
Motivic characteristic classes of
coincident root loci

The generating function approach

(work in progress)

Balázs Kőműves
(bkomuves@gmail.com)

2nd Budapest Workshop on
Characteristic Classes of Singularities

Budapest, 2-3 Aug 2018

Introduction

Brasselet, Schürmann and Yokura (2005) introduced the so-called
motivic Chern class transformation and its “homology shadow”1

which could be called ‘Hirzebruch transformation’, and which
unifies:

I the Chern-Schwartz-MacPherson transformation,

I the Baum-Fulton-MacPherson-Todd transformation, and

I the Cappell-Shaneson L-class transformation.

These can be used to define characteristic classes of singular
varieties embedded into (for simplicity) smooth compact varieties.

My goal today is to compute these classes for a concrete example,
which (in my opinion) falls into the sweet spot between easy and
hopeless.

1my wording

Motivic characteristic classes

By a “motivic characteristic class” m(f) I mean (loosely after BSY), a
functor m : Var/X → A(X), from the category of quasi-projective
varieties over X to some (co)homology-like theory A(X), which satisfies
the following 3+1 properties:

I additivity: for fi : Yi → X we have

m(f1
∐
f2) = m(f1) +m(f2)

I exterior product: for fi : Yi → Xi we have

m(f1 × f2) = m(f1)×m(f2)

I functoriality: for f : Y → X and g : X → Z proper, we have

m(g ◦ f) = g!(m(f))

I normalization: there is some natural expression for
m(X) := m(idX) when X is smooth (and compact?).

Examples of motivic characteristic classes

Shorthand / abuse of notation: m(X) = m(idX), which is a
characteristic class living on X.

Examples of such motivic classes:

I in constant rings:
I the Euler characteristic χ(X) ∈ Z
I the Hirzebruch χy genus χy(X) ∈ Z[t]
I the Hodge polynomial (or E-polynomial) E(X) ∈ Z[u, v] (?)

I in homology H∗(X):
I the Chern(-Schwartz-MacPherson) class cSM(X)
I the (Baum-Fulton-MacPherson-)Todd class td(X)
I the (Cappell-Shaneson-)Thom-Milnor L-class L(X)
I the (BSY-)Hirzebruch class Ty(X)

I in K-theory K0(X):
I the Brasselet-Schürmann-Yokura motivic Chern class mc(X)

I equivariant versions of these

What are these classes exactly?

The 3 properties plus normalization uniquely2 determine these
classes, so it’s enough to specify the normalization, that is, their
values for X smooth:

I the CSM class is cSM(X) = c(TX) =
∏
i(1 + αi)

I the Todd class is td(X) =
∏
i

αi
1−e−αi

I the L class is L(X) =
∏
i

αi
tanh(αi)

I the (normalized) Hirzebruch class is

Ty(X) =
∏
i

{
αi(1+t)

1−e−αi(1+t) − αit
}
∈ H∗(X)[t]

where αi are the Chern roots of the tangent bundle TX;

And for the motivic Chern class it is

mc(X) = λt(T
∗X) =

∑[
∧i (T ∗X)

]
· ti ∈ K0(X)[t]

2I hope

The case of smoooth ambient space

It often makes sense to assume that the ambient space X is
smooth and compact (and the map f : Y → X is an embedding);
especially since we are dealing with stratifications of smooth
spaces.

In that case we can use Poincaré duality of X and switch to the
cohomology version m(Y ⊂ X) ∈ H∗(X). When the ambient
space and the embedding is clear from the context, it also makes
sense to simply write m(Y) instead of m(Y ⊂ X).

In this talk the ambient space will be always smooth and compact,
in fact it will be either a projective space or a product of projective
spaces. Because of this, instead of m(Y ⊂ Pn) I will simply write
m(Y).

Coincident root loci

The space Pn = PSymnC2 is the configuration space of unordered
n-tuples of points in P1 = PC2 (roots of degree n binary forms).

This space is naturally stratified by specifying the multiplicities of
the points (roots): Given a partition µ = (µ1, . . . , µk) of n, define
Xµ ⊂ Pn be the set of configurations (or forms) which have k
distinct roots, with multiplicities µ1, µ2, . . . , µk.

Pn =
∐
µ`n

Xµ

For example the partition µ = (3, 2, 2, 1) of 8 means that we have
a triple point, two disjoint double points and a singleton point.

We call the loci Xµ coincident root loci.3

3also called: multiple root loci, pejorative manifolds, discriminant strata,
factorization manifolds, λ-Chow varieties, etc.

