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Chapter 1

Affine and Euclidean Geometry

1.1 Points and vectors

We recall coordinate plane geometry from Calculus.

The set R2 will be called the plane. Elements of R2, that is ordered pairs (x, y) of real
numbers, are called points.

Consider directed segments (also called “arrows”) between points of the plane. We allow
the start point and the end point of an arrow to coincide. Arrows up to translation are called
(plane) vectors. That is, the arrow from A = (1, 3) to B = (5, 6) represents the same vector

as the arrow from C = (−4,−4) to D = (0,−1). We write ~AB = ~CD. The vector ~AA is
called the zero-vector and denoted by 0.

We can represent a vector by an ordered pair of real numbers as well: the vector ~AB
where A = (a1, a2) and B = (b1, b2) will be represented by 〈b1 − a1, b2 − a2〉. This is a fair

definition, because if ~AB = ~CD then b1 − a1 = d1 − c1 and b2 − a2 = d2 − c2. The vector
~AB of the paragraph above is 〈4, 3〉.
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1.2 Linear operations on vectors

The sum and difference of two vectors are defined geometrically in Figure 1.1. In this context
real numbers will also be called scalars. A scalar multiple of a vector is defined in Figure 1.2.

a

b

a + b

u

v

u− v

Figure 1.1: Sum and difference

The operations above (addition, subtraction, multiplication by a scalar) are called the
linear operations on vectors. The geometric definitions above translate to the following
algebraic expressions.

• 〈a1, a2〉+ 〈b1, b2〉 = 〈a1 + b1, a2 + b2〉

• 〈a1, a2〉 − 〈b1, b2〉 = 〈a1 − b1, a2 − b2〉

• λ · 〈a1, a2〉 = 〈λa1, λa2〉

Proposition 1.2.1 (Vector space “axioms”). The linear operations on vectors satisfy the
following properties.

• a + b = b + a

• (a + b) + c = a + (b + c)
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a

2a

−a

Figure 1.2: Scalar multiple

• a + 0 = a

• a + (−a) = 0

• λ · (a + b) = λ · a + λ · b

• (λ+ µ) · a = λ · a + µ · a

• λ · (µ · a) = (λµ) · a

• 1 · a = a

Proof. The properties follow from the algebraic expressions for the linear operations.

Proposition 1.2.2 (2-dimensionality). Let a and b be non-parallel vectors (algebraically
a1b2−a2b1 6= 0). For a vector c there are unique λ, µ real numbers such that c = λ ·a+µ ·b.

1.3 Convention on identifying points with vectors

To a point A ∈ R2 we can associate its “position vector” ~OA where O = (0, 0) is the origin.

To a vector v we can associate a point P by considering an arrow ~OP representing v.
The above two associations are inverses of each other, they define a one-to-one cor-

respondence between points and vectors. Algebraically this one-to-one correspondence is
(a, b)↔ 〈a, b〉.

Throughout this text we will build in this identification in our notation, without further
explanation. For example, if A is a point, and we write 5A then we really mean either the
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vector 5 ~OA or its endpoint. Or, if we say A/2 + B/2 is the midpoint of the segment AB
then here is how to read it precisely: the midpoint of the segment AB is the endpoint of the
vector 1

2
~OA+ 1

2
~OB.

1.4 Algebraic conditions expressing collinearity

The word “collinear” is a shorthand expression for “on the same line”. The word “concur-
rent” is a shorthand expression for “intersecting in one point”.

Proposition 1.4.1. Let A and B be two different points. Point C is on the line through A
and B if and only if there is a real number t such that

C = (1− t)A+ tB. (1.1)

Moreover, t and C uniquely determine each other (i.e. for any C on the AB line there is a
unique real number t, and for any real number t there is a unique point C on the AB line
satisfying (1.1).)

Proof. To obtain the position vector of a point C on the line AB we need to add the vector
~A and a multiple of ~AB, see Figure 1.3.

A

B

O

C1

C2
0.6 ~AB

−0.2 ~AB

~OA
~OC1

~OC2

Figure 1.3: C1 and C2 on the line through A and B

Conversely, the end point of any such vector is obviously on the line AB. Observe that
~A+ t · ~AB = (1− t)A+ tB, which proves the proposition.

The proof that C and t determine each other is left as an exercise.
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If A = B then for any t the point (1− t)A+ tB obviously coincides with A and B.
A useful rephrasing of Proposition 1.4.1 is that if A 6= B then C is on their line if and

only if there exist numbers x and y such that

C = xA+ yB, x+ y = 1.

Proposition 1.4.2. The points A,B,C are collinear if and only if there exist real numbers
x, y, z not all 0, such that

xA+ yB + zC = 0, x+ y + z = 0.

Proof. Suppose A,B,C are collinear.
If A and B are different points, then C is on their line. According to Proposition 1.4.1

then there is a t such that C = (1 − t)A + tB. After rearrangement we obtain (1 − t)A +
tB + (−1)C = 0 and hence 1− t, t,−1 serve as x, y, z.

If A = B then x = 1, y = −1, z = 0 satisfies the requirements.
To prove the opposite direction let us now assume that xA+yB+zC = 0, x+y+z = 0, and

not all x, y, z are 0. Then pick one non-zero among x, y, z. Without loss of generality we may
assume it is z. Rearrangement gives C = (−x/z)A+ (−y/z)B. The condition x+ y+ z = 0
translates to (−x/z) + (−y/z) = 1. If A and B are different then Proposition 1.4.1 implies
that C is on the AB line. If A and B coincide then the remark after Proposition 1.4.1 implies
that all A,B,C are the same point, so they are collinear.

An important logical consequence of Proposition 1.4.2 is the following Corollary.

Corollary 1.4.3. If A,B,C are not collinear (i.e. they form a triangle), and x, y, z are real
numbers with

xA+ yB + zC = 0, x+ y + z = 0,

then x = y = z = 0.

1.5 The ratio ( ~AC : ~CB) for collinear points A 6= B,C

Let A,B 6= C be collinear points. We will write that ( ~AC : ~CB) = λ if ~AC = λ ~CB. Such

a λ exists (and is unique) since ~AC and ~CB are collinear vectors with ~CB 6= 0. Sometimes
it is useful to extend this notion to the case when B = C (but A is not equal to them): in

this case we define ( ~AC : ~CB) =∞.

Lemma 1.5.1. Let A,B,C be collinear, A 6= B, and write C = xA + yB with x + y = 1
(cf. Proposition 1.4.1). Then we have ( ~AC : ~CB) = y/x.
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Proof. From C = xA+ yB we obtain ~AC = y ~AB and ~CB = x ~AB. Hence ( ~AC : ~CB) = y/x

(note the ( ~AC : ~CB) =∞ convention if C = B, that is, if x = 0).

In fact we can interpret the ratio ( ~AC : ~CB) without mentioning vectors. It is the ratio
of the length of the segment AC over the length of the segment CB, with a sign convention.
The sign convention is that if C is in between A and B, then ( ~AC : ~CB) is positive, and if

C is outside of the segment AB then ( ~AC : ~CB) is negative.

Proposition 1.5.2. Let A 6= B be fixed. The ratio ( ~AC : ~CB) uniquely determines C.

