2 − 2b2c2)

4a2b2
=

√
−a4 − b4 − c4 + 2a2b2 + 2b2c2 + 2a2c2

2ab
.

Dividing both sides by c we obtain

sin γ

c
= an expression symmetric in a, b, c.

Therefore we will get the same expression on the right hand side, if we start with α or β,
not γ. This proves that sin γ/c = sinα/a = sin β/b.

Proof. Proof2. The altitude m passing through vertex C is a side of two right triangles (See
picture) yielding the two expressions: m = b sinα, m = a sin β. Putting the right hand sides
equal and rearranging gives sinα/a = sin β/b.

Problems

2.16.1. Prove Corollary 2.16.3, the triangle inequality.

2.17 Angle bisectors, perpendicular bisectors

Consider an angle α less than π. The ray inside the angle that cuts α into two angles of
measure α/2 is called the angle bisector.
The distance d(P, ℓ) of a point P to a line ℓ is the the infimum of the distances between P
and A where A ∈ ℓ.

Lemma 2.17.1. The distance of a point to a line is obtained on the perpendicular segment
dropped from the point to the line.

Proof. The Pythagorean theorem proves that x < x′ in the figure on the left.

Lemma 2.17.2. The points in an angle that are of the same distance from the two rays of
the angle are exactly the points of the angle bisector.
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Proof. For a point P as in the figure on the right, its distance to the two sides is u and v
according to Lemma 2.17.1. We have u = c sin(β), v = c sin(γ). Hence u = v holds if and
only if sin(β) = sin(γ). Well known properties of the sin function imply that this holds if
and only if β = γ.

Theorem 2.17.3. The three angle bisectors of a triangle are concurrent.

Proof. Let xa, xb, xc be the angle bisectors through the vertexes A,B,C. Let P be the
intersection of the xa and xb (verify that they cannot be parallel!). Then

P ∈ xa ⇒ d(P, b) = d(P, c)
P ∈ xb ⇒ d(P, a) = d(P, c)

}
⇒ d(P, a) = d(P, b) ⇒ P ∈ xc,

where three of the four ⇒ implications above use Lemma 2.17.2. Since the intersection of
xa and xb is on xc, we have that xa, xb, xc are concurrent.

A byproduct of the theorem is that the intersection of the angle bisectors has the same
distance to the sides. In other words there is a circle with this center that touches the sides
of the triangle: the so-called circle inscribed in the triangle.
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For a segment AB, the line passing through the midpoint of AB and perpendicular to AB
is called the perpendicular bisector.

Theorem 2.17.4. The three perpendicular bisectors of the sides of a triangle are concurrent.

The proof is left as an exercise.

Problems

2.17.1. Find and prove a lemma analogous to Lemma 2.17.2 but it it about the perpendicular
bisector of a segment.

2.17.2. Using Problem 2.17.1 find a proof of Theorem 2.17.4 (logically similar to the proof
of Theorem 2.17.3).

2.17.3. Find a byproduct of your proof in Problem 2.17.2, analogous to the byproduct of
the proof of Theorem 2.17.3.

2.17.4. Prove that a triangle is equilateral if two of its circumcenter, centroid, and ortho-
center coincide.

2.17.5. Let C be a circle in the plane, and let λ be a number. Prove that λ C = {λx ∈ R2 :
x ∈ C} is also a circle.

2.17.6. (cont.) Reflect the orthocenter of △ABC over the midpoints of the sides. Prove
that the obtained three points are on the circumscribed circle. (Hint: use Problem 2.17.5
for a well chosen origin and λ, as well as the Feuerback circle.)

2.17.7. Let O be the center of circumscribed circle of △ABC. Let a,b, c be the vectors
pointing from O to the vertexes. Let M be the endpoint of a + b + c measured from O.
Prove that M is the orthocenter of △ABC.
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2.17.8. (cont.) Let O be the center of the circumscribed circle of △ABC. Let M be the
orthocenter, and let S be the centroid of △ABC. Prove that O,M, S are collinear. (The

obtained line is called the Euler-line of △ABC.) Find
−→
OS/

−−→
SM .

2.17.9. Let D be a point on the side BC of △ABC. Prove that

BD

DC
=

|AB| sin(DAB∠)
|AC| sin(DAC∠)

.

2.17.10. (cont.) Prove the Angle Bisector Theorem: If the angle bisector from A intersects
BC in D, then

|BD|
|DC|

=
|AB|
|AC|

.

2.17.11. (cont.) Reprove that angle bisectors are concurrent by using the Angle Bisector
Theorem and Ceva’s theorem.

2.17.12. Let AB = 6, BC = 10 in the △ABC. The angle bisector at B intersects AC in
D. Connect D with the midpoint of AB, let the intersection point with BC be E. What is
the length |BE|?

2.17.13. Let the lengths of the sides of △ABC be a, b, c (a is opposite of A, etc). If O is
the center of the inscribed circle then prove that

O =
aA+ bB + cC

a+ b+ c
.
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2.17.14. In Figure (a) above find the length x in terms of r and φ.

2.17.15. [Ptolemy’s theorem] Let A, B, C, D be points on a circle in this order. Use
Problem 2.17.14 and trigonometric identities to prove

d(A,B)d(C,D) + d(A,D)d(B,C) = d(A,C)d(B,D),

see Figure (b).

2.17.16. Which familiar theorem does Ptolemy’s theorem reduce to if A,B,C,D is a rect-
angle? (See Figure (c).)

2.17.17. Apply Ptolemy’s theorem to four vertices of a regular pentagon (see Figure (d)),
and find the ratio y/x. (Is this number familiar from somewhere else?)

2.17.18. Find the ratio d/z where d is the diameter of the circle, and z is the side of a
regular 10-gon (see Fidure (e)). [Hint: use Ptolemy’s theorem for the AXBD quadrilateral.
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2.18 Rotation, applications

For α an angle and v =
−→
OA a plane vector let Rα(v) denote the vector obtained from rotating

v =
−→
OA around the origin in the counterclockwise direction, see Picture 2.9 (a). Thus Rα is

a map from vectors to vectors. Calculation shows that algebraically

Rα : ⟨x, y⟩ 7→ ⟨x cosα− y sinα, x sinα + y cosα⟩.

If a vector is given by an arrow v =
−→
PQ where P is not the origin, then to get Rα(v) we

formally need to translate
−→
PQ to

−→
OA, then rotate this

−→
OA by α. Figure 2.9 (b) shows that

this procedure is not necessary: Rα(v) is also obtained by rotating
−→
PQ around P by α.

Figure 2.9: Rotations

Proposition 2.18.1. The rotation operator on vectors is consistent with vector operations
as follows,

� Rα(a+ b) = Rα(a) +Rα(b),

� Rα(a− b) = Rα(a)−Rα(b),

� Rα(λa) = λRα(a),

� Rα(a)Rα(b) = ab,
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� Rβ(Rα(a)) = Rα+β(a).

Proof. All can be calculated from the algebraic description of the operations.

Theorem 2.18.2. Let △ABC be a triangle, and let T1 and T2 squares on the sides AC and
BC outside the triangle. Let K and L be the centers of T1 and T2, and X is the midpoint
of AB. Then XK and XL have the same length.

Proof. Let a =
−→
AC, b =

−−→
BC, and let R = Rπ/2 be the rotation by π/2 operator. Observe

that we can express all relevant vectors in our picture using a,b, R: for example
−−→
AC ′ = R(a),

−−→
BC ′′ = −R(b).
We have

−−→
XK =

−−→
XA+

−−→
AK =

−→
BA

2
+

−→
AC +

−−→
AC ′

2
=

−a+ b

2
+

a+R(a)

2
=

R(a) + b

2
,

−−→
XL =

−−→
XB +

−→
BL =

−→
AB

2
+

−−→
BC +

−−→
BC ′′

2
=

−b+ a

2
+

b−R(b)

2
=

a−R(b)

2
.

The idea of the proof is that we suspect that not only XK and XL are of the same length
but one is the π/2 rotation of the other. Hence we calculate

R(
−−→
XL) = R

(
a−R(b)

2

)
=

R(a)−R(R(b))

2
.

Observe that applying R twice on a vector is the same as multiplication by −1. Indeed,
Rπ/2Rπ/2 = Rπ =multiplication by (−1). Hence

R(
−−→
XL) =

R(a) + b

2
=

−−→
XK,

what we wanted to prove.
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The proof above is not the shortest or most elegant proof, but illustrates the main point:
naming sufficient vectors and operations (but not more) that determine the picture we can
express any other vectors in terms of the named ones. Then we can make comparisons among
any two. A more “elegant” version of the same proof will be given in Problem 2.18.3.

Theorem 2.18.3 (Napoleon Bonaparte2). Let △ABC be an arbitrary triangle and let Ta,
Tb, Tc by regular (a.k.a. equilateral) triangles on the sides of a, b, c, outside of ABC. Let
A′, B′, C ′ be the centers of Ta, Tb, Tc. Then △A′B′C ′ is a regular triangle.

Figure 2.10: Napoleon’s theorem

Proof. Let b =
−→
AB and c =

−→
AC, and let R = Rπ/3 be the rotation by π/3 operator. Our

goal is to express relevant vectors, namely
−−→
A′B′ and

−−→
A′C ′ in terms of these.