What about the singularities?

The loci Xµ are smooth (but not compact!). What we would
normally be interested is their closures Xµ, which are singular.

It is easy to see that

Xµ =
∐
ν�µ

Xν

where ≺ is the refinement partial order. Since we assume
additivity, this means

m(Xµ) =
∑
ν�µ

m(Xν),

thus modulo understanding this partial ordering, it’s enough to
consider the ‘open’ case. It’s not clear if we can expect nice results
for the closures (this partial order is known to be “not so nice”).

In any case, here I will concentrate on the open strata.

The goal: Compute m(Xµ ⊂ Pn) for different m-s

Last year I talked about computing the equivariant CSM classes of the
loci Xµ. It is then a natural question to ask about the other motivic
classes?

(Un)fortunately, the method I presented last year works only for the CSM
class, as it uses, in a crucial way, the following property of the CSM
classes: For f : Y ⊂ X and a proper map π : X → X ′, we have

cSM(π ◦ f) = π∗ cSM(Y ⊂ X) =
∑

χ(π−1(zi) ∩ Y) · cSM(Zi)

with
∐
i Zi = π(Y) such that χ(π−1(z) ∩ Y) is constant on each Zi.

The analogue of this does not hold for the other motivic classes4. So I

figured out a different method, which in principle works for all motivic

classes5. And it turns out to have some nice and surprising consequences!

4it only holds if π is a Zariski locally trivial fibration (?)
5in the sense explained before

Motivation

I like this problem because:

I it is simple enough that we are actually able to compute these
classes;

I it is complicated enough to have a very rich structure;

I the equivariant versions should have applications in enumerative
geometry;

I it is basically the simplest configuration / moduli problem one can
think of.

So this is a really nice and “simple” example to work with.

In this talk I’m concentrating on the non-equivariant case, but of
course what we really want are the equivariant versions. I don’t see
any serious obstacles to do that, but it’s more (heavy) work, which
is not yet done. And the non-equivariant case is already rather
interesting!

Some previous results

The loci Xµ were studied by many people:

I Cayley (1857): defining equations (for n ≤ 5)

I Schubert (1886): enumerative consequences for some particular µ-s

I Hilbert (1887): the degree of Xµ

I Kirwan (1992): the fundamental class for some specific µ-s (in the
context of GIT)

I Aluffi (1998): the non-equivariant CSM class

I Chipalkatti (2001): the defining ideal (for some cases at least?)

I Fehér, Némethi, Rimányi (∼2003; published in 2006): the
equivariant fundamental class via localization

I Kőműves (2003): the same equivariant fundamental class via
restriction equations

I Kőműves (2016, unpublished): the equivariant CSM class

The plan

My plan for today (and tomorrow):

I explain the geometry, and introduce another family of
interesting loci D(n), closely related to Xµ

I present an algorithm to compute m(D(n)), which is generic
over all motivic classes m (modulo some “plugins”)

I figure out the necessary “plugins” for cohomology (and
K-theory)

I convert the algorithm to equations about the generating
functions of the classes m(D(n))

I solve these equations in some particular cases, resulting in
very explicit formulas for the generating functions

I recover the generating functions for m(Xµ)

The basic maps

We have two basic maps between spaces of points we will use.

The diagonal map:

∆k : Pn −→ Pn × Pn × · · · × Pn︸ ︷︷ ︸
k times

And the multiplication map:

Ψ : Pn1 × Pn2 × · · · × Pnr −→ Pn1+n2+···+nr

merging different sets of points.

Composing these together, we get the “power map”:

Ψ ◦∆k =: Ωk : Pn −→ Pnk

which replicates (duplicates, triplicates, etc) the points.

The space of distinct points

Let D(n) = X(1n) ⊂ Pn be the configuration of n distinct points,
and define

D(n1, n2, . . . , nr)︸ ︷︷ ︸
D(n)

⊂ D(n1)×· · ·×D(nr) ⊂ Pn1 × Pn2 × · · · × Pnr︸ ︷︷ ︸
Pn

to be the configuration of N = n1 + n2 + · · ·+ nr points which
are all distinct.

Observation: For a partition µ = (1e1 , 2e2 , 3e3 , . . .) we have

Ωµ : D(e1, e2, e3, . . .)
∼−−→ Xµ

D(e) ⊂ Pe1 × Pe2 × · · · × PeryΩ1
yΩ2

yΩr

P1e1 × P2e2 × · · · × Prer Ψ−−→ PN ⊃ Xµ

The motivic recursion, page I.
The core idea: products of D(n)-s stratify naturally, where all the
strata are isomorphic images of other D(m) loci.