Remark 1.5.3. We may be sloppy in notation and decide to write ~AC/ ~CB instead of ( ~AC :
~CB), but we must be careful that this ratio is only defined in the very special situation

where A,B,C are collinear (and some coincidences do not happen). In general there is no
such operation where we divide a plane vector by another plane vector!

1.6 First applications

A quadrilateral ABCD is a parallelogram if ~AB = ~DC. This condition can be phrased as
B − A = C −D, or rearranged to D − A = C −B, which means ~AD = ~BC also holds.

Proposition 1.6.1. The diagonals of a parallelogram bisect each other.

A

B C

D

Figure 1.4: The diagonals of a parallelograph bisect each other.

Proof. Let ABCD be a parallelogram. Since it is a parallelogram, we have ~AB = ~DC
(denote this vector by x), ~AD = ~BC. These equalities imply that (A+ C)/2 = (B +D)/2.
Indeed, B = A+ x, D = C − x, and hence (B +D)/2 = ((A+ x) + (C − x))/2.
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Now consider the point P = (A + C)/2 = (B + D)/2. The first defining expression
implies that P is the midpoint of A and C. The second expression implies that P is the
midpoint of B and D. Since they agree, P is the intersection of AC and BD, and it bisects
both diagonals.

The median of a triangle is a segment connecting a vertex to the midpoint of the opposite
side. A triangle has three medians.

Proposition 1.6.2. The medians of a triangle are concurrent. Moreover they divide each
other by 2:1.

A

B

C

Figure 1.5: The medians of a triangle are concurrent.

Proof. Let ABC be a triangle. Consider the point P = (A + B + C)/3, and its equivalent
expressions

P =
2

3
· A+B

2
+

1

3
· C =

2

3
· B + C

2
+

1

3
· A =

2

3
· C + A

2
+

1

3
·B.

The first expression claims that P is on the segment connecting the midpoint of A and B
with C, that is, on the median corresponding to C. The second expression claims that P is
on the median corresponding to A, and the third expression claims that P is on the median
corresponding to B. Since they are all equal, there is a point, namely P , that in on all three
medians; and we proved that the medians are concurrent.

A byproduct of the above argument is that the intersection P of the three medians
is expressed as 2/3 of the midpoint of a side plus 1/3 the opposite vertex. According to
Section 1.5 this proves that P cuts the median 2 : 1.
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Remark 1.6.3. In the above two propositions we needed to make arguments about the in-
tersections of certain lines. In our proofs we used a trick: we did not “compute” the in-
tersections, but rather we “named” a point and then proved that this point is on the lines,
and hence this point must be the intersection. You will find this trick useful when solving
exercises.

PROJECT 1. Invent and prove the 3D, 4D, . . . versions of Proposition 1.6.2.

1.7 Menelaus’ theorem

Theorem 1.7.1 (Menelaus’ theorem). Let ABC be a triangle and let a transversal line `
intersect the lines of the sides AB, BC, CA in M , K, L, respectively. We assume that none
of K,L,M coincide with A,B, or C. Then

( ~AM : ~MB) · ( ~BK : ~KC) · ( ~CL : ~LA) = −1.

Proof. We have K = xB+x′C, L = yC+y′A, M = zA+z′B with x+x′ = y+y′ = z+z′ = 1.
Since K,L,M are collinear, according to Proposition 1.4.2 we know that there are real
numbers p, q, r not all 0 such that p+ q + r = 0 and pK + qL+ rM = 0. We have

p(xB + x′C) + q(yC + y′A) + r(zA+ z′B) = 0,

or rearranged, we have

(rz + qy′)A+ (px+ rz′)B + (qy + px′)C = 0. (1.2)

The sum of the coefficients in this last expression is

(rz+ qy′) + (px+ rz′) + (qy+ px′) = p(x+ x′) + q(y+ y′) + r(z+ z′) = p+ q+ r = 0. (1.3)
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According to Corollary 1.4.3 (1.2) and (1.3) can only hold if all three

rz + qy′ = px+ rz′ = qy + px′ = 0.

Therefore we have

y′/z = −r/q, z′/x = −p/r, x′/y = −q/p,

and hence

( ~AM : ~MB) · ( ~BK : ~KC) · ( ~CL : ~LA) =
z′

z
· x

′

x
· y

′

y
=
z′

x
· x

′

y
· y

′

z
=
−p
r
· −q
p
· −r
q

= −1

what we wanted to prove.

Theorem 1.7.2 (reverse Menelaus’ theorem). Let ABC be a triangle and let M,K,L be
points on the lines AB,BC,CA such that

( ~AM : ~MB) · ( ~BK : ~KC) · ( ~CL : ~LA) = −1. (1.4)

Then K,L,M are collinear.

Proof. Let ` be the line connecting L and K. In Problem 15 (Section 1.21) you will prove
that ` intersects the AB line. Let the intersection point be M ′. According to Menelaus’
theorem we have

( ~AM ′ : ~M ′B) · ( ~BK : ~KC) · ( ~CL : ~LA) = −1.

Comparing this with the assumption (1.4) on K,L,M we conclude that

( ~AM ′ : ~M ′B) = ( ~AM : ~MB).

Proposition 1.5.2 then implies that M = M ′, hence the fact that K,L,M are collinear.

1.8 Barycentric coordinates

Theorem 1.8.1. Let A, B and C be non-collinear points in the plane. For any point P we
may write

P = xA+ yB + zC

where the real coefficients x, y, z satisfy

x+ y + z = 1.

Moreover, x, y, z are uniquely determined by the point P .



12 CHAPTER 1. AFFINE AND EUCLIDEAN GEOMETRY

We call x, y, z the barycentric coordinates of P with respect to the triangle ABC.

Proof. The vectors ~AB and ~AC are not parallel. Hence any vector can be written as a linear
combination of them, for example ~AP = p ~AB+q ~AC. Using that ~AP = P−A, ~AB = B−A,
~AC = C − A we can rearrange it to

P = (1− p− q)A+ pB + qC,

and hence x = 1− p− q, y = p, z = q satisfy the requirements.
To prove the uniqueness of barycentric coordinates assume that x, y, z and x′, y′, z′ are

such that

P = xA+ yB + zC, x+ y + z = 1,

P = x′A+ y′B + z′C, x′ + y′ + z′ = 1.

Then we have

0 = (x− x′)A+ (y − y′)B + (z − z′)C, (x− x′) + (y − y′) + (z − z′) = 0.

Corollary 1.4.3 implies that x− x′ = y − y′ = z − z′ = 0 which proves uniqueness.

PROJECT 2. Observe the similarity between Proposition 1.4.1 and Theorem 1.8.1. They
are the 1D and 2D cases of a general n-dimensional theorem. If you learned linear algebra
(specifically the notions of linear independence, generating set, basis) then find and prove
this general n-dimensional theorem.
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A B

C

D
E

F

P

Figure 1.6: The Ceva configuration

1.9 Ceva’s theorem

Theorem 1.9.1 (Ceva’s Theorem1). Let ABC be a triangle and let P be a point in the plane
which does not lie on any of the sides of 4ABC. Suppose the lines AP , BP and CP meet
the opposite sides of ABC at D, E and F , respectively. Then

( ~AF : ~FB) · ( ~BD : ~DC) · ( ~CE : ~EA) = 1.

Note that P does not need to lie inside the triangle.

