A THEOREM ON REMOVING Σ^r SINGULARITIES

R. Rimányi, A. Szűcs

Abstract. As an application of the generalized Pontrjagin-Thom construction ([2]) and a theorem of Golubjatnikov [1] here we prove a result on removing Σ^r singularities in a certain cobordism class of smooth mappings of positive codimension.

The integer $k > 0$ will be fixed throughout the paper. Let $\eta : (\mathbb{R}^n, 0) \rightarrow (\mathbb{R}^{n+k}, 0)$ be a smooth map germ. By a suspension of η we mean a germ $\Sigma^r \eta : (\mathbb{R}^{n+v}, 0) \rightarrow (\mathbb{R}^{(n+k)+v}, 0)$ defined by $(x, u) \mapsto (\eta(x), u)$ — otherwise we will use the standard notions and notations of singularity theory, see e.g. [3]. Now consider stable smooth maps between smooth manifolds of codimension k. For such a map $f : N^m \rightarrow P^{m+k}$ we define the submanifolds

$$\eta(f) = \{ y \in P \mid f^{-1}(y) \text{ has only one element and the germ of } f \text{ at } f^{-1}(y) \text{ is } A \text{-equivalent to a suspension of } \eta \},$$

$$\Sigma^r(f) = \{ x \in N \mid \text{the germ of } f \text{ at } x \text{ is of Thom-Boardman type } \Sigma^r. \}.$$

Let $\eta_r : (\mathbb{R}^{r^2+rk}, 0) \rightarrow (\mathbb{R}^{r^2+rk+k}, 0)$ denote the miniversal unfolding of the germ $\zeta_r : (\mathbb{R}^r, 0) \rightarrow (\mathbb{R}^{r+k}, 0)$ defined by

$$(x_1, \ldots, x_r) \mapsto (x_2^2, \ldots, x_r^2, x_1x_2, x_1x_3, \ldots, x_{r-1}x_r, 0, \ldots, 0),$$

where there are $t := k - \binom{r}{2}$ 0's at the end. The Thom-Boardman type of η_r is $\Sigma^{r,0}$, and, in fact, this is the “simplest” among the germs of codimension k and of Thom-Boardman type Σ^r. That is, if $f : N^m \rightarrow P^{m+k}$ is a map, then the closure of the submanifold $f^{-1}(\eta_r(f)) \subset N$ contains $\Sigma^r(f)$.

Definition 1. If $g : N^m \rightarrow P^{m+k} \times \mathbb{R}^r$ is an immersion then the composition $f = pr_P \circ g : N^m \rightarrow P \times \mathbb{R}^r \rightarrow P$ will be called a prim-Σ^r map. If, in addition, f does not have other Σ^r singularities than η_r, then we will call it a prim-η_r map. If f does not have Σ^r points at all, then we call it prim-\emptyset.

The word prim stands for projected immersion, and Σ^r and η_r refers to types of the most difficult singularities such a map may have. Now let us fix \mathbb{R}^{m+k} and consider prim-η_r (prim-Σ^r, prim-\emptyset) maps of m-manifolds into it. We call two such map $f_1 : N_1^m \rightarrow \mathbb{R}^{m+k}$ and $f_2 : N_2^m \rightarrow \mathbb{R}^{m+k}$ cobordant if there is an abstract manifold W^{m+1} with boundary $N_1 \cup N_2$ and a prim-η_r (prim-Σ^r, prim-\emptyset) map

1991 Mathematics Subject Classification. 57R45.

The authors received financial support from OTKA F014906 and T021151, resp.
Theorem 2. Let \(f \) is given by \(\text{a class of immersions with a double point} \), etc. Let \(k \) be even, \(m < (r + 1)k + (r^2 - 1) \), and let \(f : N^m \rightarrow \mathbb{R}^{m+k} \) be a stable prim-\(\eta_r \) map. Then the following conditions are equivalent:

1. there is a prim-\(\eta_r \) map \(g : M^n \rightarrow \mathbb{R}^{n+k} \) cobordant to \(f \) with \(\eta_r(g) = 0 \);

2. the abstract manifold \(\eta_r(f) \) is nullcobordant.