The simplest example is take just two: D(p)×D(q) ⊂ Pp × Pq. In
this case we have

D(p)×D(q) =
∐
k≥0

D(p− k, q − k, k)

where the stratification is based on how many of the p and q
points in D(p) and D(q) coincide. Since they are already
indistinguishable from each other, nothing else can happen.

We have a natural map

Pp−k × Pq−k × Pk id×id×∆2

−−−−−−−−→ Pp−k × Pq−k × (Pk × Pk)y yid×swap×id

Pp × Pq Ψ×Ψ←−−−−−−− (Pp−k × Pk)× (Pq−k × Pk)

The motivic recursion, page II.

More generally, we have

D(p)×D(n) =
∐

n=d+e
p=k+

∑
e

D(k, d, e)

using a similar diagram:

Pk × Pd × Pe id×id×∆2

−−−−−−−−→ Pk × Pd × (Pe × Pe)y y ↙↘ y
Pp × Pn

Ψk,e×Ψd,e←−−−−−−−−−− (Pk × Pe)× (Pd × Pe)

Observation: The open stratum on the RHS (corresponding to
e = 0) is just D(p, n), and all the other strata has smaller “total
dimension” (meaning

∑
n). Therefore, if we knew how to

compute the pushforwards, and knew m(D(k)) = m(X1k), then
we could recursively compute all m(D(n)), and thus m(Xµ).

The double recursion

Alas, we don’t know m(D(k)) = m(X1k). This is in some sense
the hardest of all Xµ.

However, we noted before that Xµ = Ωµ(D(e1, e2, . . .)) and that

Pn =
∐
µ`n

Xµ =
∐
e

Ωe(D(e))

where µ = (1e1 , 2e2 , 3e3 , . . .), and e runs over sequences such that
n =

∑
i iei. Applying the m class, we now have two mutually

recursive equations:

m(D(p))×m(D(n)) =
∑

k,d,e Ψ!∆! m(D(k, d, e)) (*)

m(Pn) =
∑

e Ω! m(D(e)) (**)

which together determine all m(D(n)) (since they give an explicit
recursive algorithm to compute them).

The “plugins”

So to compute m(D(n)) and m(Xµ), the only things we need to
know are:

I m(Pn)

I how to compute the pushforward ∆!

I and how to compute the pushforward Ψ!

(recall the Ω is just a composition of these).

The rest of the algorithm is completely generic over different m-s!
That’s why I call these “plugins”.

I worked out these for all the non-equivariant classes mentioned
above6, and wrote a compute program to compute these classes.
This works in practice for Xµ with |µ| ≤ 10, or for example D(p, q)
for p+ q ≤ 16, but the program could be made more efficient.

6strictly speaking, I don’t yet have a proof for the K-theory pushforward
formulas

Generating functions

OK, we now have an algorithm, which is great, but not very
insightful.

I mean, knowning that the Hirzebruch class of X(5,2,2,1) is

Ty(X(5,2,2,1)) = (240u6 − 294u7 + 66u8)+

+ t · (−162u7 + 116u8 − 9u9 − u10)+

+ t2 · (50u8 − 18u9 − u10) + t3 · (−9u9 + u10) + t4 · u10

does not help me much, does it?

In the remaining part I will work out the generating functions of all
these classes, which I hope will convince you that generating
functions are both a really powerful tool to have, and a very
compact way to encode a large amount of information.

The χy genus

Let’s start with the χy genus because it’s the simplest interesting
example7. A remark about notation: I will use t instead of y.

The χy genus is the integral of the Hirzebruch class Ty (and also
of the motivic Chern class):

χy(X) = π∗ Ty(X) = π! mc(X) ∈ Z[t]

where π : X → pt is the collapsing map.

Similarly as the Hirzebruch class unifies 3 classes, the χy genus
unifies three characteristics:

χy(X) =

χ(X) t 7→ −1 Euler characteristic
χ(X,OX) t 7→ 0 arithmetic genus8

sign(X) t 7→ +1 signature

7The Euler characteristic of coincident root loci is more-or-less trivial
8the Hirzebruch arithmetic number, not the Severi arithmetic genus pa

Generating function for the χy genus

For the χy genus, we know all the plugins: The “pushforwards” are
trivial (that is, the identity of Z[t]), and for the projective space we
have

χy(Pn) = 1− t+ t2 − t3 + · · · ± tn

Let’s encode all the χy genera of all D(n) loci into one big
generating function:

F(x) =
∑

xn · χy(D(n)) = Z[t][[x1, x2, x3, . . .]]

where the sum runs over all infinite sequences n ∈ NN with finite
sum (that is, finitely many nonzero elements).