Proof. Using barycentric coordinates, we write P as

P = xA+ yB + zC,

where x+ y + z = 1. Let us consider the point

V =
x

x+ y
A+

y

x+ y
B. (1.5)

This expression implies that V is on the line AB. Calculation shows that

V =
1

x+ y
P +

−z
x+ y

C,

1Geometer Giovanni Ceva (1647–1734) is credited with this theorem
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and the sum of the coefficients 1/(x+y)+(−z)/(x+y) = (1−z)/(x+y) = (x+y)/(x+y) = 1.
Hence V is also on the line CP . We conclude that the point V is the intersection of AB and
CP , hence V = F . Moreover, from 1.5 we obtain that

( ~AF : ~FB) =

y
x+y
x
x+y

=
y

x
.

Similarly, we find that

( ~BD : ~DC) =
z

y
, (1.6)

( ~CE : ~EA) =
x

z
. (1.7)

Hence
( ~AF : ~FB) · ( ~BD : ~DC) · ( ~CE : ~EA) =

y

x

z

y

x

z
= 1.

Theorem 1.9.2 (Reverse Ceva’s theorem). Suppose ABC is a triangle, D,E, F are points
on the lines of the sides (but none of them coincide with a vertex) such that

( ~AF : ~FB) · ( ~BD : ~DC) · ( ~CE : ~EA) = 1.

Then AD, BE, CF are either concurrent, or they are pairwise parallel.

Proof. If AD, BE, CF are pairwise parallel, then the theorem is proved. Assume that two of
these three lines intersect. Without loss of generality we assume that it is AD and BE. Let
P = AD∩BE, and assume that CF intersects AB is the point F ′. By Ceva’s Theorem 1.9.1
we have

( ~AF ′ : ~F ′B) · ( ~BD : ~DC) · ( ~CE : ~EA) = 1.

Comparing this with the condition in the Theorem we obtain that

( ~AF ′ : ~F ′B) = ( ~AF : ~FB).

Proposition 1.5.2 then implies that F = F ′, hence the fact that AD,BE,CF are concurrent.

For fun, let us include here another “high-school style” proof of Ceva’s Theorem 1.9.1.
This proof does not use vectors at all. Instead it uses the notion of area, and the obvious
fact that the area of a triangle is half the product of base and height.
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Proof. For simplicity let D,E, F be on the sides (and not outside) of the triangle ABC, and
let P = AB ∩ CF = BC ∩ AD = CA ∩ BE. The triangles AFC and FBC have “bases”
AF and FB and they share the same height mC . Hence the ratio of their areas equals the
ratio of their bases:

Area(AFC)

Area(FBC)
=
AF

FB
.

Similar argument for the triangles AFP and FBP gives

Area(AFP )

Area(FBP )
=
AF

FB
.

From the two equations above simple algebra implies

Area(AFC)− Area(AFP )

Area(FBC)− Area(FBP )
=
AF

FB
.

The difference of the triangles AFC and AFP is the triangle CAP . The difference of the
triangles FBC and FBP is the triangle BCP . Hence we obtained

Area(CAP )

Area(BCP )
=
AF

FB
. (1.8)

We obtained (1.8) by considering the AB side of the triangle the “base”. Repeating the
same argument but now considering the BC side or the CA side to be the “base” we obtain
the equations.

Area(ABP )

Area(CAP )
=
BD

DC
,

Area(BCP )

Area(ABP )
=
CE

EA
.

From the last three equations we obtain

( ~AF : ~FB) · ( ~BD : ~DC) · ( ~CE : ~EA) =
AF

FB
· BD
DC
· CE
EA

=

=
Area(CAP )

Area(BCP )
· Area(ABP )

Area(CAP )
· Area(BCP )

Area(ABP )
= 1,

which proves Ceva’s theorem in the case when P is inside the triangle. Similar arguments
work when P is outside.
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1.10 Desargues’ theorem—a few affine versions

Desargues’ theorem is a remarkable theorem on incidences of certain lines and points involv-
ing two triangles. The key notions are as follows.

• For ABC4 and A′B′C ′4 we may consider the three lines connecting the corresponding
vertexes: AA′, BB′, and CC ′. We will consider the condition that these three lines
are concurrent (or are pairwise parallel). If concurrent, we call the intersection point
the center of perspectivity.

• For ABC4 and A′B′C ′4 we may consider the intersections of the corresponding sides
AB ∩ A′B′, BC ∩ B′C ′, and CA ∩ C ′A′. We will consider the condition that these
three points (exist and) are collinear—or none of the three exist. If collinear, we call
the obtained line the axis of perspectivity.

Theorem 1.10.1. Let ABC and A′B′C ′ be triangles such that AB||A′B′, AC||A′C ′, BC||B′C ′.
Then the three lines AA′, BB′, CC ′ are either concurrent or pairwise parallel.

Proof. Because of the conditions on parallel lines we can write

B − C = k1(B
′ − C ′), C − A = k2(C

′ − A′), A−B = k3(A
′ −B′), (1.9)

for some real numbers k1, k2, k3. Adding together these three equalities (and rearranging the
right hand side) we obtain

0 = (k2 − k3)A′ + (k3 − k1)B′ + (k1 − k2)C ′. (1.10)

The coefficients of (1.10) add up to 0, hence Corollary 1.4.3 implies that

k2 − k3 = k3 − k1 = k1 − k2 = 0, and hence k1 = k2 = k3.

Let k be the common value of k1, k2 and k3. Then from (1.9) we can deduce

A− kA′ = B − kB′ = C − kC ′. (1.11)

We can consider two cases. If k = 1 then (1.11) implies that the lines AA′, BB′, CC ′ are
pairwise parallel. If k 6= 1 then (1.11) can be rearranged to

P =
1

1− k
A+

−k
1− k

A′ =
1

1− k
B +

−k
1− k

B′ =
1

1− k
C +

−k
1− k

C ′

showing that the point P is on all three lines AA′, BB′, CC ′—proving that AA′, BB′, CC ′

are concurrent.



1.10. DESARGUES’ THEOREM—A FEW AFFINE VERSIONS 17

Theorem 1.10.2. Let ABC and A′B′C ′ be triangles such that AA′, BB′, CC ′ are concur-
rent. Assume that the point K = AB ∩ A′B, L = BC ∩ B′C ′, M = CA ∩ C ′A′ exist. Then
the points K,L,M are collinear.

Proof. The intersection point on AA′, BB′, CC ′ can be written as

k1A+ (1− k1)A′ = k2B + (1− k2)B′ = k3C + (1− k3)C ′. (1.12)

Rearranging, say, the first equality we obtain

k1A− k2B = (1− k2)B′ − (1− k1)A′.

If k1 = k2 then this formula says k1(A − B) = (1 − k1)(B′ − A′), meaning that AB||A′B′

which is not the case. So we know that k1 6= k2. Hence, we may divide by k1 − k2 and write

k1
k1 − k2

A+
−k2

k1 − k2
B =

1− k2
k1 − k2

B′ +
−(1− k1)
k1 − k2

A′.