Proof. The implication \((1) \Rightarrow (2)\) is clear. Indeed, if the cobordism between \(f \) and \(g \) is given by \(F : W \rightarrow \mathbb{R}^{(n+k)+r} \) then the manifold \(\eta_r(F) \) is a cobordism between \(\eta_r(f) \) and the emptyset.

For the converse implication we need some notions and results from [2].

Consider the set of stable map germs \((\mathbb{R}^*, \text{finite set}) \rightarrow (\mathbb{R}^{*+k}, 0)\). The set of equivalence classes of this set under the equivalence relation generated by \(\mathcal{A} \)-equivalence and suspension is called \(T \). There is an obvious hierarchy on \(T \), whose top element is the class of \((k\text{-codimensional)}\) embeddings, and right under this is the class of immersions with a double point, etc. Let \(\tau \) be an ascending subset of \(T \). A map \(f : N^m \rightarrow P^{m+k} \) is called a \(\tau \)-map if for all \(y \in f(N) \) the germ of \(f \) at \(f^{-1}(y) \) is from \(\tau \). For more details and examples see [2]. If for two \(\tau \)-maps \(f_i : N_i \rightarrow P^{m+k} \) (\(i = 0, 1 \)) an abstract cobordism \(W \) is given between \(N_0 \) and \(N_1 \), as well as a \(\tau \)-map \(F : W \rightarrow P^{m+k} \times [0, 1] \) with \(F|_{N_i} = f_i \times \{i\} \), then we call \(f_0 \) and \(f_1 \) cobordant. The set of cobordism classes is denoted by: \(\text{Cob}_m(P^{m+k}; \tau) \).

Definition 3. The space \(X \) is called a classifying space for \(\tau \)-maps, if for any closed manifold \(P^{m+k} \) there is a bijection between

\[\text{Cob}_m(P^{m+k}, \tau) \quad \text{and} \quad [P, X] = \text{homotopy classes of maps } P \rightarrow X. \]

Now let \(\tau = \tau' \cup [\eta] \), where \(\tau \) and \(\tau' \) are ascending subsets of \(T \). Suppose also that \(\eta \) is the “simplest” in its equivalence class, that is suppose that \(\eta : \mathbb{R}^n \rightarrow \mathbb{R}^{n+k} \) is not the suspension of any other germ — germs having this property are called isolated. Let \(G \) be the maximal compact subgroup of the symmetry group

\[\text{Aut}_{\mathcal{A} \eta} = \{ (\varphi, \phi) \in \text{Diff}(\mathbb{R}^n, 0) \times \text{Diff}(\mathbb{R}^{n+k}, 0) \mid \phi \circ \eta \circ \varphi^{-1} = \eta \}, \]

with the representations \(\lambda_1 \) and \(\lambda_2 \) on \(\mathbb{R}^n \) and \(\mathbb{R}^{n+k} \) (both of which can be supposed to be linear). The vector bundle associated to the universal principal \(G \)-bundle using the representation \(\lambda_i \) will be denoted by \(E\lambda_i \rightarrow BG \) and its disc bundle by \(D\lambda_i \). The following theorem is proved in [2].

Theorem 4. If \(X\tau' \) is a classifying space for \(\tau' \)-maps then the space \(X\tau = X\tau' \cup_{\rho} D\lambda_2 \) is a classifying space for \(\tau \)-maps (for some \(\rho : \partial D\lambda_2 \rightarrow X\tau' \)). \(\square \)
Since the one-point-space is a classifying space for \emptyset-maps, and any other τ can be build up from \emptyset by consecutively adding new $[\eta]$‘s, the above theorem can be considered as a construction of a classifying space for τ-maps for all τ. Well, almost... In fact, to carry out this procedure we need some knowledge of the group $\text{Aut}_A\eta$, its maximal compact subgroup and its representations λ_1, λ_2. This problem is also essentially solved in [2], we will come back to these results in the concrete examples where we need them.