This is a symmetric function in infinitely many variables, that is,
an element of the ring of symmetric functions: F ∈ ΛZ[t].

The equations for the χy genus

We need to express the equations

χy(D(p)) · χy(D(n)) =
∑

χy(D(k, d, e)) (*)

χy(Pn) =
∑

χy(D(e)) (**)

in the language of generating functions.

This we can do easily if we simply follow what exactly we sum
over. In the first equation (*), we sum over triples (k, d, e) such
that p = k +

∑
i ei and nj = dj + ej . In the second equation (**),

we sum over e such that n = 1e1 + 2e2 + 3e3 + Packing these
together for all (p, n) and for all n, respectively, we get:

F(q) · F(x) = F(q, x, q ·x) (*)

1

(1− q)(1 + qt)
=
∑

qn · χy(Pn) = F(q, q2, q3, . . .) (**)

Solving the χy equations

So we have these equations for the gf. of χy genera:

F(q) · F(x) = F(q, x, q ·x) (*)

1

(1− q)(1 + qt)
= F(q, q2, q3, . . .) (**)

How to solve such equations? I have no idea whatsoever, in general!

However, we know a priori that these equations have a unique solutions,
since they represent an actual algorithm to compute the solution. So it’s
enough to somehow find one solution, and we are done.

Observation: The symmetric polynomial pk(x) = xk1 + xk2 + xk3 + . . .
behaves nicely wrt. the substitution in the first equation. In fact,
Fk(x) = 1 + pk(x) is a solution of the first equation:

(1 + qk)︸ ︷︷ ︸
Fk(q)

(1 + xk1 + xk2 + . . .)︸ ︷︷ ︸
Fk(x)

= 1 + qk + xk1 + xk2 + · · ·+ (qx1)k + (qx2)k + . . .︸ ︷︷ ︸
Fk(q,x,q x)

Solving the χy equations, page II.

We can then try the following ansatz:∑
xn · χy(D(n)) = F(x) =

∞∏
k=1

(1 + pk(x))ak(t)/k

where ak(t) ∈ Z[t] are some polynomials of t. This is basically just
a linear combination (after taking the logarithm) of the family of
solutions we noticed, and thus clearly satisfies the first equation.

Now we can use our knowledge of the χy genera for small D(n),
and try to recursively work out the polynomials ak(t). Based on
that, we can conjecture the solution:

ak(t) =

{
1− t k = 1∑

d|k µ(d) · (−t)k/d k ≥ 2

where µ(d) is the Möbius function (from elementary number
theory), and the sum runs overs the (positive) divisors of k.

Finishing the proof

So now we only have to prove that our conjectured solution satisfies the
second equation, too, and we are ready!

1 + pk(q, q2, q3, . . .) = 1 + qk + q2k + q3k + · · · = 1

1− qk

log(1 + pk) = − log(1− qk) =
∑
i≥1

qki

i

log(F(q, q2, q3, . . .)) = log(1 + p1) +
∑
k≥1

log(1 + pk)
1

k

∑
d|k

µ(d)(−t)k/d =

= − log(1− q) +
∑
k≥1

∑
i≥1

qki

ki

∑
d|k

µ(d)(−t)k/d =

= − log(1− q) +
∑
m≥1

qm

m

∑
k|m

∑
d|k

µ(d)(−t)k/d

︸ ︷︷ ︸
(−t)m

= − log(1− q)− log(1 + qt)

QED.

Example χy computation
How to extract the χy genus of a particular loci from the GF? Consider
for example µ = (4, 4, 2, 2, 1, 1, 1). Rewriting into exponential form:
µ = (13, 22, 30, 42) Hence χy(Xµ) = χy(D(3, 2, 0, 2)). Thus we only
need to differentiate a few times:

χy(Xµ) =
1

3! · 2! · 2!

[
∂7F(x1, x2, x3, x4)

∂x31 ∂x22 ∂x24

]
(xi 7→ 0)

Note that while F is an infinite product, only a finite part of that affects
any particular coefficient, since the exponents of the xi variables increase.