2yes, him
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First observe that if x is a side vector of a regular triangle then the vector pointing from a
vertex to its center as drawn in Picture 2.10 (b) is (x+R(x))/3. Therefore we have

−−→
AB′ =

c+R(c)

3
,

−−→
CA′ =

b− c+R(b− c)

3
,

−−→
BC ′ =

−b+R(−b)

3
,

see Picture 2.10 (c). Now we can express

−−→
A′B′ = −b− c+R(b− c)

3
− c+

c+R(c)

3
=

−1

3
b− 1

3
c− 1

3
R(b) +

2

3
R(c),

−−→
A′C ′ = −b− c+R(b− c)

3
− c+ b+

−b+R(−b)

3
=

1

3
b− 2

3
c− 2

3
R(b) +

1

3
R(c).

What we want to prove is R(
−−→
A′B′) =

−−→
A′C ′ so let us calculate

R(
−−→
A′B′) = R

(
−1

3
b− 1

3
c− 1

3
R(b) +

2

3
R(c)

)
=

−1

3
R(b)− 1

3
R(c)− 1

3
R(R(b))+

2

3
R(R(c)).

Looking at Picture 2.10 (d) we see that R(x) = x+R(R(x)), and hence R(R(x)) = R(x)−x.
We further have

R(
−−→
A′B′) =

−1

3
R(b)− 1

3
R(c)− 1

3
(R(b)− b) +

2

3
(R(c)− c) =

1

3
b− 2

3
c− 2

3
R(b) +

1

3
R(c).

This last expression is the same as the expression for
−−→
A′C ′ above, hence R(

−−→
A′B′) =

−−→
A′C ′

what we wanted to prove.

Problems

2.18.1. Let R denote the rotation by 30o (= π/6) counterclockwise. Simplify the expressions
R12(x), R13(x), R100(x), R6(x). Consider the polynomial p(x) = x6 + x0. What is p(R)(x)
for any x? Consider the polynomial p(x) = x4 − x2 + x0. What is p(R)(x) for any x?

2.18.2. Let R denote the rotation by π/9. Write down a (non-zero) polynomial p(R) in R,
such that for all x we have p(R)(x) = 0. Let R denote the rotation by π/10. Write down
a (non-zero) polynomial p(R) in R, such that for all x we have p(R)(x) = 0. Let R denote
the rotation by π/12. Write down a (non-zero) polynomial p(R) in R, such that for all x we
have p(R)(x) = 0.

PROJECT 6. Try to find the smallest degree polynomials for each of the three R’s in the
exercise above. Read about “cyclotomic polynomials.”
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2.18.3. Consider the situation of Theorem 2.18.2. Express the vector
−−→
XL in terms of the

vectors
−→
AC and

−−→
BC ′′ (e.g. using Problem 2.6.7). Express the vector

−−→
XK in terms of the

vectors
−−→
AC ′ and

−−→
BC. Look at the expression you got for

−−→
XL, and term by term apply the

rotation R. You should get your expression for
−−→
XK. Write down the obtained proof for

Theorem 2.18.2.

2.18.4. Let P,Q,R, S be the centers of the squares that are described externally on the
sides of a quadrilateral (in this order). Prove that PR and QS are of the same length, and
are perpendicular to each other.

2.19 Wedge product of two plane vectors

In Calculus we learn the geometry and the algebra of the notion of cross product a × b of
two vectors a,b ∈ R3 in 3-space. Geometrically a× b has length |a||b| sin θ (where θ is the
angle between a and b), it lies in the line orthogonal to the plane spanned by a and b and
its direction satisfies the right-hand rule. Algebraically

⟨a1, a2, a3⟩ × ⟨b1, b2, b3⟩ = ⟨a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1⟩.

Plane vectors ⟨a1, a2⟩ can be considered space vectors by ⟨a1, a2, 0⟩. If we take the cross
product of two such plane-space vectors then we obtain a vector of the form ⟨0, 0, ∗⟩. We do
not want to keep carrying the (0, 0)-part, hence we give a new definition capturing only the
third coordinate.

Definition 2.19.1. The wedge product a ∧ b of two plane vectors a = ⟨a1, a2⟩,b = ⟨b1, b2⟩
is the third coordinate of the cross product ⟨a1, a2, 0⟩ × ⟨b1, b2, 0⟩.

From the arguments above we obtain that

� (algebra) ⟨a1, a2⟩ ∧ ⟨b1, b1⟩ = a1b2 − a2b1,

� (geometry) a ∧ b = ±|a||b| sin θ. Since |a||b| sin θ is the area of a the parallelogram
spanned by a and b (see figure below), we have

a ∧ b = ±Area(parallelogram spanned by a and b).

Analysing the right-hand rule mentioned above we can determine wether + or - stand
in the formula above: if the direction of b is obtained from the direction of a by
a counterclockwise rotation by not more than π then the sign is positive, otherwise
negative.
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The algebraic interpretation easily proves the following properties.

Proposition 2.19.2. We have

(i) (anti-symmetry) a ∧ b = −b ∧ a, a ∧ a = 0,

(ii) (bilinearity)

(a+ b) ∧ c = a ∧ c+ b ∧ c, c ∧ (a+ b) = c ∧ a+ c ∧ b,

(λ · a) ∧ b = λ · a ∧ b, a ∧ (λ · b) = λ · a ∧ b.

(iii) We have a ∧ b = 0 if and only if a and b are parallel.

Again, the power of this operation is the duality between the properties just listed (proved by
algebra) and the geometric interpretation. Here is an application of the the wedge product.

Proposition 2.19.3. The points A,B,C are collinear if and only if A∧B+B∧C+C∧A = 0.

Proof. The points A,B,C are collinear if and only if the vectors
−→
BA and

−−→
CB are in one line.

They are in one line if and only if their spanned parallelogram degenerates to a segment, i.e.
has area 0. Hence A,B,C are in one line if and only if

0 = (A−B) ∧ (B − C) = A ∧B − A ∧ C −B ∧B +B ∧ C = A ∧B +B ∧ C + C ∧ A.

Before Proposition 2.19.3 our algebraic interpretations of collinearity were Propositions 2.4.1
and 2.4.2. All the theorems proved using those two propositions have alternative proofs using
our new algebraic interpretation Proposition 2.19.3. We will not reprove earlier theorems
though (students may find it a good exercise), but rather give some new incidence theorem,
and as a change we will prove them using Proposition 2.19.3.

Theorem 2.19.4 (Newton-Gauss line). Let a, b, c, d be four pairwise intersecting lines (this
configuration is called a complete quadrilateral). The pairwise intersections are six points.
Three pairs of these six points are not connected by the lines a, b, c, d, these are called diag-
onals (PS, RQ, UV in the picture). The midpoints of the three diagonals are collinear.
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Proof. Using the notation of the picture consider the sum of the following twelve terms

P ∧R P ∧Q S ∧R S ∧Q
R ∧ U Q ∧ V R ∧ V Q ∧ U
U ∧ P V ∧ P V ∧ S U ∧ S

We will view this sum in two different ways.
First: The sum of the terms in each column is zero, because the triples of points (P,R, U),
(P,Q, V ), (S,R, V ), (S,Q, U) are collinear, see Proposition 2.19.3. Hence the total sum is
zero.
Second: The first row is 4 times (P + S)/2 ∧ (R + Q)/2, the second row is 4 times (R +
Q)/2 ∧ (U + V )/2. The third row is 4 times (U + V )/2 ∧ (P + S)/2.
We conclude that

P + S

2
∧ R +Q

2
+

R +Q

2
∧ U + V

2
+

U + V

2
∧ P + S

2
= 0,

and hence according to Proposition 2.19.3 (P +S)/2, (R+Q)/2, (U+V )/2 are collinear.

Theorem 2.19.5 (“parallel case of Pappus’ theorem”). Let A,B,C be collinear points and
let A′, B′, C ′ be collinear. Then two of

AB′||A′B, BC ′||B′C, AC ′||A′C

imply the third.
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Proof. Consider the following three numbers

(A−B′) ∧ (A′ −B), (B − C ′) ∧ (B′ − C), (C − A′) ∧ (C ′ − A).

The vanishing of these three numbers is equivalent to the three parallelity conditions of the
theorem, according to Proposition 2.19.2(iii).
However, one can distribute the sum of these three numbers, use the anti-symmetry property
of ∧ and conclude that the total sum is 0. Hence the vanishing of two of them indeed implies
the vanishing of the third one.

We will learn more on Pappus’ theorem in Section 3.

Problems

2.19.1. In the △ABC let the side lengths be a = 5, b = 6, c = 7. Let K be a point on the
AB side with distance 2 from A. Let L be a point on the AC side with distance 3 from A.
What is the ratio of the areas of △ABC and △AKL?

2.19.2. Let D,E, F be points on the sides AB, BC, CA of a triangle, dividing the sides in
the ratios k1 : 1, k2 : 1, k3 : 1. Show that

Area(△DEF )

Area(△ABC)
=

1 + k1k2k3
(1 + k1)(1 + k2)(1 + k3)

.

2.20 A 3D view of plane geometry, triple product

In Calculus we learned the geometry and algebra of the triple product (a × b) · c of three
space vectors a,b, c. It will be convenient to use the following notation a∧b∧c = (a×b) ·c,
and we may call it the triple product, or triple wedge product of a, b, c. In particular the
following hold
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� a ∧ b ∧ c = (a× b) · c = a · (b× c);

� a∧b∧c is plus or minus the volume of the parallelepiped spanned by the space vectors
a,b, c;

�

(a1, a2, a3) ∧ (b1, b2, b3) ∧ (c1, c2, c3) = det

a1 a2 a3
b1 b2 b3
c1 c2 c3

 ;

� (3-linearity) a ∧ b ∧ c is linear in each of the variables. Linearity in the first variable
means

(a± a′) ∧ b ∧ c = a ∧ b ∧ c± a′ ∧ b ∧ c,

(λa) ∧ b ∧ c = λ · a ∧ b ∧ c,

and linearity in the second and third variables are similar;

� (antisymmetry) a∧b∧c = b∧c∧a = c∧a∧b = −a∧c∧b = −c∧b∧a = −b∧a∧c.