The sum of the coefficients on the left hand side is 1, and the sum of the coefficients on the
right hand side is also 1 (check it!). Therefore the left hand side expression is a point on the
AB line, and the right hand side expression is a point on the A′B′ line. Hence the common
value must be the intersection AB ∩ A′B′. We obtained that

K =
k1

k1 − k2
A+

−k2
k1 − k2

B,

equivalently

(k1 − k2)K = k1A− k2B. (1.13)

We deduced (1.13) from the fact that the first expression and the second expression in
(1.12) are equal. Similarly, the fact that the second and third, as well as the first and third
expressions in (1.12) are equal we obtain

(k2 − k3)L = k2B − k3C, (k3 − k1)M = k3C − k1A. (1.14)

Adding together all three equalities in (1.13) and (1.14) we get

0 = (k1 − k2)K + (k2 − k3)L+ (k3 − k1)M.

Observe that none of the three coefficients are 0, and they add up to 0. According to
Proposition 1.4.2 this means that K,L,M are collinear, what we wanted to prove.
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Theorem 1.10.3. Let ABC and A′B′C ′ be triangles such that K = AB ∩ A′B′, L =
BC ∩ B′C ′, M = CA ∩ C ′A′ exist and are collinear. Then AA′, BB′, CC ′ are either
concurrent or are pairwise parallel.

It is possible to prove this theorem with the techniques we used in the last two proofs—
and it may be a good practice for students to write down such a proof. However, for a
change we are going to prove it by reduction to Theorem 1.10.2—showing that in some
sense Desargues’ theorem and its reverse are the same, in other words, Desargues’ theorem
is “self-dual”.

Proof. If AA′, BB′, CC ′ are pairwise parallel, then we are done. If not, then two of them
intersect, say, AA′ intersects BB′.

Consider the triangles AA′M and BB′L. By looking at the picture one can see that
the lines AB, A′B′, ML connecting the corresponding vertexes are concurrent. Theorem
1.10.2 can be applied to the triangles AA′M and BB′L, and we obtain that C = AM ∩BL,
C ′ = MA′ ∩LB′, and AA′ ∩BB′ are collinear. That is, CC ′ passes through the intersection
of AA′ ∩BB′, and hence AA′, BB′, and CC ′ are concurrent.

In a later chapter we will see a simple and elegant way of phrasing Desargues’ theorem—
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in projective geometry. All of the three theorems above (and more) are some special cases
of that projective Desargues’ theorem.

PROJECT 3. We can connect two points A and B of the plane if we have a straightedge.
Now suppose that B is “hidden”, it is only given by portions of two intersecting lines, but
we cannot go close to the intersection point B; for example it is outside of the margin of
our paper. How can we connect A and B with a straightedge? How to connect two hidden
points?

1.11 Desargues triangles in intersecting planes

In this section we go out of our way again and show an interesting “high-school style”
argument in relation with Desargues’ theorem.

Consider two planes P1 and P2 in 3 dimensions, intersecting in the line `. Let ABC4 be in
P1 and let A′B′C ′4 be in P2. We will analyse the conditions and the claim of Theorem 1.10.3
for these two triangles.

The condition is about the three points K = AB∩A′B, L = BC∩B′C ′, M = CA∩C ′A′.
Observe that AB ⊂ P1, A

′B′ ⊂ P2, hence K ∈ P1 ∩ P2 = `. Similarly, L and M must also
lie on `. So the assumption of Theorem 1.10.3 that K,L,M are collinear does not even have
to be assumed! It automatically holds.
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The statement of Theorem 1.10.3 is about the three lines AA′, BB′, CC ′. It will be
useful to consider three more planes. Let SK be the plane containing the intersecting lines
AB, A′B′. Let SL be the plane containing the intersecting lines BC, B′C ′. Let SM be the
plane containing the intersecting lines AC, A′C ′.

Observe that both A and A′ are contained in SK and in SM . If two point are contained
in two planes, then their connecting line must be the intersection of the two planes. We have
AA′ = SK ∩ SM . Similarly BB′ = SK ∩ SL, and CC ′ = SL ∩ SM .

We obtained that the three lines AA′, BB′, CC ′ are the pairwise intersections of three
planes in space. Let’s see how can three (pairwise intersecting) planes look like in three
space. There are two possibilities: (i) either the third one is parallel with the intersection
line of the first two, or (ii) the third one intersects the intersection line of the first two.
Theses two configurations are illustrated in the picture.

In the first case the three intersection lines are pairwise parallel: AA′, BB′, CC ′ are
pairwise parallel. In the second case the three intersection lines are concurrent: AA′, BB′,
CC ′ are concurrent.

What we found is that the 3D version of Desargues theorem 1.10.3 is a tautology.
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PROJECT 4. Analyses 3D versions of the other two versions of Desargues’ theorem above.

PROJECT 5. Find a no-calculation proof of e.g. Theorem 1.10.3, by first moving one of
the triangles out of plane into 3D.

1.12 Dot product: algebra and geometry

Let us recall the notion of dot product from Calculus. The dot product of two vectors a and
b is a number denoted by a · b or ab.

Geometrically ab = |a||b| cosφ, where |x| denotes the length of a vector x and φ is the
angle between the vectors a and b. Especially, ab = 0 if and only if a and b are orthogonal.
Algebraically (a1, a2) · (b1, b2) = a1b1 + a2b2.

Problem: recall from calculus why the above geomteric and algebraic definition agree.

The following properties are easily verified from the algebraic definition.

• ab = ba

• (a + b)c = ac + bc

• (λa)b = λ(ab)

• aa ≥ 0, and aa = 0 if and only if a = 0

• ab = 0 for all b implies that a = 0.

The power of dot product that we will repeatedly use in geometry is the duality: its clear
geometric meaning and its simple algebraic properties. (What we will not use any further is
the a1b1 + a2b2 expression.)

Definition 1.12.1. The length of a vector a is defined to be |a| =
√

aa. (The square
root makes sense because of the the non-negativity property above. Also this definition is
consistent with the geometric interpretation of dot product above.) The length of a segment

AB is defined to be d(AB) = | ~AB|. The distance of two sets P,Q ⊂ R2 is defined to be
inf{d(A,B) : A ∈ P,B ∈ Q}.
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1.13 Altitudes of a triangle are concurrent

Let ABC be a triangle. A line passing through the vertex and perpendicular to the opposite
side is called an altitude. A triangle has three altitudes.

Theorem 1.13.1. The three altitudes of a triangle are concurrent.

Proof. Let D be the intersection of the altitudes containing the vertexes A and B. Then
AD ⊥ BC and BD ⊥ AC. Hence we have

(D − A)(B − C) = 0, (D −B)(C − A) = 0.

Adding these two equations together, and using the algebraic properties of dot product we
obtain

0 = (D − A)(B − C) + (D −B)(C − A) = ... = −(D − C)(A−B).

Therefore D − C ⊥ A − B, that is, the line DC is the altitude containing C. All three
altitudes pass through D.

The intersection of the three altitudes is called the orthocenter of the triangle.
Consider the vertexes and the orthocenter. It is remarkable that each of theses four

points is the orthocenter of the triangle formed by the other three points. Such a set of four
points will be called an orthocentric tetrad.

1.14 Feuerbach circle

Lemma 1.14.1. If A,B,C,D is an orthocentric tetrad then

(A+B − C −D)2 = (A−B + C −D)2 = (A−B − C +D)2 =
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(−A+B + C −D)2 = (−A+B − C +D)2 = (−A−B + C +D)2.