Now turn back to prim-η_r maps to \mathbb{R}^{m+k}. Their cobordism group (defined above) is not $\text{Cob}_m(\mathbb{R}^{m+k}, \tau)$ for any τ, but one can evidently extend the notion of classifying space for prim-η_r (as well as prim-Σ^r and prim-\emptyset) maps. And the theorem quoted above remains true with a minor modification. For this we need some notation. The germ $\eta_r : \mathbb{R}^{r^2+kr} \to \mathbb{R}^{r^2+kr+k}$ is of Thom-Boardman type Σ^r, so the kernel K of its differential is r-dimensional. Now let G be the subgroup of $G = \text{MC Aut}_\eta$, whose induced action on K is trivial. The restriction of λ_i to G will be called λ_i, and $E\lambda_i \to B\lambda_i (D\lambda_i \to B\lambda_i)$ denotes the vector bundle (disc bundle) associated to the universal principal G-bundle using the representation λ_i. The following theorem is analogous to Theorem 4. We will not give a proof for it, since it goes the same way.

Theorem 5. Let X' be a classifying space for prim-\emptyset maps. Then $X = X' \cup_{\rho} D\lambda_2$ is a classifying space for prim-η_r maps (for some $\rho : D\lambda_2 \to X'$).

Now let us consider a portion of the homotopy exact sequence of the pair (X, X'):

$$
\text{Cob}_m(\mathbb{R}^{m+k}, \text{prim-}\emptyset) \longrightarrow \text{Cob}_m(\mathbb{R}^{m+k}, \text{prim-}\eta_r) \longrightarrow \pi_{m+k}(X') \longrightarrow i_* \longrightarrow \pi_{m+k}(X) \longrightarrow \delta \longrightarrow \pi_{m+k}(X, X').
$$

The statement (2)\Rightarrow(1) in this terms is the following: if $[f] \in \text{Cob}_m(\mathbb{R}^{m+k}, \text{prim-}\eta_r)$ is such that $\eta_r(f)$ is null-cobordant, then $[f]$ is in the image of i_* — or, what is the same, $\delta([f]) = 0$. Now let us study the group $\pi_{m+k}(X, X')$. First observe that

a) X' is $(k - 1)$-connected, since $\pi_i(X') = \text{Cob}_{i-k}(S^i, \text{prim-}\emptyset) = 0$ if $i - k < 0$; and

b) the pair (X, X') is $r^2 + rk + k - 1$-connected, since $H^i(X, X') = H^i(T\lambda_2) = 0$ for $i = 1, \ldots, r^2 + rk + k - 1$, because $rk \lambda_2 = r^2 + rk + k$.

Now, due to the homotopy excision theorem and our dimension restrictions we have the natural isomorphism $\pi_{m+k}(X, X') = \pi_{m+k}(X/X')$ which latter is $\pi_{m+k}(T\lambda_2)$. Now we have to analyse the group \bar{G} and the representation $\bar{\lambda}_2$.

Lemma 6.

$$\bar{G} = O(t) \quad \bar{\lambda}_2 = r \cdot \rho_t \oplus (r^2 - r + r\left(\frac{r + 1}{2}\right)) \cdot 1,$$

where $t = k - \binom{k}{2}$, ρ_t is the standard t-dimensional representation of $O(t)$, and 1 is the trivial 1-dimensional representation.

Proof of Lemma 6. First we recall from [2] some results about the maximal compact automorphism group of η_r:

$$\text{MC Aut}_A\eta_r = \text{MC Aut}_K\zeta_r \leq \text{Aut} Q_{\zeta_r} \times O(k - d) =$$
then

$$\lambda$$

so the subgroup $\bar{\lambda}$ the representations m-morphic to the cobordism group of embeddings of closed R-R. RIMÁNYI, A. SZÜCS

where Q_{ζ_r} is the local algebra of ζ_r and d is its defect. In fact $O(r) \times O(t)$ acts as an A-equivalence group (and therefore as an K-equivalence group) of ζ_r, so there is equation instead of \leq in the formula. So $G = O(r) \times O(t)$.