In view of the second property above it makes no sense of considering the triple product
of vectors lying in the (x, y, 0) plane. A useful tool, however is considering our plane as
the z = 1 plane in 3-space. That is, if a point was (a1, a2) earlier, now we consider it as
(a1, a2, 1).
What we gained is a new operation: we can form the triple product A ∧ B ∧ C for three
points. What we lost is that we partially lost our earlier operations: for example A+B does
not make sense any more since (a1, a2, 1)+ (b1, b2, 1) = (a1+ b1, a2+ b2, 2) is not in the z = 1
plane any more. However, for example xA+ yB makes sense if x+ y = 1.

Proposition 2.20.1. For a triangle △ABC in the z = 1 plane we have

Area(△ABC) = ±1

2
A ∧B ∧ C,

and the sign is positive if and only if going around the triangle in the order A, B, C is
counterclockwise.

The proof is left as an exercise.

Corollary 2.20.2. The three points A,B,C of the z = 1 plane are collinear if and only if
A ∧B ∧ C = 0.

Proof. Both conditions are equivalent to the condition that the volume of the parallelepiped
spanned by the space vectors A,B,C is zero.
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Corollary 2.20.2 is now our 4th algebraic interpretation of collinearity of three points in the
plane—however this in new settings. Again, all theorems that were proved using any of the
earlier three interpretations (Propositions 2.4.1, 2.4.2, 2.19.3) can be proved with this new
one too—just we need to be careful using operation that make sense in the z = 1 plane. Let
us illustrate this with the following new proof Menelaus’ theorem 2.7.1.

Proof. Consider our triangle in the z = 1 plane. We have K = xB + x′C, L = yC + y′A,
M = zA+ z′B with x+ x′ = y + y′ = z + z′ = 1. According to Corollary 2.4.3 we have

0 = K ∧ L ∧M = (xB + x′C) ∧ (yC + y′A) ∧ (zA+ z′B).

Using 3-linearity and antisymmetry of the triple product we can distribute the above expres-
sion and obtain

0 = (xyz + x′y′z′)A ∧B ∧ C.

SinceABC is a triangle (with non-zero area) we haveA∧B∧C ̸= 0. Therefore xyz+x′y′z′ = 0
which is a rearrangement of Menelaus’ theorem.

Problems

2.20.1. If A′, B′, C ′ are the midpoints of BC, CA, AB respectively, then show that

4A′ ∧B′ ∧ C ′ = A ∧B ∧ C.

Deduce that Area(△A′B′C ′) = 1
4
Area(△ABC).

2.20.2. Reprove Problem 2.19.2 using the triple wedge operation.

2.20.3. Give a proof of Proposition 2.20.1. [Hint: Let T be the tetrahedron with vertexes
(0, 0, 0), A,B,C. Use the geometric interpretation of the triple product to conclude that the
volume of T is plus or minus one sixth of the triple product ABC. Finish the proof by
observing that the volume of T is one third of the area of the △ABC.]

2.20.4. Reprove Ceva’s theorem, using the triple wedge operation. Hint: Try to rephrase
the “high-school style” proof from the end of Section 2.9.

2.20.5 (P). Let the side lengths of the △ABC be a, b, c (a is opposite with A etc), and let
the angles be α, β, γ. Let the foot of the altitude from A be D. Prove that

aD = (b cos γ)B + (c cos β)C.

Deduce that the area of the triangle formed by the feet of the altitudes is

2 cosα cos β cos γ · Area(△ABC).
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Chapter 3

Projective Geometry

3.1 Projective plane as extended affine plane

In relation with some exercises in Chapter 1 we developed the intuitive idea that we would
like to send a point in a configuration to “infinity”. This idea is made precise by defining
a new object, the projective plane P2. Just like the affine plane has points and lines and
the incidence relation between them, the projective plane will also have points and lines
and incidence relation between them. However, the projective plane will have “more” points
and lines. Moreover the incidence relation will be somewhat more “complete” and more
“symmetric” than in the affine case.

Let a be a line on the Euclidean plane. The collection of all lines parallel with a will be called
a “parallelism class” of lines on R2, and let’s call this object Ia. So, if a||b then Ia = Ib. One
way of thinking of the I∗’s as “symbols” associated with lines in such a way that parallel
lines have the same symbol.

Definition 3.1.1. Let points of P2 be

� points of R2 (these will be called affine points),

� all the Ia’s (these will be called ideal points).

Let the lines of P2 be

� extended lines of R2: extend each line in R2 with its own parallelism class, that is
extend a with Ia,

� the collection of all ideal points is declared to be on one new line, the ideal line.
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Hence we added to the points of the plane R2 infinitely many new points, one for each
parallelism class of lines on R2. We also added one new line. Observe that the lines coming
from lines in R2 are exactly one point “longer” on P2.

PROJECT 7. One way of imagining Ia is imagining it at the “end” of a. Since a has
two “ends”, we must visualize it at both ends of a at the same time. In this visualization,
if a point “goes to infinity” in one direction of the projective line a ∪ {Ia}, then after it
disappears in one direction, it comes back at infinity at the other “end” of a. Let A,B,C be
the vertices of a triangle in a counterclockwise order. Imagine that we send this triangle to
“infinity” in one direction, and as described above, it reappears from the opposite direction.
Will the reappearing triangle be named ABC clockwise or counterclockwise?

3.2 Incidence properties of P2

The following observation can be established by checking all possible cases.

Proposition 3.2.1. For any two points there is a unique line passing through them. For
any two lines there is a unique point contained in both of them.

3.3 Remarkable incidence theorems

Desargues’ theorem holds in P2.

Theorem 3.3.1 (Desargues’ theorem—projective). Two triangles are perspective with re-
spect to a point if and only if they are perspective with respect to an axis.

PROJECT 8. Learn the “vector calculus” of projective geometry—by searching for “pro-
jective coordinates”. Then prove the projective Desargues’ theorem. The calculation should
be similar to the calculation in the proof of the affine Desargues’ theorems in Chapter 2.

PROJECT 9. Let S1 and S2 be planes in R3 intersecting in a line. Let A be a point in R3,
not on these planes. There is a natural notion of projecting points of S1 to points of S2 from
A (see Figure ?). We obtain a map pA from a subset of S1 to S2. Observe that this map is
not defined for all points of S1 and that it is not surjective. Find a natural extension

p̃A : P2(S1) → P2(S2)

where P2(Si) is the projective plane obtained by extending Si, and conclude that p̃A is
bijective. Interpret the outcome as a visualization of the ideal line of S1 in S2. Use this idea
to prove the projective Desargues’ theorem, based on the fact that we already proved the
affine Desargues’ theorem in Chapter 2.
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Pappus’ theorem holds in P2.

Theorem 3.3.2 (Pappus’ theorem—projective version). If A,B,C are collinear and A′, B′, C ′

are collinear, then K = AB′ ∩A′B, L = BC ′ ∩B′C, and M = CA′ ∩C ′A are also collinear.

PROJECT 10. Prove the projective Pappus’ theorem using projective coordinates, c.f. Pro-
ject 8.

PROJECT 11. Prove the projective Pappus’ theorem using the idea of Project 9.

3.4 Problems

3.4.1. Prove Proposition 3.2.1.

The next three problems refer to the following part of the projective Desargues theorem: If
△ABC and △A′B′C ′ are perspective w.r.t. a point P , then K = AB∩A′B′, L = BC∩B′C ′,
and M = CA ∩ C ′A′ are collinear.

3.4.2. Phrase the affine geometry theorem that we obtain from this theorem if K is an ideal
point (and none of the other points are ideal). You do not need to prove this theorem, just
phrase it.

3.4.3. Phrase the affine geometry theorem that we obtain from this if theorem A is an ideal
point (and none of the other points are ideal). You do not need to prove this theorem, just
phrase it.

3.4.4. Phrase the affine geometry theorem that we obtain from this if theorem P,A,A′ is an
ideal point (and none of the other points are ideal). You do not need to prove this theorem,
just phrase it.

The next two problems refer to the projective Pappus’ Theorem 3.3.2.
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3.4.5. Phrase the affine geometry theorem that we obtain from this theorem if K and L
are ideal points (and none of A,B,C,A′, B′, C ′ are ideal). You do not need to prove this
theorem, just phrase it.

3.4.6. Phrase the affine geometry theorem that we obtain from this theorem if A,B,C are
ideal points (and none of the other points are ideal). You do not need to prove this theorem,
just phrase it.

3.4.7. Let ABCD be a quadrilateral in P2. Let A1, B1, C1, D1 be on the AB,BC,CD,DA
sides, respectively, so that A1D1, BD and B1C1 are concurrent. Prove that A1B1, AC and
C1D1 are also concurrent.



Chapter 4

Spherical Geometry

Now we will study the geometry on the sphere of radius R. Let us fix the positive number
R for the whole chapter.

4.1 Points, lines, triangles, polarity

In spherical geometry the role of the “plane” will be played by the sphere

S2 = {x ∈ R3 : ||x|| = R}.

When we say point, we mean a point on S2. For points P and −P in S2 we will say they
are antipodal.
The role of straight lines will be played by the “great circles” in S2. A great circle is defined
to be the intersection S2 ∩ P where P is a plane in R3 containing the origin.
Now we have a geometry of “points” and “lines”. The following point-line incidence proper-
ties are obvious.

Proposition 4.1.1. In spherical geometry

� given two non-antipodal points there is a unique line passing through them;

� the intersection of any two lines is exactly two points.

Definition 4.1.2.