Now any computer algebra software (eg. Mathematica) can compute:

χy(X(4,4,2,2,1,1,1)) = 6t+ 6t2 − 2t3 − 3t4 − 3t5 − 3t6 − t7

xx[i_] := Subscript[x,i]; pk[k_] := Sum[xx[i]^k,{i,1,4}]

apoly[k_] := If[k == 1, 1 - t,

Sum[MoebiusMu[d]*(-t)^(k/d), {d, Divisors[k]}]]

chiyGF = Product[(1 + pk[k])^(apoly[k]/k), {k, 1, 3}];

D[chiyGF, {xx[1], 3}, {xx[2], 2}, {xx[4], 2}]/ 3!/2!/2!;

Expand[% /. Table[xx[i] -> 0, {i, 1, 4}]]

Motivic classes in (co)homology

The next logical step is to consider classes in (co)homology. These
are: the Chern(-SM) class, Todd class, the L-class and the
Hirzebruch Ty class. In fact the latter generalizes all them:

Ty(X) =

cSM(X) y 7→ −1
td(X) y 7→ 0
L(X) y 7→ +1

but it is still illustrative to consider the specialized cases.

Remark: These classes originally live in homology, and it turns out
that indeed the formulas look better in homology, but we are in
smooth compact ambient spaces so we have Poincaré duality, and
I’m very used to work in cohomology instead of homology, so these
will be mixed freely.

Generating functions for (co)homology classes
First of all, what does it mean to consider the generating function∑

xn ·m(D(n)) = ???

These classes all live in different rings!

m(D(n)) ∈ H∗(Pn) = Z[u]
/

(uni+1
i = 0)

Here ui = −c1(Li) denotes the positive hyperplane generator of
H∗(Pni).

Our (preliminary) answer is to take the normal form of these
classes: they can be written uniquely as linear combinations of uk

with 0 ≤ k ≤ n, and then take the formal sum over n:

G(x ; u) =
∑
n,k

an,k · xnuk

such that
m(D(n)) =

∑
k

an,k · uk

Homology exponential generating functions

Instead of what I just described, we will use a slightly modified
version: 1) homology indexing instead of cohomology; and 2)
exponential in the homology direction. That is

F(x ; v) =
∑
n,k

an,k
k1!k2!k3! · · ·

· xnvk

such that
m(D(n)) =

∑
k

an,k · un−k

It turns out that this version is much more convenient to work with.

To help notation, let us introduce a hat version of all motivic
classes, which conforms to this convention, so we can (somewhat
informally) write

F(x ; v) =
∑
n

xn · m̂(D(n))

while understanding that this means the above convention.

The pushforwards in cohomology

The pushforwards along our basic maps are quite easy to work out:

(∆m)∗ u
j = s(nm−1,j)(v1, v2, . . . vk) Pn → Pn × · · · × Pn

(Ψn,m)∗ u
ivj =

(
n+m−i−j

n−i
)
wi+j Pn × Pm → Pn+m

(Ωd)∗ u
j = d(n−j) · v(d−1)n+j Pn → Pdn

where sλ are the Schur polynomials. The multiplication map Ψ
can be naturally generalized to any number of inputs, and there
will be a multinomial coefficient on the RHS.

Now we have to translate this to our (homology, exponential)
generating functions, and that’s where the magic happens:

(∆2
∗F)(y, z ; v, w) = F(y ·z ; v + w)

(Ψ∗F)(z ; w) = F(z, z ; w,w)

(Ωd
∗ F)(y ; v) = F(yd ; d·v)

which is why we chose this particular convention for our GFs.

The equations in (co)homology

We can now easily write down the (co)homology version of our
equations:

F(q ; z) · F(x ;u) = F(q, x, q ·x ; z, u, z + u) (*)∑
n

qn · m̂(Pn) = F(q, q2, q3, . . . ; z, 2z, 3z, . . .) (**)

Not surprisingly, we cannot solve these (more complicated)
equations directly either, however, again we have some simple
solutions for the first equation:

Fk(x;u) = 1 +
∑
i

xki = 1 + pk(x)

Gk(x;u) = exp

[∑
i x

k
i ui

1 + pk(x)

]
It is elementary algebraic manipulation to check that these satisfy
the first equation.

The ansatz

In lack of better ideas, we can again write down an ansatz, and try
to figure out the unknown coefficients such that the second
equation is satisfied, too.

Our ansatz (for the Hirzebruch class Ty) will be

log(F(x;u)) =
∑
k≥1

ak(t)

k
· log(1 + pk(x)) +

∑
k≥1

bk(t)

k
·
∑

i x
k
i ui

1 + pk(x)

where ak(t) and bk(t) are some polynomials in Z[t] (for the other
classes, they are just numbers).

