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These problems use the notations, and refer to notions from my lecture “Basic notions in cotan-
gent Schubert Calculus” at CIRM 2021. Lecture notes are available upon request. The meaning
and relevance of the statements made in these problems are also explained in that lecture.

Problem 1 (on H�
T pP

1q)
Consider the ring homomorphism

Loc : Zrt, z1, z2s Ñ Zrz1, z2s ` Zrz1, z2s
fpt, z1, z2q ÞÑ pfpz1, z1, z2q, fpz2, z1, z2qq .

Prove the following two characterizations of the image (range) of Loc:

ImpLocq � tpf1pz1, z2q, f2pz1, z2qq P Zrz1, z2s ` Zrz1, z2s : f1pu, uq � f2pu, uqu,

ImpLocq � tpf1pz1, z2q, f2pz1, z2qq P Zrz1, z2s ` Zrz1, z2s : pz1 � z2q|pf1 � f2qu.

Problem 2 (on equivariant Schubert classes in H�
T pP

n�1q)
Let j ¤ n be non-negative integers. Invent (that is, give a formula for) a polynomial fpt, z1, z2, . . . , znq
such that

 f is of homogeneous degree n� j (where deg t � deg zi � 1);
 fpzj, z1, z2, . . . , znq �

±n
i�j�1pzi � zjq;

 fpzi, z1, z2, . . . , znq � 0 if j   i ¤ n.

Problem 3 (on equivariant CSM classes in H�
T pP

n�1q)
Let j ¤ n be non-negative integers. Invent a polynomial fpt, z1, z2, . . . , zn, ~q such that

 f is of homogeneous degree n� 1 (where deg t � deg zi � deg ~ � 1);

 fpzj, z1, z2, . . . , znq �
±j�1

i�1 pzi � zj � ~q
±n

i�j�1pzi � zjq;
 fpzi, z1, z2, . . . , znq � 0 if j   i ¤ n;
 fpzi, z1, z2, . . . , znq is divisible by ~ for i   j;

 fpzi, z1, z2, . . . , znq is divisible by
±i�1

s�1pzs � zi � ~q.
1



2 R. RIMÁNYI

Problem 4 (on the MacPherson property of CSM classes)
Consider the polynomial f you defined in Problem 3, and let us call it fj,n. Define Fn �

°n
j�1 fj,n.

Show that Fn|t�zi is a product of linear factors, for all n and i.

Problem 5 (on equivariant Littlewood-Richardson coefficients on P1)
In the lecture we saw that in H�

T pP
1q we have

rΩ1s �pz2 � z1, 0q,

rΩ2s �p 1 , 1q.

Calculate the products rΩis � rΩjs as Zrz1, z2s-linear combinations of rΩ1s and rΩ2s.

Problem 6 (on CSM versions of equivariant Littlewood-Richardson coefficients on P1)
In the lecture we saw that in H�

T pP
1q we have

csmpΩ1q �pz2 � z1, 0 q,

csmpΩ2q �p ~ , z1 � z2 � ~q.
Calculate the products csmpΩiq�c

smpΩjq as Zrz1, z2, ~s-linear combinations of csmpΩ1q and csmpΩ2q.

Problem 7 (on the R-matrix property on CSM classes)
In the lecture we claimed that

(1)

�
���

csmpΩopposite
H q

csmpΩopposite
1 q

csmpΩopposite
2 q

csmpΩopposite
12 q

�
���

�
���

1 0 0 0
0 z1�z2

z1�z2�~
~

z1�z2�~ 0

0 ~
z1�z2�~

z1�z2
z1�z2�~ 0

0 0 0 1

�
��

�
���

csmpΩHq
csmpΩ1q
csmpΩ2q
csmpΩ12q

�
��

(and that the occurring matrix satisfies the parameterized Yang-Baxter equation). Verify (1).
Find the analogous matrix if we replace csmpΩIq’s with rΩIs’s.
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