� For two (not antipodal) points of S2 there is exactly one great circle connecting them.
The two points divide this great circle to two arcs. The shorter of the two will be called
a spherical segment connecting the two points.
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� For three spherical points A,B,C (that are not contained in a spherical line) the union
of the three spherical segments AB, BC, CA is called a spherical triangle.

� For a spherical line a = S2 ∩ P there are two points X, Y on S2 with X ⊥ P , Y ⊥ P .

We will call these two points the poles of a.

� Let △ABC be spherical triangle. Let C ′ be a pole of AB contained in the same
hemisphere as C. Let B′ be a pole of CA contained in the same hemisphere as B. Let
A′ be a pole of BC contained in the same hemisphere as A. The spherical triangle
△A′B′C ′ is called the polar triangle of △ABC.

Theorem 4.1.3 (Bipolar Theroem). The polar triangle of the polar triangle of △ABC is
itself.

Proof. For the purpose of this proof, if X and Y are on S2 and X ⊥ Y then we will call the
spherical segment XY a quadrant.
We have that AB′ is a quadrant because B′ is a pole of AC. The segment AC ′ is a quadrant,
because C ′ is a pole of AB.
Since AB′ and AC ′ are quadrant, A must be a pole of B′C ′. What remains to be proved is
that A is on the same side of B′C ′ as A′.
The points A and A′ are on the same side of BC by definition of A′. Moreover A′ is a pole
of BC. Hence the segment AA′ is less than a quadrant.
Since AA′ is less than a quadrant, and A is a pole of B′C ′ (proved above), we must have
that A and A′ is on the same side of B′C ′.

4.2 Length, tangent vectors, angle

Definition 4.2.1. The distance d(X, Y ) between points X, Y ∈ S2 is defined to be

d(X, Y ) = R arccos

(
X

||X||
· Y

||Y ||

)
= R arccos

(
X · Y
R2

)
.
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Because of the geometric interpretation of dot product, d(X, Y ) is in fact R times the angle
between the vectors X and Y . This number is then the same as the length (in the Calculus
sense) of the spherical segment XY , see the figure below.

Thus, the odd looking definition of distance above is natural: it is the length measured on
the sphere.

Definition 4.2.2. A vector v ∈ R2 is called tangent to S2 at X ∈ S2 if v ⊥ X. The
collection of tangent vectors to S2 at X is called the tangent plane TXS

2.

It is natural to imagine arrows representing tangent vectors in such a way that the arrows
start at X. Thus TXS

2 coincides with the usual notion of a plane tangent to S2 at X.
Given a spherical segment connecting X and Y there is a unique unit vector v ∈ TXS

2 which
is determined by Y = αX + βv with β > 0. The vector v will be called the unit tangent
vector at X to the segment from X to Y .

Let v ∈ TXS
2 be a unit vector and consider the parameterized curve

s(t) = cos

(
t

R

)
X +R sin

(
t

R

)
v. (4.1)

First observe that this curve lies in S2. Indeed, for any t we have

s(t)s(t) =

(
cos

(
t

R

)
X +R sin

(
t

R

)
v

)(
cos

(
t

R

)
X +R sin

(
t

R

)
v

)
=XX︸︷︷︸

R2

cos2
(

t

R

)
+ Xv︸︷︷︸

0

2R cos

(
t

R

)
sin

(
t

R

)
+ vv︸︷︷︸

1

R2 sin2

(
t

R

)
=R2

(
cos2

(
t

R

)
+ sin2

(
t

R

))
= R2.
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The curve is also in the plane spanned by X and v. Hence the curve is in the intersection
of a plane with the sphere, that is, in a spherical line.
Now we are going to study the parametrization (4.1) with respect to the distance notion
defined above. Let a be in (0, Rπ]. Then s([0, a]) is a spherical segment and v is the unit
vector tangent to the spherical segment Xs(a) at X. We claim that the length of s([0, a]) is
a. Indeed,

d(X, s(a)) = R arccos

(
X ·

(
cos
(
a
R

)
X +R sin

(
a
R

)
v
)

R2

)
= R arccos

(
cos
( a
R

))
= a.

Moreover, for any t1, t2 with |t1− t2| < Rπ we have that the length of the s(t1)s(t2) segment
is |t1− t2| (Ex. 4.6.1 below.) This remarkable property of the parametrization (4.1) is called
“arc-length parametrization”, or “natural parametrization”.

Definition 4.2.3. The angle XY Z∠ is defined to be the angle of the following two vectors:
the unit tangent vector at Y to the segment Y X, and the unit tangent vector at Y to the
segment Y Z.

4.3 Sides and angles of polar triangles

Theorem 4.3.1. Let a, b, c be the sides and α, β, γ be the angles of a triangle △ABC. Let
a′, b′, c′ be the sides and α′, β′, γ′ be the angles of the polar triangle △A′B′C ′. Then

a′

R
= π − α,

b′

R
= π − β,

c′

R
= π − γ,

a

R
= π − α′,

b

R
= π − β′,

c

R
= π − γ′.

Proof. Because of symmetry and the Bipolar Theorem 4.1.3 it is enough to prove one of the
six statements. Let K = AB ∩ B′C ′, L = AC ∩ B′C ′. Since A is a pole of B′C ′ we have
KL = Rα.
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Then B′C ′ = B′L+KC ′ −KL = Rπ/2 +Rπ/2−Rα, proving a′ = R(π − α).

4.4 Laws of Cosines and Sines

Theorem 4.4.1 (Spherical Law of Cosines). In △ABC on the sphere (with usual notations)
we have

cos
( c

R

)
= cos

( a
R

)
cos

(
b

R

)
+ sin

( a
R

)
sin

(
b

R

)
cos γ.

Proof. Let u be the unit tangent vector of CA at C. Let v be the unit tangent vector of
CB at C. Then

A = cos

(
b

R

)
· C +R sin

(
b

R

)
· u, B = cos

( a
R

)
· C +R sin

( a
R

)
· v.

Therefore

c =d(A,B) = R arccos

(
A ·B
R2

)

=R arccos


R2︷ ︸︸ ︷

C · C cos
(

b
R

)
cos
(
a
R

)
+R2 sin

(
b
R

)
sin
(
a
R

) cos γ︷︸︸︷
u · v

R2

 ,

and rearrangement gives the Theorem.

Corollary 4.4.2 (Spherical Pythagorean Theorem). In S2, a triangle is a right triangle
(with hypotenuse c) if and only if cos

(
c
R

)
= cos

(
a
R

)
cos
(

b
R

)
.

Proof. This is the Spherical Law of Cosines for γ = π/2.
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Project. Write κ = 1/R in the Spherical Law Cosines and in the Spherical Pythagorean
Theorem. Then expand in Taylor series with respect to κ. Study the coefficients of 1, κ, κ2

on the two sides of the statements.

Theorem 4.4.3 (Spherical Triangle Inequality). In a spherical triangle we have c < a+ b.

Proof. We have

cos
(

c
R

)
= cos

(
a
R

)
cos
(

b
R

)
+ sin

(
a
R

)
sin
(

b
R

)
cos γ;

cos
((

a
R

)
+
(

b
R

))
= cos

(
a
R

)
cos
(

b
R

)
− sin

(
a
R

)
sin
(

b
R

)
.

The first line is the Law of Cosines, the second line is a trig identity. From trig we have
sin(a/R) sin(b/R) ∈ (0, 1), cos γ ∈ (−1, 1). Therefore the right hand side of the first line is
larger than the right hand side of the second line. Hence the same holds for the left hand
sides, i.e. cos(c/R) > cos((a+ b)/R). Since cos is strictly monotone decreasing on (0, π) this
implies c/R < (a+ b)/R and hence c < a+ b.

Theorem 4.4.4 (Dual Law of Cosines). In △ABC on the sphere (with usual notations)

− cos γ = cosα cos β − sinα sin β cos
( c

R

)
.

Proof. Apply the Law of Cosines to the polar triangle.

Remark 4.4.5. The dual Law of Cosines calculates γ if α, β and c are given. In Euclidean
geometry one can calculate γ as long as α and β are given, with no need for c! Also, this
theorem shows that the sum of the angles of a triangle is not constant, keeping α and β
the same, but changing c does change γ. We will learn more about the sum of the angles
α + β + γ in the next section.

Theorem 4.4.6 (Spherical Law of Sines). In △ABC on the sphere (with usual notations)

sinα

sin
(
a
R

) =
sin β

sin
(

b
R

) =
sin γ

sin
(

c
R

) .
Proof. From the Law of Cosines we have

cos γ =
cos
(

c
R

)
− cos

(
a
R

)
cos
(

b
R

)
sin
(
a
R

)
sin
(

b
R

) .

From this, using sin2+cos2 = 1 we have

sin γ =

√
1− cos2

(
a
R

)
− cos2

(
b
R

)
− cos2

(
c
R

)
+ 2 cos

(
a
R

)
cos
(

b
R

)
cos
(

c
R

)
sin
(
a
R

)
sin
(

b
R

) .
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Dividing both sides by sin
(

c
R

)
we see that the right hand side becomes symmetric in a, b, c.

This proves the theorem.

Theorem 4.4.7. Let R = 1. The common value of sinα/ sin a = sin β/ sin b = sin γ/ sin c
is equal

6Vol(OABC-tetrahedron)

sin a sin b sin c
,

in other words the
√

-expression in the proof above is equal 6 times the volume of the par-
allelepiped.

Proof. We can move the△ABC into the special positionA = (1, 0, 0), B = (∗, positive, 0), C =
(∗, ∗, positive). Then a good picture and calculation shows that

A = (1, 0, 0), B = (cos c, sin c, 0), C = (cos b, sin b cosα, sin b sinα).

