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ABSTRACT. Consider an immersion of a surface into S®. Banchoff’s theorem [B]
states that the parity of the number of triple points and the parity of the Euler
characteristic of the surface coincide. Here we generalize this theorem to codimension
1 immersions of arbitrary even dimensional manifolds in spheres. The proof is an
analogue of a proof of Banchoff’s theorem circulated in preprint form by R. Fenn and
P. Taylor in 1977 [FT].

Let us consider a codimension 1 smooth generic (i.e. self-transverse) immersion
f of a closed manifold M™ in the sphere S"*!. Let us recall how a neighborhood
of an i-tuple point (in R*T! C S™*1) looks like in such a self-transverse immersion.
Consider the coordinate hyperplanes in R’ and take the direct product of this
configuration with R"*1~%, What is obtained is diffeomorphic to the neighborhood
of an i-tuple point in the image of f.

For any natural number ¢, 1 <7 < n + 1, let us denote by Ai the set of i-tuple
points in ™! i.e.

A, = {y € gntl | f_l(y) consists of ¢ different points}.

As it is well known, dim A; = n+ 1 —4, and US2,A, is an immersed manifold
(although it is not in general position i.e. it is the image of a non-selftransverse
immersion). Let A; be a closed manifold such that UX A, is the image of an
immersion of A; in S”*1.

Remark. Of course, many different manifolds can be immersed into S™*! so that
their images are U;?O:iﬁr. For example if a possible A; is given, then any of its finite
coverings serves as well. We make the choice of A; explicit by assuming that the
i-tuple points of f are non-multiple points of the immersion A; 9+ S™+1,

We shall call the manifold A; the i-tuple manifold of f. Our theorem claims
that for n even the sum of the Euler characteristics of i-tuple manifolds is even.
(For n = 2 this is exactly Banchoff’s theorem.)
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Theorem. Ifn > 0 is even, then

n+1
Z X(A;) =0 mod 2.
i=1

The following proof is an analogue of the proof in [FT] for Banchoff’s triple point
theorem.

Proof. Since n is even, we can omit the terms corresponding to even ¢’s, because
in those cases the dimension of A; is odd. Now let us triangulate the image of
f such a way that for any ¢ the set of points of multiplicity ¢ or higher forms a
subcomplex of f(M).
Let o’ denote the number of i-dimensional simplexes whose interiors lie in A,
and let
Br=0al—al+.. . £artl",

T_

Observe, that 3, is not the Euler characteristic of any complex. However, we have

that -
@)=Y (1)s.

r=t

The coefficient (:) counts the multiplicity of the self-intersection of A; at A,.. So

n+1 n+l n+1 r
> @) =33 (7)o
=1 =1 r=

where * indicates that the sum is taken only for odd i’s. After changing the order
of the summations we get:

(1) %(Z " C))BT = 22“1@ = 61 mod 2.

r=1 =1

Now let us color the complement of f(M) in S™*! in two colors in a chessboard-
style, i. e. let any two neighboring domains have different colors (where “neighbor-
ing” means that they are separated by a component of Al). This is possible, since
Hn(S”+1; ZQ) = 0.

Let N be the boundary of an e-neighborhood of f(M) in the black subset of S™*1.
Notice, that from the given triangulation of f(M) we can construct a triangulation
of N by pushing the simplexes from f(M) to N in a reasonable way. Simplexes in
A; will have 201 counterparts in N (¢ hyperplanes divide the Euclidean n-space
into 2¢ parts, half of which are black). Thus:

n+1

X(N) = ZQi_lﬁi = 1 mod 2.

i=1

But x(NV) is even, because N is embedded in codimension 1 (and n > 0), so the
proof is complete.
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Remark 1. As it is clear from the proof, the space S"*! can be replaced by any
manifold such that its nth Zs-homology group is 0.

Remark 2. The above proof does not work for n odd, since the sum > ._ * (:)

(where the star this time means summation for even i’s) equals to 2”1 — 1, so the
sum in formula (1) gives Zf;l  (which is clearly the Euler characteristic of the

complex f(M)).

The figure 8 immersion of the circle in the plane shows that the statement of
the theorem is false for n = 1. A theorem of Freedman [F] (and its generalization
to unoriented 3-manifolds given in [A]) shows that it is true for n = 3. We do not
know whether it is true or not for n > 3.

Remark 3. If we consider only oriented n-manifolds and their codimension 1 im-

mersions in S”*!, and the nth stable homotopy group of spheres has no 2-primary
torsion, then the Euler characteristics of the i-tuple manifolds are all even, for any 3.
(Indeed, for any ¢ x(A;) mod 2 defines a homomorphism from the stable homotopy
group T,y n(SY), N >>n to Z5.)

In particular the statement of the theorem is true for n = 5 or n = 13 for
oriented manifolds.

Remark 4. If the dimension n = 4, then more is true than it is stated in the
theorem, namely all x(A;)’s are even, since the stable homotopy group 7§ (RP>)
vanishes (see [L]), and this group is isomorphic to the cobordism group of immer-
sions of 4-manifolds into R®.
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