Solution to Midterm-2, Problem 4

Since $f^{\prime}:[a, b] \rightarrow \mathbb{R}$ is continuous on a closed interval, it attains its maximum $f^{\prime}\left(x_{1}\right)=M$ and minimum $f^{\prime}\left(x_{2}\right)=m(\mathrm{EVT})$. That is, for all $x \in[a, b]$ we have $m \leq f^{\prime}(x) \leq M$. This implies that

$$
\left|f^{\prime}(x)\right| \leq \max (|m|,|M|) \quad \text { for all } x \in[a, b] .
$$

Let $c=\max (|m|,|M|)$. Since both m and M are values of f^{\prime}, we have $c<1$. Let x and y be in $[a, b]$. By MVT (a.k.a. Lagrange's theorem) there exists a $u \in[a, b]$ such that

$$
\frac{f(x)-f(y)}{x-y}=f^{\prime}(u)
$$

We have

$$
\left|\frac{f(x)-f(y)}{x-y}\right|=\left|f^{\prime}(u)\right| \leq c
$$

what is a rearrangement of what we wanted to prove.