Using the determinant formula for the volume of the OABC tetrahedron we obtain the
theorem.

4.5 Anglesum, area, Girard’s formula

If two great circles intersect in angle θ, then the domain between the two (on both sides)
will be called a θ-lune.

Lemma 4.5.1. The area of a θ-lune is 4θR2.

Proof. The area of a θ-lune is a linear function of θ. For θ = π we get the surface area of
S2, which is 4πR2.

Theorem 4.5.2 (Girard’s formula). The sum of the angles of a spherical triangle is π plus
the area of the triangle, ie.

α + β + γ = π +
Area(△ABC)

R2
.
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Proof. Consider a spherical triangle T with angles α, β, γ. The α-lune, β-lune, and γ-lune
together cover the sphere 1-sheeted, except they cover T 3 times, as well as a congruent copy
T ′ of T “on the other side” also 3 times.

Hence

Area(α-lune) + Area(β-lune) + Area(γ-lune) = Area(S2) + 2Area(T ) + 2Area(T ′).

And therefore, using Lemma 4.5.1 we have

4αR2 + 4βR2 + 4γR2 = 4R2π + 4Area(T ),

which proves the theorem.

Corollary 4.5.3. The sum of the angles of a spherical triangle is always strictly larger
than π.

Remark 4.5.4. In Euclidean geometry the sum of the angles of a triangle is π (= 180o), so
Girard’s formula says that in spherical geometry the sum of angles is the Euclidean value
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plus a correction term. The correction term equals the area divided by R2. For small (area)
triangles this correction term is small and the sum of the angles is close to the expected
Euclidean value π.

Remark 4.5.5. It is tempting to regard the flat Euclidean plane as the surface of the sphere
with R = ∞ (imagine spheres with larger and larger radii, and how they will get less and
less curved). Girard’s formula is consistent with this point of view. In the R → ∞ limit
Girard’s formula recovers the Euclidean α + β + γ = π theorem.

Remark 4.5.6. In Calculus language the “correction term” Area /R2 can be written as∫∫
△ABC

KdA,

where K = 1/R2, what we call the Gaussian curvature of the sphere. Phrasing Girard’s
formula as

α + β + γ = π +

∫∫
△ABC

KdA

has a far-reaching generalization in differential geometry, called Gauss-Bonnet theorem.

A spherical triangle is always contained in a hemisphere. Thus, the area of a spherical
triangle is at most half the area of S2, that is 2πR2. Hence, from Girard’s formula we obtain
an upper bound for the angle sum as well, namely

π < α + β + γ < 3π.

Proposition 4.5.7. For the perimeter p of a triangle on the sphere we have 0 < p < 2πR.

Proof. Applying the π < α + β + γ < 3π estimate for the polar triangle we obtain the
statement.

Theorem 4.5.8. The sum of the angles of a spherical quadrilateral is 2π plus the area
divided by R2.

Proof. Cut the quadrilateral by a diagonal to two triangles T1 and T2. For the two triangles
we have Girard’s formula

α + β1 + δ1 = π +Area(T1)/R
2,

γ + β2 + δ2 = π +Area(T2)/R
2.
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Adding together we obtain

α + β + γ + δ = 2π +Area(T1 ∪ T2)/R
2.

Theorem 4.5.9. The sum of the angles of a spherical n-gon is the Euclidean value (n− 2)π
plus the area of the n-gon divided by R2.

Proof. The idea of the preceding proof can be applied iteratively.

4.6 Problems

4.6.1. Consider the parametrization (4.1). Prove that for |t1 − t2| < Rπ we have that the
length of the s(t1)s(t2) segment is |t1 − t2|.

4.6.2. The coordinates of Chapel Hill NC are 35.93oN, 79.03oW. Look up what these coor-
dinates mean. Look up the coordinates of Paris, France. Find the distance between Chapel
Hill and Paris (call the radius of the Earth R). Hint: the Law of Cosines will be useful.

4.6.3. Let L and W be points on the Earth (radius R), with coordinates 38.8oN, 9.15oW
and 38.8oN, 77oW (why L and W?). What is their spherical distance?

4.6.4. The points L and W of the exercise above are on the same latitude (38.8oN). What
is their distance measured on that latitude?

4.6.5. Prove Theorem 4.5.9 in detail.

4.6.6. We saw above that π < angle sum of a spherical triangle < 3π. Prove that this
estimate is sharp.
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4.6.7. Let P be a plane not containing the origin. Prove that if P ∩ S2 is not empty, then
it is a circle in spherical geometry. That is, prove that there exist a point C ∈ S2 and a
nonnegative number r such that P ∩ S2 = {A ∈ S2 : d(A,C) = r}.

4.6.8. Let R = 1.

(a) Let the sides of a triangle in spherical geometry be .3, .4, and .5. Find its angles.

(b) Let the sides of a triangle in spherical geometry be .03, .04, and .05. Find its angles.

(c) Let the sides of a triangle in spherical geometry be .003, .004, and .005. Find its angles.

4.6.9. Consider Chapel Hill, Chicago, and Dallas. Find the distances between any two of
these cities online. Using these distances find the angle between the Chapel Hill-Chicago
and the Chapel Hill-Dallas segments.

4.6.10. Consider Chapel Hill, Chicago, and Dallas. Find the distances between any two of
these cities online. Calculate the area of the triangle with these vertices on the surface of
the Earth.

4.6.11. Let a, b, c and α, β, γ be the side lengths and angles of a spherical triangle. Assume
γ = π/2 (that is, we have a right triangle). Express sinα in terms of the sides. Verify that
for small sides (compared to R) your result is close to the Euclidean value of a/c.

4.6.12. Give a proof of the spherical Law of Sines based on the result of Exercise 4.6.11
along the lines of Proof 2 of the Euclidean Law of Sines (Theorem 2.16.4).

4.6.13. Let a, b, c and α, β, γ be the side lengths and angles of a spherical triangle. Assume
γ = π/2 (that is, we have a right triangle). Express cosα in terms of the sides. Verify that
for small sides (compared to R) your result is close to the Euclidean value of b/c.

4.6.14. Let a, b, c and α, β, γ be the side lengths and angles of a spherical triangle. Assume
γ = π/2 (that is, we have a right triangle). Express tanα in terms of the sides. Verify that
for small sides (compared to R) your result is close to the Euclidean value of a/b.

4.6.15. Given two distinct points X, Y ∈ S2, find the set of points of S2 which are at equal
distance from X and Y .

4.6.16. Define the notion of perpendicular bisector of a spherical segment. Prove that the
perpendicular bisectors of the sides of a triangle are concurrent, and that their intersection
is of the same distance from the vertices. Deduce the existence of circumscribed circle of
△ABC.
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4.6.17. Let P be a point and l be a line on S2. Assume P is not a pole of l. Prove that
there is a unique line k passing through P and intersecting l in a right angle. Show that the
shortest spherical distance connecting P with l is the segment⊂ k.

4.6.18. Given two lines l1, l2 ⊂ S2, find the set of points of S2 which are at equal distance
from l1 and l2.

4.6.19. Define the notion of angle bisectors of a triangle. Prove that the angle bisectors of
the a triangle are concurrent, and that their intersection is of the same distance from the
sides. Deduce the existence of inscribed circle of △ABC.

4.6.20. Let l1 and l2 be different lines on S2. Prove that there is a unique line k perpendicular
to both.

4.6.21. Consider the ABC spherical triangle, and its medians. Consider also the “flat”
triangle in R3 whose vertices are ABC. Using Euclidean properties of the flat △ABC prove
that the medians of the spherical △ABC are concurrent.

4.6.22. Let a spherical triangle have two angles π/2. Prove that two of its sides are Rπ/2.

4.6.23. Let the equilateral spherical triangle have area R2π/2. What is its side length?



Chapter 5

Hyperbolic Geometry

5.1 Minkowski space, Lorentz transformations

Let us fix a positive number c, we will call it the “speed of light”.

Definition 5.1.1 (Minkowski1 Inner Product). For any vectors x and y in 3-space the
Minkowski inner product is

Φ((x1, x2, x3), (y1, y2, y3)) = x1y1 + x2y2 − c2x3y3.

The space R3 equipped with the Minkowski inner product is called the Minkowski space, the
Minkowski space-time, or the space of special relativity. We will call a vector x in Minkowski
space

� time-like if Φ(x,x) < 0,

� light-like if Φ(x,x) = 0, and

� space-like if Φ(x,x) > 0.

Observe that light-like vectors x = (x1, x2, x3) satisfy

(cx3)
2 = x2

1 + x2
2

and thus form a double cone, called the “light-cone.” Vectors O⃗A with A inside the double
cone are time-like, and with A outside the light-cone are space-like, see Figure 5.1.
Let us study “natural” linear transformations of the Minkowski space.

1Hermann Minkowski, 1864-1909

67
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Figure 5.1: The light-cone formed by all light-like vectors. On the outside is the set of all
space-like vectors x satisfying Φ(x,x) = 5. On the inside is the set of all time-like vectors x
satisfying Φ(x,x) = −1. The top component of this 2-sheeted hyperboloid is the hyperbolic
plane H2.
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Definition 5.1.2. A 3× 3 matrix A is called a Lorentz matrix, if

Φ(Ax,Ay) = Φ(x, y)

for any two vectors x, y ∈ R3. The map R3 → R3, x 7→ Ax is called a Lorentz transformation.