Proof. The six numbers above are in fact three pairs, e.g. (A + B − C − D)2 and (−A −
B + C +D)2 are clearly equal, because they are length squares of a vector and its opposite
vector. What we need to prove is that two numbers not in the same pair are also equal.
Without loss of generality let us choose the first two. Calculation shows that

(A+B − C −D)2 − (A−B + C −D)2 = 4(A−D)(B − C).

Since A,B,C,D is an orthocentric tetrad A − D is orthogonal to B − C, and hence (A −
D)(B − C) = 0, showing that (A+B − C −D)2 = (A−B + C −D)2.

Theorem 1.14.2 (Feuerbach circle). Let D be the orthocenter of the ABC triangle. Con-
sider the following nine points (a) the midpoints of the sides, (b) the midpoints of the seg-
ments connecting vertexes to the orthocenter, (c) the feet of the altitudes. These nine points
are on one circle.

Proof. We will only prove that points (a) and (b) are on one circle. The fact that points (c)
are also on the same circle is left as an exercise.

Observe that the six points in (a) and (b) are the midpoints of the six segments connecting
two of A,B,C,D where A,B,C,D form an orthocentric tetrad. Hence these points are

(A+B)/2, (A+ C)/2, (A+D)/2, (B + C)/2, (B +D)/2, (C +D)/2.
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Let N = (A+B + C +D)/4. The vectors connecting N to the six points are

(−A−B + C +D)/4, (−A+B − C +D)/4, (−A+B + C −D)/4,

(A−B − C +D)/4, (A−B + C −D)/4, (A+B − C −D)/4.

These six vectors have the same length because of Lemma 1.14.1. Therefore all six points
are of the same distance from N : they are on one circle.

1.15 Angle sum of a triangle

Lemma 1.15.1. Let the line m intersect a pair of parallel lines `, `′; and let α and α′ be
the angles obtained as in Figure ? (a). Then α = α′.

Proof. Take unit vectors x, −x and u in the lines `, `′, and m as in the picture. Then

α = arccos(x · u), α′ = arccos((−x) · (−u)),

so they obviously agree.

Theorem 1.15.2. The sum of the angles of a triangle is π.

Proof. Let the line `′ be parallel to AB and pass through the point C, see Picture ? (b).
According to Lemma 1.15.1 α = α′ and β = β′ hence we have

α + β + γ = α′ + β′ + γ = π.
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1.16 Law of cosines, law of sines

For a triangle ABC4 the sides opposite to A,B,C will be denoted by a, b, c respectively,
and the angles at A,B,C will be called α, β, γ respectively.

Theorem 1.16.1 (Law of Cosines). We have

c2 = a2 + b2 − 2ab cos γ.

Proof. We have c2 = c2 = (a− b)2 = a2 + b2 − 2ab = a2 + b2 − 2ab cos γ.

Corollary 1.16.2 (Pythagorean theorem). In a right triangle with hypothenuse c we have
c2 = a2 + b2.

Proof. This is the Law of Cosines for γ = π/2.

Corollary 1.16.3 (Triangle inequality). For three points A,B,C in the plane we have

d(AB) ≤ d(BC) + d(CA).

The proof follows from the Law of Cosines, details are left as an exercise.

Theorem 1.16.4 (Law of Sines). We have

sinα

a
=

sin β

b
=

sin γ

c
.

We will give two proves: the first one shows that the Law of Sines is a formal consequence
of the Law of Cosines. The second proof is geometric.

Proof. Proof1. From the Law of Cosines we get cos γ = (a2 + b2 − c2)/(2ab). Using sin γ =√
1− cos2 γ we have

sin γ =

√
1−

(
a2 + b2 − c2

2ab

)2

=√
4a2b2 − (a4 + b4 + c4 + 2a2b2 − 2a2c2 − 2b2c2)

4a2b2
=

√
−a4 − b4 − c4 + 2a2b2 + 2b2c2 + 2a2c2

2ab
.

Dividing both sides by c we obtain

sin γ

c
= an expression symmetric in a, b, c.

Therefore we will get the same expression on the right hand side, if we start with α or β,
not γ. This proves that sin γ/c = sinα/a = sin β/b.

Proof. Proof2. The altitude m passing through vertex C is a side of two right triangles (See
picture) yielding the two expressions: m = b sinα, m = a sin β. Putting the right hand sides
equal and rearranging gives sinα/a = sin β/b.
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1.17 Angle bisectors, perpendicular bisectors

Consider an angle α less than π. The ray inside the angle that cuts α into two angles of
measure α/2 is called the angle bisector.

The distance d(P, `) of a point P to a line ` is the the infimum of the distances between
P and A where A ∈ `.

Lemma 1.17.1. The distance of a point to a line is obtained on the perpendicular segment
dropped from the point to the line.

Proof. The Pythagorean theorem proves that x < x′ on picture ? (a).

Lemma 1.17.2. The points in an angle that are of the same distance from the two rays of
the angle are exactly the points of the angle bisector.

Proof. For a point P as in Picture ? (b) its distance to the two sides is u and v according
to Lemma 1.17.1. We have u = c sin(β), v = c sin(γ). Hence u = v holds if and only if
sin(β) = sin(γ). Well known properties of the sin function imply that this holds if and only
if β = γ.

Theorem 1.17.3. The three angle bisectors of a triangle are concurrent.
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Proof. Let xa, xb, xc be the angle bisectors through the vertexes A,B,C. Let P be the
intersection of the xa and xb. Then

P ∈ xa ⇒ d(P, b) = d(P, c)
P ∈ xb ⇒ d(P, a) = d(P, c)

}
⇒ d(P, a) = d(P, b)⇒ P ∈ xc,

where three of the four ⇒ implications above use Lemma 1.17.2. Since the intersection of
xa and xb is on xc, we have that xa, xb, xc are concurrent.

A byproduct of the theorem is that the intersection of the angle bisectors has the same
distance to the sides. In other words there is a circle with this center that touches the sides
of the triangle: the so-called circle inscribed in the triangle.

For a segment AB, the line passing through the midpoint of AB and perpendicular to
AB is called the perpendicular bisector.

Theorem 1.17.4. The three perpendicular bisectors of the sides of a triangle are concurrent.

The proof is obtained by solving the first two of the following problems:
1. Find and prove a lemma analoguos to Lemma 1.17.2 but it it about the perpendicular
bisector of a segment.
2. Using your lemma from Problem 1 find a proof of Theorem 1.17.4 (logically similar to
the proof of Theorem 1.17.3.
3. Find a byproduct of your proof in Problem 2, analogous to the byproduct of the proof of
Theorem 1.17.3.

1.18 Rotation, applications

For α an angle and v = ~OA a plane vector let Rα(v) denote the vector obtained from rotating

v = ~OA around the origin in the counterclockwise direction, see Picture ? (a). Thus Rα is
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a map from vectors to vectors. Calculation shows that algebraically

Rα : 〈x, y〉 7→ 〈x cosα− y sinα, x sinα + y cosα〉.

If a vector is given by an arrow v = ~PQ where P is not the origin, then to get Rα(v) we

formally need to translate ~PQ to ~OA, then rotate this ~OA by α. Picture ? (b) shows that

this procedure is not necessary: Rα(v) is also obtained by rotating ~PQ around P by α.

