R-matrix

Basis of $H_{T^{2}}^{*}\left(\operatorname{Gr}_{0} \mathbb{C}^{2} \omega \operatorname{Gr}_{1} \mathbb{C}^{2} \omega \operatorname{Gr}_{2} \mathbb{C}^{2}\right)$

$$
\begin{aligned}
& c^{s m}\left(\Omega_{\phi} \subset G r_{0} \mathbb{C}^{2}\right)=1 \\
& c^{s m}\left(\Omega_{1} c G r_{1} \mathbb{C}^{2}\right)=z_{2}-t \\
& c^{s m}\left(\Omega_{2} c G r_{1} \mathbb{C}^{2}\right)=z_{1}-t+\hbar \\
& c^{s m}\left(\Omega_{k} c G r_{2} \mathbb{C}^{2}\right)=1
\end{aligned}
$$

$$
\in H_{T}^{*}\left(G r_{0} \mathbb{C}^{2}\right)
$$

$$
\} \in H_{T}^{*}\left(G r_{1} \mathbb{C}^{2}\right)
$$

$\in H_{T}^{*}\left(G r_{2} \mathbb{C}^{2}\right)$

$$
\begin{aligned}
& c^{\operatorname{sm}}\left(\Omega_{\phi} \subset G r_{0} \mathbb{C}^{2}\right)=1 \\
& c^{s m}\left(\Omega, c G r_{1} \mathbb{C}^{2}\right)=z_{2}-t \\
& c^{s m}\left(\Omega_{2} c G r_{1} \mathbb{C}^{2}\right)=z_{1}-t+\hbar \\
& c^{\operatorname{sm}}\left(\Omega_{1} c G r_{2} \mathbb{C}^{2}\right)=1 \\
& \text { cst classes } \\
& \text { with "opposite" } \\
& \text { reference flag } \\
& c^{\operatorname{sm}}\left(\Omega_{\phi} \subset G r_{0} \mathbb{C}^{2}\right)=1 \\
& c^{\operatorname{sm}}\left(\Omega_{1} \subset G r_{1} \mathbb{C}^{2}\right)=z_{2}-t+\hbar \\
& c^{s m}\left(\Omega_{2} c G r_{1} \mathbb{C}^{2}\right)=z_{1}-t \\
& c^{\operatorname{sm}}\left(\Omega_{12} c G r_{2} \mathbb{C}^{2}\right)=1
\end{aligned}
$$

Calculation: change of basis matrix:

$$
\begin{aligned}
& R\left(z_{1}-z_{2}\right):=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \frac{z_{1}-z_{2}}{z_{1}-z_{2}+\hbar} & \frac{\hbar}{z_{1}-z_{2}+\hbar} & 0 \\
0 & \frac{\hbar}{z_{1}-z_{2}+\hbar} & \frac{z_{1}-z_{2}}{z_{1}-z_{2}+\hbar} & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& =\frac{z_{1}-z_{2}}{z_{1}-z_{2}+\hbar} I d+\frac{\hbar}{z_{1}-z_{2}+\hbar} P
\end{aligned}
$$

Fact this matrix satisfies the parameter -dependent Yang -Baxter equation:

$$
\begin{aligned}
& \quad R_{12}\left(z_{1}-z_{2}\right) R_{13}\left(z_{1}-z_{3}\right) R_{23}\left(z_{2}-z_{3}\right)=R_{23}\left(z_{2}-z_{3}\right) R_{13}\left(z_{1}-z_{3}\right) R_{12}\left(z_{1}-z_{2}\right) \\
& \text { (verify!!!) } \\
& \left(\begin{array}{llll}
\mathbb{C}^{2}=\operatorname{span}\left(v_{1}, v_{2}\right) & v_{1} \otimes v_{1} & \leftrightarrow c^{5 m}\left(\Omega_{\phi}\right) \\
\otimes \mathbb{C}\left(z_{1}, z_{2}\right) & v_{1} \otimes v_{2} & \leftrightarrow c^{5 m}\left(\Omega_{1}\right) \\
v_{2} \otimes v_{1} & \leftrightarrow c^{5 m}\left(\Omega_{2}\right) \\
v_{2} \otimes v_{2} & \leftrightarrow c^{5 m}\left(\Omega_{12}\right)
\end{array}\right) \\
& \\
& \quad \begin{array}{ll}
\mathbb{C}^{2} \otimes \mathbb{C}^{2} \otimes \mathbb{C}^{2} & \longrightarrow \mathbb{C}^{2} \otimes \mathbb{C}^{2} \otimes \mathbb{C}^{2}
\end{array}
\end{aligned}
$$

$R_{i j}(z)$ acts as $R(z)$ in $i^{\text {th }} \& j^{\prime}$ th factor

Further along this direction
this particular solution of the $Y B$ equation is the R-matrix of $Y\left(\mathrm{gl}_{2}\right)$

Yangian
$\rightarrow \quad H_{T}^{*}\left(\bigsqcup_{k} G r_{k} \mathbb{C}^{n}\right) \quad$ is a $Y\left(g l_{2}\right)$-module (with $c^{s m}$ - classes playing the role of standard basis vectors "spin basis"