Lorentz matrices form a group. That is, the identity matrix is a Lorentz matrix, the product
of Lorentz matrices is a Lorentz matrix, Lorentz matrices are invertible and their inverses
are also Lorentz matrixes. These claims are left as Exercise 5.10.5. The group of Lorentz
matrices is called the Lorentz group, O(2, 1).
The matrices cosα − sinα 0

sinα cosα 0
0 0 1

 0 1 0
1 0 0
0 0 1

 (5.1)


1√

1−(v/c)2
0 −v√

1−(v/c)2

0 1 0
−v/c2√
1−(v/c)2

0 1√
1−(v/c)2



1 0 0
0 1√

1−(v/c)2
−v√

1−(v/c)2

0 −v/c2√
1−(v/c)2

1√
1−(v/c)2

 (5.2)

are Lorentz matrices for any α, v ∈ R with |v| < c. The last two are called the “Lorentz
boosts”.

PROJECT 12. Read an introduction to Special Relativity, and see how in that theory the
Lorentz transformations (in particular the Lorentz boosts) are derived as laws of physics,
from Einstein’s “fundamental postulates.”

Convention. For the rest of the book we will assume that c = 1. That is, we simply rescale
the third coordinate of the Minkowski space by c, and hence achieve that Φ has the form

Φ(x, y) = x1y1 + x2y2 − x3y3.

5.2 The hyperbolic plane

Definition 5.2.1 (Hyperbolic plane, hyperboloid model). We define H2 to be the top com-
ponent of the 2-sheeted hyperboloid x2

1 + x2
2 − x2

3 = −1:

H2 = {x ∈ R3 : Φ(x, x) = −1, x3 > 0}.
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Definition 5.2.2. Lines of H2 are defined to be the non-empty intersection of H2 with any
plane P containing the origin.

Now we have another geometry of points and lines, so we are interested in the incidence
properties, analogous to Proposition 4.1.1. To find those incidence properties a new “model”
of H2 will be useful.

Klein model. Let K2 = {(x1, x2, 1) ∈ R3 : x2
1 + x2

2 < 1}. Consider the following map f
from H2 to K2: for A ∈ H2 let f(A) = OA ∩K2.

Proposition 5.2.3. The map f is a one-to-one correspondence (a.k.a. bijection) between
H2 and K2.

Proof. Observe that for x = (x1, x2, x3) ∈ H2 we have f(x) = (x1/x3, x2/x3, 1). The injec-
tivity and the surjectivity of this map follow from straightforward calculations.

Observe that the f -image of a line in H2 is an open cord of K2 (that is, an open segment
connecting two points on the boundary circle of K2). Looking at point-line incidence on the
Klein model, the following statements are obvious.

Proposition 5.2.4 (Incidence properties of H2). In H2

(1) for any two points there is exactly one line connecting them.

(2) The intersection of any two lines is either empty or 1 point.

(3) For a line l and point P ̸∈ l there are infinitely many lines m passing through P parallel
to l (i.e. not intersecting l).

Recall that the first two of these incidence properties hold in Euclidean geometry too. The
Euclidean counterpart of the third one is

(3’) In the Euclidean plane, for a line l and point P ̸∈ l there is exactly one line m passing
through P parallel to l (i.e. not intersecting l).

Intellectuals of the 19th century argued whether we can decide empirically/theoretically
whether (3) or (3’) holds in reality. You can read about that debate, its history, and its
philosophical significance, if you search for the problem of parallels or the names of some of
the main constibutors: J. Bolyai, N. Lobachevsky, C.-F. Gauss.
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5.3 The hyperbolic plane is homogeneous and isotropic

When we studied spherical geometry we thought of it as a “homogeneous space”: there were
no distinguished points. This holds because there are dot product preserving transformations
of R3 mapping any point of the sphere to any other point. The space S2 is also “isotropic”.
Namely, there are no distinguished directions at a given point: all directions (say unit tangent
vectors) at the given point play the same role. This holds because for any two tangent unit
vectors u,v at X there is a dot product preserving transformation keeping X fixed but
mapping u to v.

In our H2 model some points look different than others. Say, the “vertex” of the hyperboloid,
(0, 0, 1) looks “special”. However, this is only an illusion. The illusion is caused by looking
at H2 with the Euclidean notion of length and angle in our mind. The Euclidean notions
of length and angle are derived from the dot product. The dot product is not relevant in
the theory of H2. We should look at natural transformations of R3 preserving not the dot
product, but the Minkowski inner product. Such natural transformations of the Minkowski
space (R3,Φ) are the Lorentz transformations from Section 5.1.

For the Lorentz transformations, the hyperbolic plane H2 turns out to be homogeneous and
isotropic:

� For any two points X, Y ∈ H2 there is a Lorentz matrix A with AX = Y (Exer-
cise 5.10.8).

� We can additionally require that A maps given directions at X and Y to each other
(Exercise 5.10.9).

5.4 Digression: Hyperbolic trig functions

Definition 5.4.1. Define sinh x = (ex−e−x)/2, cosh x = (ex+e−x)/2, tanhx = sinhx/ coshx.

To get familiar with these hyperbolic trigonometric functions do the following exercises.

• Draw their graphs. Prove that sinh is odd, cosh is even.

• Prove that cosh2 x− sinh2 x = 1 for all x.

• Prove that cosh′ x = sinhx, sinh′ x = coshx.

• Define arccosh as the inverse function of cosh |[0,∞). Draw its graph. Determine its domain
and range.
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sinhHxL

coshHxL

-4 -2 2 4

-10

-5

5
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5.5 Length, angle

Definition 5.5.1. The distance between two points X, Y ∈ H2 is defined by

d(X, Y ) = arccosh(−Φ(X, Y )).

We need to verify that this definition makes sense, that is, −Φ(X, Y ) is in the domain of
arccosh.

Theorem 5.5.2. For any X, Y ∈ H2, the Minkowski inner product satisfies Φ(X, Y ) ≤ −1.

Proof. By Cauchy-Schwartz, we observe

Φ(X, Y ) = x1y1 + x2y2 − x3y3 ≤
√
x2
1 + x2

2

√
y21 + y22 − x3y3 =

√
x2
3 − 1

√
y23 − 1− x3y3.

Now we only need to show that (x2
3− 1)(y23 − 1) ≤ (x3y3− 1)2. By rearranging terms, we see

that this condition is equivalent to (x3 − y3)
2 ≥ 0.

Proposition 5.5.3. We have d(X, Y ) ≥ 0, and d(X, Y ) = 0 if and only if X = Y .

Proof. The first statement is obvious from the definition of arccosh, and the second one
follows from careful examination of the estimates in the proof above.

Definition 5.5.4. For X ∈ H2 define X⊥ = {v ∈ R3 : Φ(X, v) = 0}.
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Observe that X⊥ is a plane in R3.

Theorem 5.5.5. We have X⊥ = TX H2, that is the tangent plane to H2 at X in R3.

Proof. Tangent vectors to H2 at X are derivatives of curves in H2 passing through X. Let
ϕ(t) = (ϕ1(t), ϕ2(t), ϕ3(t)) be such a curve with ϕ(0) = X. Then ϕ(t) ⊂ H2 for all t implies
ϕ1(t)

2+ϕ2(t)
2−ϕ3(t)

2 = −1. Differentiating (and dividing by 2) gives ϕ1(t)ϕ
′
1(t)+ϕ2(t)ϕ

′
2(t)−

ϕ3(t)ϕ
′
3(t) = 0. Substituting t = 0 gives Φ(X,ϕ′(0)) = 0. So we obtained that TX H2 is part

of X⊥, but both are planes, so they must be equal.

Theorem 5.5.6. All non-zero elements in TX H2 are spacelike.

The proof of this theorem is left as an exercise (Problem 5.10.2).

Let X ∈ H2, v ∈ TX H2 with Φ(v, v) = 1. Consider the curve

s(t) = cosh t ·X + sinh t · v.

Proposition 5.5.7. The curve s is in H2. We have s(0) = x. The curve s(t) is contained
in a line in H2. We have d(X, s(t)) = t.

Proof. The calculation

Φ(s(t), s(t)) = Φ(cosh t ·X + sinh t · v, cosh t ·X + sinh t · v) =

cosh2 t · Φ(X,X) + 0 + 0 + sinh2 t · Φ(v, v) = sinh2 t− cosh2 t = −1

shows that s(t) ⊂ H2. Since s(t) is also in the plane spanned by the vectors X, v, we have
that s(t) is in a hyperbolic line.
The distance formula is proved by

d(X, s(t)) = arccosh(−Φ(X, cosh t ·X + sinh t · v)) =

arccosh(− cosh t · Φ(X,X) + 0) = arccosh(cosh t) = t.

Remark 5.5.8. In Calculus the length of a curve γ is defined as
∫ b

a
||γ′(t)||dt. When defining

distance on H2 we could have used the obvious analogue
∫ b

a

√
Φ(γ′(t), γ′(t))dt of this def-

inition (note that all γ′(t) vectors are spacelike, so the square root makes sense!). Let
us calculate the length of s([0, t0]) above, using this Calculus motivated definition too:∫ t0
0

√
Φ(s′(t), s′(t))dt. Since s′(t) = sinh t ·X + cosh t · v, we have

Φ(s′(t), s′(t)) = sinh2 t · Φ(X,X) + cosh2 t · Φ(v, v) = − sinh2 t+ cosh2 t = 1.
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Hence the Calculus motivated definition gives
∫ t0
0

√
1dt = t0. This is the same expression we

obtained from Definition 5.5.1. Our strange-looking d(X, Y ) = arccosh(−Φ(X, Y )) definition
is in fact consistent with the Calculus motivated formula.

Angle.
We also want to define the notion of angle. Let X ∈ H2, u, v ∈ TX H2 (u, v non zero), and
consider the rays starting at X and going in the u, respectively v direction. It is natural to
define the angle of these two rays to be the angle of u and v in TX H2, see Figure 5.2. Since
the vectors of TX H2 are space-like, the angle of u and v is naturally defined using the usual
calculus notion.