Proposition 1.18.1. The rotation operator on vectors is consistent with vector operations
as follows,

• Rα(a + b) = Rα(a) +Rα(b),

• Rα(a− b) = Rα(a)−Rα(b),

• Rα(λa) = λRα(a),

• Rα(a)Rα(b) = ab,

• Rβ(Rα(a)) = Rα+β(a).

Proof. All can be calculated from the algebraic description of the operations.

Theorem 1.18.2. Let ABC4 be a triangle, and let T1 and T2 squares on the sides AC and
BC outside the triangle. Let K and L be the centers of T1 and T2, and X is the midpoint
of AB. Then XK and XL have the same length.



1.18. ROTATION, APPLICATIONS 29

Proof. Let a = ~AC, b = ~BC, and let R = Rπ/2 be the rotation by π/2 operator. Observe

that we can express all relevant vectors in our picture using a,b, R: for example ~AC ′ = R(a),
~BC ′′ = −R(b).

We have

~XK = ~XA+ ~AK =
~BA

2
+

~AC + ~AC ′

2
=
−a + b

2
+

a +R(a)

2
=
R(a) + b

2
,

~XL = ~XB + ~BL =
~AB

2
+

~BC + ~BC ′′

2
=
−b + a

2
+

b−R(b)

2
=

a−R(b)

2
.

The idea of the proof is that we suspect that not only XK and XL are of the same length
but one is the π/2 rotation of the other. Hence we calculate

R( ~XL) = R

(
a−R(b)

2

)
=
R(a)−R(R(b))

2
.

Observe that applying R twice on a vector is the same as multiplication by −1. Indeed,
Rπ/2Rπ/2 = Rπ =multiplication by (−1). Hence

R( ~XL) =
R(a) + b

2
= ~XK,

what we wanted to prove.

The proof above is not the shortest or most elegant proof, but illustrates the main point:
naming sufficient vectors and operations (but not more) that determine the picture we can
express any other vectors in terms of the named ones. Then we can make comparisons among
any two. A more “elegant” version of the same proof will be given in the exercises.
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Theorem 1.18.3 (Napoleon Bonaparte2). Let ABC4 be an arbitrary triangle and let Ta,
Tb, Tc by regular (a.k.a. equilateral) triangles on the sides of a, b, c, outside of ABC. Let
A′, B′, C ′ be the centers of Ta, Tb, Tc. Then A′B′C ′4 is a regular triangle.

Proof. Let b = ~AB and c = ~AC, and let R = Rπ/3 be the rotation by π/3 operator. Our

goal is to express relevant vectors, namely ~A′B′ and ~A′C ′ in terms of these.
First observe that if x is a side vector of a regular triangle then the vector pointing from

a vertex to its center as drawn in Picture ? (b) is (x +R(x))/3. Therefore we have

~AB′ =
c +R(c)

3
, ~CA′ =

b− c +R(b− c)

3
, ~BC ′ =

−b +R(−b)

3
,

see Picture ? (c). Now we can express

~A′B′ = −b− c +R(b− c)

3
− c +

c +R(c)

3
=
−1

3
b− 1

3
c− 1

3
R(b) +

2

3
R(c),

~A′C ′ = −b− c +R(b− c)

3
− c + b +

−b +R(−b)

3
=

1

3
b− 2

3
c− 2

3
R(b) +

1

3
R(c).

2yes, him
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What we want to prove is R( ~A′B′) = ~A′C ′ so let us calculate

R( ~A′B′) = R

(
−1

3
b− 1

3
c− 1

3
R(b) +

2

3
R(c)

)
=
−1

3
R(b)− 1

3
R(c)− 1

3
R(R(b))+

2

3
R(R(c)).

Looking at Picture ? (d) we see that R(x) = x +R(R(x)), and hence R(R(x)) = R(x)− x.
We further have

R( ~A′B′) =
−1

3
R(b)− 1

3
R(c)− 1

3
(R(b)− b) +

2

3
(R(c)− c) =

1

3
b− 2

3
c− 2

3
R(b) +

1

3
R(c).

This last expression is the same as the expression for ~A′C ′ above, hence R( ~A′B′) = ~A′C ′

what we wanted to prove.

1.19 Wedge product of two plane vectors

In Calculus we learn the geometry and the algebra of the notion of cross product a × b of
two vectors a,b ∈ R3 in 3-space. Geometrically a× b has length |a||b| sin θ (where θ is the
angle between a and b), it lies in the line orthogonal to the plane spanned by a and b and
its direction satisfies the right-hand rule. Algebraically

〈a1, a2, a3〉 × 〈b1, b2, b3〉 = 〈a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1〉.

Plane vectors 〈a1, a2〉 can be considered space vectors by 〈a1, a2, 0〉. If we take the cross
product of two such plane-space vectors then we obtain a vector of the form 〈0, 0, ∗〉. We do
not want to keep carrying the (0, 0)-part, hence we give a new definition capturing only the
third coordinate.

Definition 1.19.1. The wedge product a ∧ b of two plane vectors a = 〈a1, a2〉,b = 〈b1, b1〉
is the third coordinate of the cross product 〈a1, a2, 0〉 × 〈b1, b1, 0〉.

From the arguments above we obtain that

• (algebra) 〈a1, a2〉 ∧ 〈b1, b1〉 = a1b2 − a2b1,

• (geometry) a ∧ b = ±|a||b| sin θ. Since |a||b| sin θ is the area of a the parallelogram
spanned by a and b (see Picture ?), we have

a ∧ b = ±Area(parallelogram spanned by a and b).

Analysing the right-hand rule mentioned above we can determine wether + or - stand
in the formula above: if the direction of b is obtained from the direction of a by
a counterclockwise rotation by not more than π then the sign is positive, otherwise
negative.
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The algebraic interpretation easily proves the following properties.

• (antysymmetry) a ∧ b = −b ∧ a, a ∧ a = 0.

• (bilinearity) (a + b) ∧ c = a ∧ c + b ∧ c, (λ · a) ∧ b = λ · a ∧ b.

• a ∧ b = 0 if and only if a and b are parallel. (*)

Again, the power of this operation is the duality between the properties just listed (proved
by algebra) and the geometric interpretation. Here is an application of the the wedge product.

Proposition 1.19.2. The points A,B,C are collinear if and only if A∧B+B∧C+C∧A = 0.

Proof. The points A,B,C are collinear if and only if the vectors ~BA and ~CB are in one line.
They are in one line if and only if their spanned parallelogram degenerates to a segment, i.e.
has area 0. Hence A,B,C are in one line if and only if

0 = (A−B) ∧ (B − C) = A ∧B − A ∧ C −B ∧B +B ∧ C = A ∧B +B ∧ C + C ∧ A.

Before Proposition 1.19.2 our algebraic interpretations of collinearity were Propositi-
ons 1.4.1 and 1.4.2. All the theorems proved using those two propositions have alternative
proofs using our new algebraic interpretation Proposition 1.19.2. We will not reprove earlier
theorems though (students may find it a good exercise), but rather give some new incidence
theorem, and as a change we will prove them using Proposition 1.19.2.

Theorem 1.19.3 (Newton-Gauss line). Let a, b, c, d be four pairwise intersecting lines (this
configuration is called a complete quadrilateral). The pairwise intersections are six points.
Three pairs of these six points are not connected by the lines a, b, c, d, these are called diag-
onals (PS, RQ, UV in the picture). The midpoints of the three diagonals are collinear.