It turns out that we are lucky, and solution has indeed this form.

Motivic (co)homology classes of Pn

One remaining piece of information we need are the classes of Pn;
more precisely, their generating functions.

Theorem:∑
qn · ĉSM(Pn) = (1− q)−2 · exp[qz/(1− q)]∑
qn · t̂d(Pn) = (1− q)−1−z∑
qn · L̂(Pn) = (1− q)−1−z/2 · (1 + q)−1+z/2∑
qn · T̂y(Pn) = (1− q)−1−z/(1+t) · (1 + tq)−1+z/(1+t)

The last one implies the others, by specializing t to −1, 0,+1,
respectively. A further lemma:

td(Pn) =

n∑
k=0

k!

n!
·|s(n+1, k+1)|·un−k ∈ H∗(Pn) = Z[u] / (un+1 = 0)

where s(n, k) are the Stirling numbers of the first kind.

Proof for td(Pn) (Hirzebruch is the same)

[un−k] td(Pn) = [un−k]

(
u

1− e−u

)n+1

= Resu=0
uk

(1− e−u)n+1
=

=
1

2πi

∫
γ

uk

(1− e−u)n+1
du

Applying the change of variables:

1

x
=

1

1− e−u
u = − log(1− x) du =

dx

1− x
we get

[un−k] td(Pn) =
1

2πi

∫
γ′

(− log(1− x))k

xn+1(1− x)
dx = [xn]

(− log(1− x))k

(1− x)

Summing over k:

∞∑
k=0

yk · [un−k]td(Pn) = [xn]
1

(1− x)(1 + y log(1− x))

Exponential vs. ordinary GFs
You can switch between ordinary and exponential generating
functions using Laplace transform. This is a neat trick: If we have

F (x) =

∞∑
n=0

anx
n and G(t) =

∞∑
n=0

an
n!
tn

then they are related by

F (x) = x−1 · L[G](x−1)

G(t) = L−1
[
x 7→ x−1F (x−1)

]
(t)

Applying this to variable y in∑
xn · td(Pn) =

1

(1− x)(1 + y log(1− x))

we get∑
xn · t̂d(Pn) = (1− x)−1−z ⇐⇒ t̂d(Pn) =

(z + n)n
n!

The solution for the Hirzebruch class

The (homology, exponential) GF of the Hirzebruch classes,∑
xn · T̂y(D(n)), is:

exp

[∑
k≥1

ak(t)

k
· log(1 + pk(x))

︸ ︷︷ ︸
χy part

+
∑
k≥1

bk(t)

k
·
∑

i x
k
i ui

1 + pk(x)

]

where ak(t) and bk(t) are polynomials in Z[t], defined by

ak(t) =

{
1− t k = 1∑

d|k µ(d) · (−t)k/d k ≥ 2

bk(t) =
∑
d|k

µ(d) · d · 1− (−t)k/d

1 + t

You can get the GF for the Xµ loci by substituting ui 7→ i · v.

The three specializations

It is interesting to look at the specializations t 7→ −1, 0,+1, too.
Denote by

Ek(x;u) =

∑
i x

k
i ui

1 + pk(x)

Then the EGF of the CSM, Todd and L classes of D(n) are:

ĉSM = (1 + p1(x))2 · exp
[
E1(x;u)

]
t̂d = (1 + p1(x)) ·

∞∏
k=1

exp

(∑
d|k

d·µ(d)

k

)
· Ek(x;u)

L̂ = (1 + p2(x)) ·

∞∏
k=1

exp

(∑
d|k

d·µ(d)

k

)(
Ek(x;u)− 1

2
E2k(x;u)

)
Btw,

∑
d|k d·µ(d) =

∏
p|k(1− p) is the Dirichlet inverse of Euler’s totient φ(k).