Figure 5.2: Angle in H2

Definition 5.5.9. For non-zero u, v ∈ TX H2, define

∠(u, v) = arccos

(
Φ(u, v)√

Φ(u, u)Φ(v, v)

)
.

5.6 Laws of Cosines and Sines

Theorem 5.6.1 (Hyperbolic Law of Cosines). In △ABC on the H2 (with usual notations)

cosh c = cosh a cosh b− sinh a sinh b cos γ.

Proof. Let u be the unit tangent vector of CA at C. Let v be the unit tangent vector of
CB at C. Then A = cosh b · C + sinh b · u, B = cosh a · C + sinh a · v. Therefore c = AB =
arccosh(Φ(A,B)) = arccosh (cosh b cosh a+ sinh b sinh a Φ(u, v)), but Φ(u, v) = cos γ.
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Corollary 5.6.2 (Hyperbolic Pythagorean theorem). If γ = π/2 then cosh c = cosh a cosh b.

PROJECT 13. In the Hyperbolic Law of Cosines and in the Hyperbolic Pythagorean theo-
rem do the following. Write a · t for a etc for all side measurements. Then expand in Taylor
series with respect to t. Study the coefficients of 1, t, t2.

Theorem 5.6.3 (Hyperbolic triangle-inequality). In a triangle on H2 we have c < a+ b.

Proof. We have
cosh c = cosh a cosh b− sinh a sinh b cos γ

cosh(a+ b) = cosh a cosh b+ sinh a sinh b

The first line is the Law of Cosines, the second line is a hyperbolic trig identity (prove it).
We have sinh a sinh b > 0, cos γ ∈ (−1, 1). Therefore the RHS of the first line smaller than
the RHS of the second line. Hence the same holds for the LHSs, i.e. cosh c < cosh(a + b).
However, cosh is strictly monotone increasing on (0,∞).

Theorem 5.6.4 (Hyperbolic Law of Sines). In △ABC in H2 (with usual notations)

sinα

sinh a
=

sin β

sinh b
=

sin γ

sinh c
.

Proof. From Law of Cosines we have

cos γ =
− cosh c+ cosh a cosh b

sinh a sinh b
.

From this, using 1 + sinh2 = cosh2 we have

sin γ =

√
1− cosh2 a− cosh2 b− cosh2 c+ 2 cosh a cosh b cosh c

sinh a sinh b
.

Divide by sinh c and see that the RHS becomes symmetric in a, b, c.

Proposition 5.6.5. In △ABC let γ = π/2, and let us use the standard notations. Then
we have

sinα =
sinh a

sinh c
.

The proof follows from the Law of Sines.

Proposition 5.6.6. In △ABC let γ = π/2, and let us use the standard notations. We have

cosα =
tanh b

tanh c
.
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Proof. We have

cosα =

√
sinh2 c− sinh2 a

sinh c
=

√
cosh2 c− cosh2 a

sinh c
.

The first equality follows from the Proposition above, and the second equality is obtained
by applying the identity sinh2+1 = cosh2 in the numerator for both terms. Using the
Pythagorean theorem and the sinh2+1 = cosh2 identity again we obtain

cosα =

√
cosh2 c− (cosh2 c/ cosh2 b)

sinh c
=

√
1− 1

cosh2 b

sinh c
cosh c

=

√
sinh2 b
cosh2 b

sinh c
cosh c

=
tanh b

tanh c
.

Proposition 5.6.7. In △ABC let γ = π/2, and let us use the standard notations. We have

tanα =
tanh a

sinh b
.

The proof is left as exercise, see Problem 5.10.15.

Theorem 5.6.8 (Hyperbolic Dual Law of Cosines). In ABC triangle we have

cos γ = − cosα cos β + sinα sin β cosh c.

Proof. Drop a perpendicular from C to AB and let the resulting segments be c1 and c2,
and the altitude h. We have cosh a = coshh cosh c2, cosh b = coshh cosh c1 from Pythagoras.
Multiply these two equations. Then multiply the equality by cosh(c1+c2) and rewrite coshh2

as sinh2 h+ 1. We obtain

cosh a cosh b(cosh c1 cosh c2 + sinh c1 sinh c2) = (1 + sinh2 h) cosh c1 cosh c2 cosh c.

Divide by cosh c1 cosh c2 and rearrange, we obtain

cosh a cosh b− cosh c = sinh2 h cosh c− cosh a cosh b tanh c1 tanh c2.

Apply the Law of Cosines on the LHS, and sin and cos formulas for right angled triangles
above on the RHS and we obtain the formula of the theorem.

Remark 5.6.9. The Hyperbolic Dual Law of Cosines calculates γ if α, β and c are given. In
Euclidean geometry one can calculate γ as long as α and β are given, no need for c! Also,
this theorem shows that the sum of the angles of a triangle is not constant, keeping α and
β the same, but changing c does change γ. More on this in Section 5.8.
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5.7 Angle of parallelism

Let us call closed half-lines rays (by closed we mean that the point where a line is cut into
two is an element of the ray). In the Klein model a ray is a closed-open segment whose
‘closed end’ is inside the disk and its ‘open end’ is on the boundary of the disk.

Definition 5.7.1. Two rays a and b in H2 are called limiting parallel if in the Klein model
K2 their open ends coincide (necessarily on the boundary of the disk), see Picture 5.3. Two
lines will be called limiting parallel if rays can be chosen on them that are limiting parallel.

Figure 5.3: Limiting parallel lines in K2

Recall that the points of the boundary circle are not part of the Klein model (points of K2

are in the interior of the unit circle), so limiting parallel rays are disjoint, that is, their lines
are parallel.
Consider a point P not on a line ℓ. If we draw rays connecting P with points C1, C2, . . . of
the line ℓ, and we let Ci go to infinity in one direction of the line ℓ, then the limit position
of the rays will be limiting parallel to (one side of) ℓ, see Figure 5.4.
For a given ℓ and point P ̸∈ ℓ, there are two rays limiting parallel with the two directions of
ℓ. We will be interesting of the angle formed by these two rays. The next definition gives a
name to (half of) this angle.

Definition 5.7.2. Consider a line ℓ and A ∈ ℓ (see Figure 5.5). Let m be perpendicular
to ℓ at A. Measure distance d on m from A, and let the resulting point be B. Consider
the limiting parallel x to ℓ passing through B. Denote the angle between x and m by Π(d).
Define Π(d) the angle of parallelism corresponding to the distance d.
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Figure 5.4: Limiting parallel line as limit of intersecting lines

Figure 5.5: Angle of parallelism

Theorem 5.7.3. We have Π(d) = arcsin(1/ cosh d).

Proof. Intuitively, use the dual law of cosines to the “degenerate triangle”2 ABC where C
is the “ideal point” where ℓ and x meet in angle 0. This is only an intuitive “proof”. Here
is how we can make it precise.

Figure 5.6: Illustration of the proof of Theorem 5.7.3

Consider the triangles in the second picture in Figure 5.6, with C1, C2, . . . → ∞. The dual
law of cosines gives

cos γi = sin βi cosh d.

2we will call such an object a 1x ideal triangle in Section 5.8
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As i → ∞, we have γi → 0 due to Proposition 5.6.7, and βi → Π(d). Hence in the limit we
obtain

1 = sin(Π(d)) cosh d,

what proves the Theorem.

Remark 5.7.4. Using Calculus we can deduce from Theorem 5.7.3 that Π(d) is strictly mono-
tone decreasing, its limit in 0 is π/2 and its limit in ∞ is 0. Think over what these properties
mean geometrically.

5.8 Area and angle-sum of a triangle

Consider a triangle, and let us “move” one of its vertex “to infinity”. That is, in the Klein
model let us consider a shape, which is a triangle with two vertices in the disk, but one
vertex is on the boundary. This shape in H2 is called a 1x ideal triangle. From inside H2

the description of a 1x ideal triangle is the following: Two points A and B, their connecting
segment, and a pair of limiting parallel rays starting at A and B.
Similarly, if two vertices of a triangle are moved to the boundary circle of K2 then we call
the resulting object a 2x ideal triangle. If all three vertices are moved to the boundary circle
of K2 then we call it a 3x ideal triangle. If we simply say ideal triangle, we mean a 3x ideal
triangle.

Think over what would be a description of 2x and 3x ideal triangles from inside H2 (that is,
use a description that does not mention the notion “boundary of the Klein model”, instead
use the notion limiting parallel). In the Euclidean plane 3x ideal triangles do not exist. Do
1x or 2x ideal triangles exist?
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Theorem 5.8.1. The area of any ideal triangle in H2 is π.

We will not prove this theorem in this class.

Remark 5.8.2. Let us discuss what kind of mathematical reasoning whould go into a proof.
Recall that the notion of area should be

∫∫
T
1dA where dA is an area-form. Hence, first we

would need to figure out what an “area form” is on H2 (based on our knowledge of “length”
and “angle”). Then we would need to set up a double integral of 1dA on an ideal triangle.
Then we would need to calculate that double integral.3 The theorem above claims that we
would get π. This result should be surprising for two reasons: why is the integral finite,
and why is it independent of which ideal triangle we choose? Well, surprisingly or not, the
Theorem holds.

Consider a 2x ideal triangle. It is determined by the angle of the two sides that intersect.
Let us call it the angle of the 2x ideal triangle.

Theorem 5.8.3. The area of a 2x ideal triangle with angle θ is π − θ.

Proof. Let f(θ) denote the area of a 2x ideal triangle with angle θ. Thus f is a function
defined on [0, π], and we want to show that it is actually the π − θ function.
Our first claim is that

f(θ1 + θ2) = f(θ1) + f(θ2)− π (5.3)

holds. This claim follows from Figure 5.7, and Theorem 5.8.1 (think this over).