1.19. WEDGE PRODUCT OF TWO PLANE VECTORS 33

Proof. Using the notation of the picture consider the sum of the following twelve terms

P ∧R P ∧Q S ∧R S ∧Q
R ∧ U Q ∧ V R ∧ V Q ∧ U
U ∧ P V ∧ P V ∧ S U ∧ S

We will view this sum in two different ways.
First: The sum of the terms in each column is zero, because the triples of points (P,R, U),

(P,Q, V ), (S,R, V ), (S,Q, U) are collinear, see Proposition 1.19.2. Hence the total sum is
zero.

Second: The first row is 4 times (P + S)/2 ∧ (R + Q)/2, the second row is 4 times
(R +Q)/2 ∧ (U + V )/2. The third row is 4 times (U + V )/2 ∧ (P + S)/2.

We conclude that

P + S

2
∧ R +Q

2
+
R +Q

2
∧ U + V

2
+
U + V

2
∧ P + S

2
= 0,

and hence according to Proposition 1.19.2 (P +S)/2, (R+Q)/2, (U+V )/2 are collinear.

Theorem 1.19.4 (parallel case of Pappus’ theorem). Let A,B,C be collinear points and let
A′, B′, C ′ be collinear. Then two of

AB′||A′B, BC ′||B′C, AC ′||A′C

imply the third.
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Proof. Consider the following three numbers

(A−B′) ∧ (A′ −B), (B − C ′) ∧ (B′ − C), (C − A′) ∧ (C ′ − A).

The vanishing of these three numbers is equivalent to the three parallelity conditions of the
theorem, according to (*) above. Hm...better way of referencing there is needed.

However, one can distribute the sum of these three numbers, use the antisymmetry
property of ∧ and conclude that the total sum is 0. Hence the vanishing of two of them
indeed implies the vanishing of the third one.

We will learn more on Pappus’ theorem in Section ??.

1.20 A 3D view of plane geometry, triple product

In Calculus we learned the geometry and algebra of the triple product (a × b) · c of three
space vectors a,b, c. It will be convenient to use the following notation a∧b∧c = (a×b) ·c,
and we may call it the triple product, or triple wedge product of a, b, c. In particular the
following hold

• a ∧ b ∧ c = (a× b) · c = a · (b× c);

• a∧b∧c is plus or minus the volume of the parallelepiped spanned by the space vectors
a,b, c;

•

(a1, a2, a3) ∧ (b1, b2, b3) ∧ (c1, c2, c3) = det

a1 a2 a3
b1 b2 b3
c1 c2 c3

 ;
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• (3-linearity) a ∧ b ∧ c is linear in each of the variables. Linearity in the first variable
means

(a± a′) ∧ b ∧ c = a ∧ b ∧ c± a′ ∧ b ∧ c,

(λa) ∧ b ∧ c = λ · a ∧ b ∧ c,

and linearity in the second and third variables are similar;

• (antisymmetry) a∧b∧c = b∧c∧a = c∧a∧b = −a∧c∧b = −c∧b∧a = −b∧a∧c.

In view of the second property above it makes no sense of considering the triple product
of vectors lying in the (x, y, 0) plane. A useful tool, however is considering our plane as
the z = 1 plane in 3-space. That is, if a point was (a1, a2) earlier, now we consider it as
(a1, a2, 1).

What we gained is a new operation: we can form the triple product A ∧B ∧C for three
points. What we lost is that we partially lost our earlier operations: for example A+B does
not make sense any more since (a1, a2, 1) + (b1, b2, 1) = (a1 + b1, a2 + b2, 2) is not in the z = 1
plane any more. However, for example xA+ yB makes sense if x+ y = 1.

Proposition 1.20.1. For a triangle ABC4 in the z = 1 plane we have

Area(ABC4) = ±1

2
A ∧B ∧ C,

and the sign is positive if and only if going around the triangle in the order A, B, C is
counterclockwise.

The proof is left as an exercise.

Corollary 1.20.2. The three points A,B,C of the z = 1 plane are collinear if and only if
A ∧B ∧ C = 0.

Proof. Both conditions are equivalent to the condition that the volume of the parallelepiped
spanned by the space vectors A,B,C is zero.

Corollary 1.20.2 is now our 4th algebraic interpretation of collinearity of three points in
the plane—however this in new settings. Again, all theorems that were proved using any of
the earlier three interpretations (Propositions 1.4.1, 1.4.2, 1.19.2) can be proved with this
new one too—just we need to be careful using operation that make sense in the z = 1 plane.
Let us illustrate this with the following new proof Menelaus’ theorem 1.7.1.
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Proof. Consider our triangle in the z = 1 plane. We have K = xB + x′C, L = yC + y′A,
M = zA+ z′B with x+ x′ = y + y′ = z + z′ = 1. According to Corollary 1.4.3 we have

0 = K ∧ L ∧M = (xB + x′C) ∧ (yC + y′A) ∧ (zA+ z′B).

Using 3-linearity and antisymmetry of the triple product we can distribute the above expres-
sion and obtain

0 = (xyz + x′y′z′)A ∧B ∧ C.

SinceABC is a triangle (with non-zero area) we haveA∧B∧C 6= 0. Therefore xyz+x′y′z′ = 0
which is a rearrangement of Menelaus’ theorem.

1.21 Problems

1. Prove Proposition 1.2.2.

2. Prove Proposition 1.5.2.

3. In the formula C = (1 − t)A + tB, trace the position of C on the line as t varies from
−∞ to ∞.

4. In ABC4 let U be the midpoint of AB and let V be the midpoint of AC. Prove that UV
is parallel to BC and has half the length.

5. In a quadrilateral let U and V be the midpoints of two opposite sides. Prove that the
segment UV and the segment connecting the midpoints of the diagonals bisect each other.

6. Let S be the centroid of the ABC4. Calculate ~SA+ ~SB + ~SC.

7. Let R be an arbitrary point in the plane and ABCD a parallelogram. Prove that ~RA +
~RC = ~RB + ~RD.

8. In the ABCD quadrilateral let ~AB = a, ~DC = b. Let the points A,X1, X2, X3, D divide
the AD side into four equal parts. Let the points B, Y1, Y2, Y3, C divide the BC segment into
four equal parts. Express ~X1Y1, ~X2Y2, ~X3Y3 in terms of a and b.

9. Let ABCDA′B′C ′D′ be a cube (ABCD is a square and A′B′C ′D′ is a translated copy

of ABCD). Let a = ~AB,b = ~AD, c = ~AA′. Let P be the midpoint of C ′D′. Let Q be the

center of the BCC ′B′ square. Express ~AP , ~AQ, ~AD′, ~BD in terms of a,b, c.
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10. Let ABCD be a parallelogram. Let the points A,X1, X2, B divide AB into three equal
parts. Let C, Y1, Y2, D divide CD into three equal parts. Let X2, U, V, Y2 divide X2Y2 into
three equal parts. Express ~AV in terms of ~AB and ~AD.

11. Let P1, . . . , Pn be points, and µ1, . . . , µn be real numbers with
∑n

i=1 µi = 1. For a point

O consider v =
∑n

i=1 µi
~OPi. Let S be the end point of the vector v if it is measured from

O. Prove that the point S does not depend on the choice of O. (Hint: choose two different
O1 and O2 and calculate the vector between the obtained “two” S points. You should get 0.)