Single-variable specializations

Another interesting specialization is the single-variable case, which
corresponds to the EGF for D(n) = X1n . These we can get by

xi 7→
{
x i = 1
0 i ≥ 2

The results are:

χy = (1 + x) · (1 + tx2) · (1 + tx)−1

ĉSM = (1 + x)2 · exp[zx/(1 + x)]

t̂d = (1− x)z · (1 + x)2z−1

L̂ = (1 + x2)1−z · (1− x)z/2 · (1 + x)3z/2

T̂y = (1− x)z/(1+t) · (1 + x)1+2z/(1+t)·
· (1 + tx)−1+z/(1+t) · (1 + tx2)1−2z/(1+t)

Proofs
We only have to prove that these solutions satisfy the second
(normalization) equation:

F(q, q2, q3, . . . ; z, 2z, 3z, . . .) =
∑
n

qn · m̂(Pn)

These boil down to combinatorial identities like this:

Lemma. We have the following identities:

∞∑
k=1

∑
d|k

µ(d)
d

k

yk

1− yk
= − log

[
(1− y)

]
=
∑
k

yk

k

∞∑
k=1

∑
d|k

µ(d)
d

k

yk

1 + yk
= log

[
(1 + y)2(1− y)

]
= 2

∑
k

y2k

k
−
∑
k

yk

k

There are more formulas like these. I haven’t proved all of them, but I

believe they shouldn’t be too hard.

Motivic classes in K-theory

The main example we have in K-theory is the ‘motivic Chern class’ of
Brasselet-Schürmann-Yokura, which is a class mc(X) ∈ K0(X)[t].

First of all, where do these classes live?

mc(Xµ) ∈ K0(Pn)[t] = Z[t][H]
/

(Hn+1 = 0)

mc(D(n)) ∈ K0(Pn1 × · · · × Pnr)[t] = Z[t][H1, . . . ,Hr]
/

(Hni+1
i = 0)

where L = [L] is the class of the tautological line bundle L, and
H = 1− L is the hyperplane class.

The algorithm to compute mc(D(n)) works perfectly well, we just need
to supply the “plugins”: the motivic Chern classes of Pn, and the
pushforwards along the basic maps:

∆k
! : K0(Pn)→ K0(Pn × · · · × Pn)

Ψ! : K0(Pn × Pm)→ K0(Pn+m)

Motivic Chern class of Pn

For smooth compact varieties the mc class is defined to be the total
lambda class λt of the cotangent bundle:

mc(Pn) = λt
[
T ∗Pn

]
=

n∑
i=0

[
Λi(T ∗Pn)

]
· ti =

=
(1 + tL)n+1

1 + t
=

(1 + t(1−H))n+1

1 + t
∈ Z[t][H]/(Hn+1 = 0)

where again H = 1− L is the hyperplane class.

From this it is easy to derive the generating functions:

OGF:
∑

xn ·mc(Pn) =
1

(1 + txH)(1− x− tx+ txH)

EGF:
∑

qn · m̂c(Pn) =
1

(1 + tq)2
· exp

[
J · (1 + t)q

1 + tq

]
where we use J instead of H in the exponential GF to distinguish

between the two. Rule of thumb: Jk/k! = Hn−k = (1− L)n−k.

The pushforwards in K-theory

We can compute the pushforwards using Grothendieck-Riemann-Roch9

and our knowledge of the cohomology pushforwards. For π : X → Y and
α ∈ K0(X):

chY (π! α) · td(Y) = π∗

[
chX(α) · td(X)

]
where chX : K0(X)→ ⊕kH2k(X) is the Chern character.

It’s not very hard to conjecture the following formulas based on the
numbers:

∆m
! (Hk) =

m−1∑
i=0

(−1)i
(
m− 1

i

)
s(nm−1,k+i)(H1, H2, . . . ,Hm)

Ψ!(H
i
1 ·H

j
2) =

p∑
k=0

(−1)k ·
(
n+m− i− j − k

p

)(
p

k

)
·Hi+j+k

p = min(n− i,m− j)

where sλ are the Schur polynomials. Observation: These formulas are

deformations of the corresponding cohomology formulas.

9unfortunately I don’t know any other tool...

The pushforwards in generating function language

We can translate the pushforward formulas into the language of
generating functions.

Motivated by the fact that the K-theory versions are deformations
of the cohomology version, we opt for the same type of generating
functions: homology indexing, and exponential (though the choice
is less clear here?)

With this convention, we have:

(∆k
! F)(x1, . . . , xk; J1, . . . , Jk) =

[
1− ∂

∂J

]k−1

(F)
(∏

xi ;
∑
Ji

)

(Ψ! F)(x; J) = exp

[
−J · ∂2

∂J1 ∂J2

]
(F) (x, x ; J, J)

The equations in K-theory?

In principle now we could write down the equations for the
generating function in K-theory.

In practice this looks very complicated, and I have really no idea
about the form of the solutions! (apart from 1 + pk(x)). So we
have a working algorithm (good for testing), but no formulas.