Figure 5.7: f(θ1 + θ2) = f(θ1) + f(θ2)− π

We will need two more claims:

3A shortcut of the argument above would be if we first show that any two ideal triangles can be mapped
into each other by a Lorentz transformation—which is a length preserving, and hence area preserving trans-
formation of H2. Then we just need to calculate the area of one ideal triangle.
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� f(π) = 0 (in fact limθ→π f(θ) = 0);

� f is continuous.

We will not give precise argument for either of these, but both should be intuitively clear:
for θ = π the 2x ideal triangle degenerates to a line, whose area is 0; and continuity is the
intuitive statement that for small change of θ the 2x ideal triangle goes through a “small”
change, and hence its area goes through a “small” change too.

Now we claim that if a continuous f satisfies (5.3) and f(π) = 0, then it must be f(θ) = π−θ.
This claim is proved by the trick of defining another function g(θ) = π−f(θ). The properties
of f imply that g is continuous, g(π) = π, and

g(θ1 + θ2) = g(θ1) + g(θ2) (5.4)

(think over how we got this functional equation from (5.3)).
From g(π) = π, and iterated application of (5.4) we find that

g

(
1

2
π

)
=

1

2
π, g

(
1

4
π

)
=

1

4
π, g

(
1

8
π

)
=

1

8
π, . . . ,

eventually g(1/2m ·π) = 1/2m ·π for any m. From this, again by iterated application of (5.4)
we obtain that

g

(
k

2m
π

)
=

k

2m
π

for any k and m. However, the numbers of the form k/2m are dense, that is, for any θ there
is a sequence kn/2

mn whose limit is θ. We have

g(θ) = g

(
lim
n→∞

kn
2mn

)
= lim

n→∞
g

(
kn
2mn

)
= lim

n→∞

(
kn
2mn

)
= θ.

In the second equality we used the fact that g is continuous.

Now that we verified that g(θ) = θ, we also have f(θ) = π − g(θ) = π − θ, what we wanted
to prove.

Theorem 5.8.4. Let ABC be a triangle in H2 with usual notations. We have

Area(△ABC) = π − (α + β + γ).

Proof. The statement follows from Figure 5.8. (The reader is advised to stop reading and
construct the proof based on the Figure.)
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Figure 5.8: Illustration of the proof of Theorem 5.8.4

Starting with the △ABC, extend the picture with three 2x ideal triangles (with angles
π−α, π− β, π− γ respectively) as shown in the figure. The union of these four shapes is an
ideal triangle. We have

Area(△ABC) = π − (Area(the three 2x ideal triangles of the figure))

= π − ((π − (π − α)) + (π − (π − β)) + (π − (π − γ)))

= π − (α + β + γ),

what we wanted to prove.

Corollary 5.8.5. For a triangle in the hyperbolic plane we have α + β + γ = π − Area.

Corollary 5.8.6. The sum of the angles of a triangle in H2 is always strictly less than π.
For small (area) triangles the sum of angles is close to π (the “Euclidean value”). For large
(area) triangles the sum of angles is close to 0.

5.9 Hyperbolic planes of different curvatures

When studying spherical geometry, we did not only study one of them (the radius 1 sphere),
but infinitely many of them at the same time, namely the geometry of the spheres of any
(positive) radius. We could have done the same in hyperbolic geometry by starting our
studies with

H2 = {X ∈ R3 : Φ(X,X) = −k2}
for some positive constant k. The name of this k is pseudo-radius. We restricted ourselves
to the k = 1 special case in order to keep our calculations and formulas simple. Yet, if we
considered the general k case, we would have arrived at similar looking theorems. Here we
list them:
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� The natural parametrization of a curve is s(t) = cosh(t/k)X+k sinh(t/k)v for X ∈ H2,
v ∈ TX H2 with Φ(v, v) = 1.

� The Law of Cosines is

cosh
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)
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)
cosh
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)
− sinh
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)
sinh

(
b

k

)
cos(γ).

� Pythagorean theorem: In a triangle γ = π/2 if and only if
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� The Law of Sines is
sinα

sinh
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) =
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(
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) .
� The Dual Law of Sines is

cos γ = − cosα cos β + sinα sin β cosh
( c
k

)
.

� The angle of parallelism is

Π(d) = arcsin

(
1

cosh
(
d
k

)) .

� Area(ideal triangle) = k2π, Area(2x ideal triangle) = k2(π − θ).

� We have

Area(△ABC) = k2 (π − (α + β + γ)) ,

and hence

α + β + γ = π − Area(△ABC)

k2
.

The quantity −1/k2 is called the Gaussian curvature of the hyperbolic plane, and is denoted
by K. In this language the last formula reads

α + β + γ = π +K Area(△ABC),
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or, in calculus language

α + β + γ = π +

∫∫
△ABC

KdA.

Observe that this way of writing the angle sum formula (called Gauss-Bonnet formula) is
the same as in spherical, or Euclidean geometry (cf. Remark 4.5.6). As this coincidence
suggests, indeed there is a way of treating the three geometries together within a more
general framework: Riemannian geometry.

5.10 Problems

5.10.1. Prove that Φ is non-degenerate. That is, suppose that v ∈ R3 is such that Φ(v, u) = 0
for all u ∈ R3. Prove that v = 0.

5.10.2. Let X ∈ H2. Let X⊥ = {v ∈ R3 : Φ(X, v) = 0}. Prove that X⊥ is a plane (in the
usual Euclidean sense).

5.10.3. (cont.) Prove that all vectors in X⊥ are space-like. [Hint-1: find the “steepest”
vector in X⊥ and check its angle with the xy-plane. Hint-2 (if you learned Linear Algebra):
use Sylvester’s Law of Inertia.]

5.10.4. Consider the curve ϕ(t) = (t, 0,
√
t2 + 1) in R3.

(a) Prove that this curve is in H2.

(b) Prove that the image of this curve in H2 is a line.

(c) What is the speed of this curve at t = −2,−1, 0, 1, 2. [Hint: speed=“length (using Φ) of
the derivative”.]

5.10.5. Prove that Lorentz matrices form a group.

5.10.6. Prove that the matrices (5.1), (5.2) are Lorentz matrices.

5.10.7. Complete the proof of Proposition 5.2.3.

5.10.8. Prove that for any two points X, Y ∈ H2 there is a Lorentz matrix AX = Y .

5.10.9. Let X, Y ∈ H2, v ∈ TX H2, w ∈ TY H2 with Φ(v, v) = 1, Φ(w,w) = 1. Prove that
there is a Lorentzian matrix A such that AX = Y , Av = w.

5.10.10. Find and prove a formula for sinh(x + y), cosh(x + y) in terms of sinhx, coshx,
sinh y, cosh y.
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5.10.11. Let X = (2, 2, 3), u = (1, 5, 4), v = (−5,−4,−6). Verify that X ∈ H2, u, v ∈
TX H2. Let a be the ray starting in X in the direction of u. Let b be the ray starting at X in
the direction of v. Give parametrizations of a and b (warning: u and v are not unit vectors
w.r.t. Φ). Find the angle between a and b.

5.10.12. Prove the following version of Desargues’ theorem in H2. The triangles ABC and
A′B′C ′ are perspective w.r.t. to the point P . Suppose that K = AB∩A′B′, L = BC∩B′C ′,
M = CA ∩ C ′A′ exist. Prove that K,L,M are collinear. [Hint: this problem only considers
point-line adjacencies, no metric. Then which model of the the hyperbolic plane is more
useful? You will be able to reduce this problem the Desargues version we already know.]

5.10.13. Consider a horizontal plane in R3 whose intersection with H2 is not empty. (a)
Prove that the intersection is a circle in the Euclidean geometry of R3. (b) Prove that the
intersection is a circle in the hyperbolic geometry H2.

5.10.14. Consider a plane in R3 whose intersection with H2 is not empty. Prove that the
intersection is a circle in the hyperbolic geometry H2.

5.10.15. Consider a right angled triangle in H2, with right angle γ. Find a formula for tanα
in terms of a and b (Proposition 5.6.7).

5.10.16.

(a) In H2 find the angles of the triangle with sides 3, 4, 5.

(b) In H2 find the angles of the triangle with sides 0.03, 0.04, 0.05.

(c) Find the angles of the triangle with sides 3, 4, 5 in Euclidean geometry.

(d) Find the angles of the triangle with sides 0.03, 0.04, 0.05 in Euclidean geometry.

5.10.17. Let △ABC and △A′B′C ′ have the same corresponding angles in H2 (that is, they
are similar). Prove that they have the same corresponding sides as well (that is, they are
congruent).

5.10.18. Let△ABC and△A′B′C ′ be perspective with respect to a line ℓ in H2, and suppose
that AA′ and BB′ are limiting parallel. Prove that AA′ and CC ′ are also limiting parallel.

5.10.19. Prove that the function Π(d) is strictly monotone decreasing on [0,∞), and find
its limit at d = 0 and d = ∞.

5.10.20. Find and prove a formula relating the area with the sum of the angles for an n-gon
in H2.
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5.10.21. Suppose we want to force that Hyperbolic Geometry is in fact Spherical Geometry on
a sphere with some radius. For this we look at the Pythagorean theorems. We could achieve
our goal if we could force cosh(x) to be equal with cos(x/R) for some R. Use the Taylor
expansions of cosh and cos (or, alternatively, exponential formulas for trig and hyperbolic
trig functions), to solve

cosh(x) = cos(x/R) (∀x)

for R. Then complete the sentence: “Hyperbolic Geometry is like Spherical Geometry on a
sphere with radius ”.


