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Abstract. Consider an immersion of a surface into S3. Banchoff’s theorem [B]

states that the parity of the number of triple points and the parity of the Euler
characteristic of the surface coincide. Here we generalize this theorem to codimension

1 immersions of arbitrary even dimensional manifolds in spheres. The proof is an
analogue of a proof of Banchoff’s theorem circulated in preprint form by R. Fenn and

P. Taylor in 1977 [FT].

Let us consider a codimension 1 smooth generic (i.e. self-transverse) immersion
f of a closed manifold Mn in the sphere Sn+1. Let us recall how a neighborhood
of an i-tuple point (in Rn+1 ⊂ Sn+1) looks like in such a self-transverse immersion.
Consider the coordinate hyperplanes in Ri and take the direct product of this
configuration with Rn+1−i. What is obtained is diffeomorphic to the neighborhood
of an i-tuple point in the image of f .

For any natural number i, 1 ≤ i ≤ n + 1, let us denote by ∆̃i the set of i-tuple
points in Sn+1 i.e.

∆̃i = {y ∈ Sn+1 | f−1(y) consists of i different points}.

As it is well known, dim ∆̃i = n + 1 − i, and ∪∞

r=i
∆̃r is an immersed manifold

(although it is not in general position i.e. it is the image of a non-selftransverse

immersion). Let ∆i be a closed manifold such that ∪∞

r=i
∆̃r is the image of an

immersion of ∆i in Sn+1.

Remark. Of course, many different manifolds can be immersed into Sn+1 so that
their images are ∪∞

r=i
∆̃r. For example if a possible ∆i is given, then any of its finite

coverings serves as well. We make the choice of ∆i explicit by assuming that the
i-tuple points of f are non-multiple points of the immersion ∆i # Sn+1.

We shall call the manifold ∆i the i-tuple manifold of f . Our theorem claims
that for n even the sum of the Euler characteristics of i-tuple manifolds is even.
(For n = 2 this is exactly Banchoff’s theorem.)
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Theorem. If n > 0 is even, then

n+1
∑

i=1

χ(∆i) ≡ 0 mod 2.

The following proof is an analogue of the proof in [FT] for Banchoff’s triple point
theorem.

Proof. Since n is even, we can omit the terms corresponding to even i’s, because
in those cases the dimension of ∆i is odd. Now let us triangulate the image of
f such a way that for any i the set of points of multiplicity i or higher forms a
subcomplex of f(M).

Let αi
r denote the number of i-dimensional simplexes whose interiors lie in ∆̃r,

and let
βr = α0

r
− α1

r
+ . . .± αn+1−r

r
.

Observe, that βr is not the Euler characteristic of any complex. However, we have
that

χ(∆i) =
n+1
∑

r=i

(

r

i

)

βr.

The coefficient
(

r

i

)

counts the multiplicity of the self-intersection of ∆i at ∆̃r. So

n+1
∑

i=1

∗χ(∆i) =

n+1
∑

i=1

∗

n+1
∑

r=i

(

r

i

)

βr,

where ∗ indicates that the sum is taken only for odd i’s. After changing the order
of the summations we get:

(1)

n+1
∑

r=1

(

r
∑

i=1

∗

(

r

i

)

)βr =

n+1
∑

r=1

2r−1βr ≡ β1 mod 2.

Now let us color the complement of f(M) in Sn+1 in two colors in a chessboard-
style, i. e. let any two neighboring domains have different colors (where “neighbor-

ing” means that they are separated by a component of ∆̃1). This is possible, since
Hn(S

n+1;Z2) = 0.
LetN be the boundary of an ε-neighborhood of f(M) in the black subset of Sn+1.

Notice, that from the given triangulation of f(M) we can construct a triangulation
of N by pushing the simplexes from f(M) to N in a reasonable way. Simplexes in

∆̃i will have 2i−1 counterparts in N (i hyperplanes divide the Euclidean n-space
into 2i parts, half of which are black). Thus:

χ(N) =
n+1
∑

i=1

2i−1βi ≡ β1 mod 2.

But χ(N) is even, because N is embedded in codimension 1 (and n > 0), so the
proof is complete.



A GENERALIZATION OF BANCHOFF’S TRIPLE POINT THEOREM 3

Remark 1. As it is clear from the proof, the space Sn+1 can be replaced by any

manifold such that its nth Z2-homology group is 0.

Remark 2. The above proof does not work for n odd, since the sum
∑

r

i=1
∗

(

r

i

)

(where the star this time means summation for even i’s) equals to 2r−1 − 1, so the

sum in formula (1) gives
∑n+1

r=2
βr (which is clearly the Euler characteristic of the

complex f(M)).

The figure 8 immersion of the circle in the plane shows that the statement of
the theorem is false for n = 1. A theorem of Freedman [F] (and its generalization
to unoriented 3-manifolds given in [A]) shows that it is true for n = 3. We do not
know whether it is true or not for n > 3.

Remark 3. If we consider only oriented n-manifolds and their codimension 1 im-

mersions in Sn+1, and the nth stable homotopy group of spheres has no 2-primary
torsion, then the Euler characteristics of the i-tuple manifolds are all even, for any i.
(Indeed, for any i χ(∆i) mod 2 defines a homomorphism from the stable homotopy
group πn+N (SN ), N >> n to Z2.)

In particular the statement of the theorem is true for n = 5 or n = 13 for
oriented manifolds.

Remark 4. If the dimension n = 4, then more is true than it is stated in the
theorem, namely all χ(∆i)’s are even, since the stable homotopy group πs

5(RP∞)
vanishes (see [L]), and this group is isomorphic to the cobordism group of immer-
sions of 4-manifolds into R5.

References

[A] P. Akhmetiev, An elementary proof of Freedman’s theorem on immersions; (in Russian), to

appear in Algebra and Analysis, St. Petersburg.
[B] T. Banchoff, Triple points and surgery of immersed surfaces, Proc. Amer. Math. Soc. 46

(1974).

[F] M. Freedman, Quadruple points of 3-manifolds in S4, Comment. Math. Helvetici 53 (1978)
385–394.

[FT]R. Fenn, P. Taylor, On the number of triple points of an immersed surface, (unpublished)

preprint (1977).
[L] A. Liulevicius, A theorem in homological algebra and stable homotopy of projective spaces,

Trans. Amer. Math. Soc., 109 (1963), 540–552.

Institute of Terrestrial Magnetism and Radio Wave Propagation, Academy of

Sciences of Russia, Troitsk, Moscow Region 142092, Russia

ELTE Dept. of Analysis, Budapest, Múzeum krt. 6–8., 1088, Hungary
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