However, we know that the Chern character is an isomorphism,
and (after multiplying by the Todd class of the ambient space) it
maps the motivic Chern class into the (unnormalized) Hirzebruch
class. Therefore we can try the “reverse engineer” the MC class
from this connection.

Extracting the Hirzebruch class from the MC class

You can compute the normalized Hirzebruch class Ty from the
motivic Chern class using the following steps of “yoga”:

I take the Chern character (that is, H 7→ 1− exp(−u))

I multiply by the Todd class of the ambient variety

I what you have now is the unnormalized Hirzebruch class T̃y
I then substitute u 7→ (1 + t)u

I and divide by (1 + t)d where d is the ambient dimension

It’s a bit hard to follow, but in the generating function language
this translates to

Hn−k =
Jk

k!
7−→ t̂d(1+t)−1(Pk)

where by the RHS I mean that the (homology, exponential)
variable is twisted by (1 + t)−1.

Interlude: the unnormalized Hirzebruch class

The Hirzebruch classes are defined (for smooth X) by

Ty(X) =
∏
iQy(αi) normalized

T̃y(X) =
∏
i Q̃y(αi) unnormalized

where αi are the Chern roots of the tangent bundle TX, and

Qy(α) =
α(1 + t)

1− e−α(1+t)
− αt

Q̃y(α) =
α(1 + te−α)

1− e−α

which are related by:

Qy(α) =
Q̃y
(
α(1 + t)

)
1 + t

.

Observation: For the trivial line bundle we have Ty(1) = 1, but

T̃y(1) = 1 + t 6= 1!

Reverse engineering the MC class

Recall that

Hn−k = Gk =
Jk

k!
7−→ t̂d(1+t)−1(Pk)

Summing these together for different k, we get that:

A · exp
[
β · J

]︸ ︷︷ ︸
EGF of mc(something)

7−→ A · (1− β)−1−z/(1+t)︸ ︷︷ ︸
EGF of Ty(something)

Notes: We could move the (1−β) factor to the LHS; and we could
also convert any or both sides into the OGF version. For example:

A · (1− β)

(1−Gβ)︸ ︷︷ ︸
OGF of mc(something)

7−→ A · (1 + t)

(1 + t) + z log(1− β)︸ ︷︷ ︸
OGF of Ty(something)

But the forms where the RHS is exponential are more handy.

Motivic Chern classes of D(n) = X(1n)

The single variable case is quite easy. Recall that∑
xn · T̂y(D(n)) = (1− x)z/(1+t) · (1 + x)1+2z/(1+t)·

· (1 + tx)−1+z/(1+t) · (1 + tx2)1−2z/(1+t) =

=
(1 + x)(1 + tx2)

(1 + tx)︸ ︷︷ ︸
A

exp

{
z

(1 + t)
log

[
(1− x)(1 + x)2(1 + tx)

(1 + tx2)2

]
︸ ︷︷ ︸

− log[1−β]

}

From this it follows directly that∑
n

xn · m̂c(D(n)) =
(1 + tx2)3

(1− x)(1 + x)(1 + tx)2
·

· exp

[
(1 + t)Jx(1− x− x2 − tx3)

(1− x)(1 + x)2(1 + tx)

]

An ugly formula for the MC classes of D(n)
We can do the exact same thing as in the single variable case:

T̂y = exp

[∑
k≥1

ak(t)

k
· log(1 + pk(x))

]
︸ ︷︷ ︸

A (= gf. of χy)

· exp

[∑
k≥1

bk(t)

k
·
∑
i x

k
i ui

1 + pk(x)

]
︸ ︷︷ ︸∏

i(1−βi)−ui/(1+t)

that is, ∑
k≥1

bk(t)

k
· xki

1 + pk(x)
= − log(1− βi)

(1 + t)

from which (btw the (1 + t) term cancels with the (1 + t)−1 in bk(t))

βi = 1− exp

−(1 + t)
∑
k≥1

bk(t)

k
· xki

1 + pk(x)

From this, we have the homology OGF resp. EGF of the MC classes:

A ·
∞∏
i=1

1− βi
1−Giβi

A ·
∞∏
i=1

(1− βi) exp(Jiβi)

where Gki = Hni−k
i .

Future work

Some future work remains:

I better formulas for the motivic Chern classes?

I equivariant classes

I applications

I stability

I closures of the strata (?)

I positivity?

Note: I have an algorithm for the equivariant classes in
cohomology (that is, I can compute the pushforwards
algorithmically), but haven’t implemented it yet.