12. Let D be a point on the line of BC, and let E be a point on the line of AC of the ABC4
(but let D,E be distinct from the vertices). Assume the lines AD and BE intersect in a

point P . Prove that if
~BD
~DC
· ~CE
~EA

= −1 then CP is parallel with AB.

13. Let the reflection of the point A over the point B be C. Express C in terms of A and B.

14. (cont.) Let ABC4 be a triangle. The reflection of A over B is A′. The reflection of B
over C is B′. The reflection of C over A is C ′. Prove that the centroid of ABC4 and the
centroid of A′B′C ′4 coincide.

15. In the proof of the reverse Menelaus’ theorem we claimed that ` intersects the line of
AB (that is, ` and AB are not parallel). Prove this statement.

16 (P). Consider the ABC4 and non-zero real numbers k1, k2, k3. Let PAB and P ′
AB be on

the AB line, the first in the AB segment, the second outside of the AB segment, such that

|APAB|
|PABB|

=
|AP ′

AB|
|P ′
ABB|

=
k1
k2
.

Define PBC and P ′
BC on the BC line similarly with the ratio k2/k3; and define PCA and P ′

CA

on the CA line similarly with the ratio k3/k1. Show that the lines APBC, BPCA, CPAB are
concurrent.

17 (P). (cont.) Prove that the line PCAPAB contains the point P ′
BC.

18 (P). (cont.) Prove that P ′
AB, P ′

BC, and P ′
CA are collinear.

19 (P). Let P be different from the vertices of the triangle ABC4. Let PBLC, PCMA,
PANB be parallelograms. Prove that the segments AL, BM , CN bisect each other.

20 (P). Points P,Q,R lie on the sides of the ABC4 and are such that

( ~BP : ~PC) = ( ~CQ : ~QA) = ( ~AR : ~RB).

Prove that the centroids of the triangles PQR and ABC coincide.
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21 (P). The triangles A1B1C14, A2B2C24, and A3B3C34 have their corresponding sides
parallel. Hence each pair of triangles has a center of perspectivity (assume that these centers
of perspectivities exist). Prove that the three centers of perspectivities are collinear.

22 (P). A line drawn through the vertex A of a parallelogram ABCD cuts CB in P and CD
in Q. A line through C cuts AB in R and AD in S. Prove that PR and QS are parallel.

23. Prove that for a parallelogram the sum of squares of the sides is equal to the sum of the
squares of the diagonals.

24. Let O be the center of the ABCDEF regular hexagon whose side length is 1. Find

~AB · ~AO, ~AB · ~AC, ~BC · ~EF , ~FC · ~BD, ~FC · ~EF .

25 (P). Let A,B,C,D be points in the plane, let A′ be the midpoint of BC, let B′ be the
midpoint of CA, and let C ′ be the midpoint of AB. Prove that

(D − A′)(C −B) + (D −B′)(A− C) + (D − C ′)(B − A) = 0.

26 (P). Suppose that the segment connecting the midpoints of AB with CD, and the seg-
ment connecting the midpoints of BC with DA are of the same length. Prove that AC is
perpendicular to BD.

27. Prove Corollary 1.16.3, the triangle inequality.

28. (Thales’ theorem) Let O be the midpoint of AC. Prove that ∠(ABC) = π/2 if and only
if d(AO) = d(BO). (That is ∠(ABC) = π/2 if and only if B is on the circle with center O
and radius d(AO).)

29. Finish the proof of Feuerbach’s Theorem 1.14.2, i.e. prove that points (c) are also on
the same circle as points (a) and (b). [Hint: Thales’ theorem is useful.]

30. Let C be a circle in the plane, and let λ be a number. Prove that λ C = {λx ∈ R2 : x ∈ C}
is also a circle.

31. Reflect the orthocenter of ABC4 over the midpoints of the sides. Prove that the obtained
three points are on the circumscribed circle.

32. Solve problems 1, 2, 3 after Theorem 1.17.4.

33. Prove that a triangle is equilateral if two of its circumcenter, centroid, and orthocenter
coincide.
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34. Let O be the center of circumscribed circle of ABC4. Let a,b, c be the vectors pointing
from O to the vertexes. Let M be the endpoint of a + b + c measured from O. Prove that M
is the orthocenter of ABC4.

35. (cont.) Let O be the center of the circumscribed circle of ABC4. Let M be the ortho-
center, and let S be the centroid of ABC4. Prove that O,M, S are collinear. (The obtained

line is called the Euler-line of ABC4.) Find ~OS/ ~SM .

36. Let D be a point on the side BC of ABC4. Prove that

BD

DC
=
|AB| sin(DAB∠)

|AC| sin(DAC∠)
.

37. (cont.) Prove the Angle Bisector Theorem: If the angle bisector from A intersects BC
in D, then

|BD|
|DC|

=
|AB|
|AC|

.

38. (cont.) Reprove that angle bisectors are concurrent by using the Angle Bisector Theorem
and Ceva’s theorem.

39. Let AB = 6, BC = 10 in the ABC4. The angle bisector at B intersects AC in D.
Connect D with the midpoint of AB, let the intersection point with BC be E. What is the
length |BE|?

40. Let the lengths of the sides of ABC4 be a, b, c (a is opposite of A, etc). If O is the
center of the inscribed circle then prove that

O =
aA+ bB + cC

a+ b+ c
.

41. Let P be an interior point of ABC4. The lines connecting P with the vertices cut
ABC4 into six smaller triangles. We color every second of these six triangles with red, the
rest with blue. Prove that the product of the areas of the red triangles is the same as the
product of the areas of the blue triangles.

42. (cont.) In the problem above replace “area” with “radius of the circumscribed circle”.

43 (P). Let P,Q,R, S be the centers of the squares that are described externally on the sides
of a quadrilateral (in this order). Prove that PR and QS are of the same length, and are
perpendicular to each other.
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44 (P). If A′, B′, C ′ are the midpoints of BC, CA, AB respectively, then show that

4A′ ∧B′ ∧ C ′ = A ∧B ∧ C.

Deduce that Area(A′B′C ′4) = 1
4

Area(ABC4).

45 (P). Let the side lengths of the ABC4 be a, b, c (a is opposite with A etc), and let the
angles be α, β, γ. Let the foot of the altitude from A be D. Prove that

aD = (b cos γ)B + (c cos β)C.

Deduce that the area of the triangle formed by the feet of the altitudes is

2 cosα cos β cos γ · Area(ABC4).

46 (P). Let D,E, F be points on the sides AB, BC, CA of a triangle, dividing the sides in
the ratios k1 : 1, k2 : 1, k3 : 1. Show that

Area(DEF4)

Area(ABC4)
=

1 + k1k2k3
(1 + k1)(1 + k2)(1 + k3)

.

47. Give a proof of Proposition 1.20.1. [Hint: Let T be the tetrahedron with vertexes
(0, 0, 0), A,B,C. Use the geometric interpretation of the triple product to conclude that
the volume of T is plus or minus one sixth of the triple product ABC. Finish the proof by
observing that the volume of T is one third of the area of the ABC4.]

48. Reprove Ceva’s theorem, using the triple wedge operation. Hint: Try to rephrase the
“high-school style” proof from the end of Section 1.9.