To determine $\bar{G} \leq G$ and the representation $\bar{\lambda}_2$ we recall some more notions and results from [2] and [4]. Since the germ η_r is a miniversal unfolding of ζ_r with $d\zeta_r(0) = 0$, therefore η_r is A-equivalent to

$$\mathbb{R}^r \times V \longrightarrow \mathbb{R}^{r+k} \times V$$

$$(x, \phi) \mapsto (x + \phi(x), \phi),$$

where V is a complement of the subspace $t\zeta_r(\theta_r) + \zeta^*_r(m(r+k))\theta_{\zeta_r}$ in the vector space θ_{ζ_r}. Since G actually acts as an A automorphism, so it has representations α and β on \mathbb{R}^r and \mathbb{R}^{r+k} respectively. The group G also acts on θ_{ζ_r} by $(\alpha, \beta) \cdot \phi = \beta \circ \phi \circ \alpha^{-1}$ — leaving $t\zeta_r(\theta_a) + \zeta^*_r(m(a+k))\theta_{\zeta_r}$ invariant. If V is chosen to be G-invariant (G compact, so it is possible) then G also acts on V. Let this action be γ. A theorem in [2] proves that the maximal compact subgroup of $Aut_A \eta_r$ is G with the representations $\lambda_1 := \alpha \oplus \gamma$, $\lambda_2 := \beta \oplus \gamma$ on the source $(\mathbb{R}^r \times V)$ and target $(\mathbb{R}^{r+k} \times V)$ spaces, respectively.

Now observe that α is $\rho_r \circ pr_{O(r)}$, where ρ_r is the standard r-dimensional representation of $O(r)$. Observe also that the kernel of $d\eta_r$ is (the tangent space to) \mathbb{R}^r, so the subgroup $\bar{G} \leq G$ must be $O(t)$. If we choose V to be spanned by

$$(x_1, \ldots, x_r) \mapsto (0, \ldots, 0, x_i, 0, \ldots, 0)$$

the coordinate is $j = 1, \ldots, r, i \neq j$

$$(x_1, \ldots, x_r) \mapsto (0, \ldots, 0, x_i, 0, \ldots, 0)$$

the coordinate is $j = r + 1, \ldots, r + k$,

then V will be $O(r) \times O(t)$-invariant, and using the definition of α, β, γ above we can compute

$$\alpha|_{\bar{G}} = r \cdot 1$$

$$\beta|_{\bar{G}} = \rho_t \oplus \left(\binom{r}{2} + r \right) \cdot 1$$

$$\gamma|_{\bar{G}} = r \cdot \rho_t \oplus (r(r-1) + r(\binom{r}{2})) \cdot 1,$$

which proves the lemma. □

Now, according to the original Thom-construction, the group $\pi_{m+k}(T\bar{\lambda}_2)$ is isomorphic to the cobordism group of embeddings of closed $m - r^2 - rk$-manifolds into \mathbb{R}^{m+k} with a fixed splitting of the normal bundle to the direct sum of $r + 1$ isomorphic t-dimensional bundles and a trivial bundle. If the dimension $n - r^2 - rk$ of the embedded manifold is smaller than t (which holds in the dimension range of the Theorem) then these bundles are already stable normal bundles, so the group $\pi_{m+k}(T\bar{\lambda}_2)$ is isomorphic to the group $\Omega^{(r+1)\gamma}_{m-r^2-rk}$ defined by Golubjatnikov

\footnote{the notation $\Omega^{(r+1)\gamma}_{m-r^2-rk}$ would be perhaps better}
in [1]. Golubjatnikov also proves that in case \(r + 1 \) is odd then the forgetful map
\[\Omega_{m-r^2-rk}^{(r+1)\gamma} \rightarrow \mathcal{N}_{m-r^2-rk} \]
to the abstract cobordism group is an isomorphism.

Putting all these together we see that \(\pi_{m+k}(X, X') \cong \mathcal{N}_{m-r^2-rk} \), and it is easy
to see that the image of \(\delta([f]) \) in \(\mathcal{N}_{m-r^2-rk} \) is the abstract cobordism class of \(\eta_r(f) \).
Since \(\eta_r(f) \) is null-cobordant, we have proved the theorem. \(\square \)

Remark. In fact, the dimension restriction \(m < (r+1)k + (r^2-1) \) in the theorem
implies that a stable map \(N^m \rightarrow \mathbb{R}^{m+k} \) does not have any other singularities of
type \(\Sigma^r \) than \(\eta_r \). Therefore the condition “\(f: N^m \rightarrow \mathbb{R}^{m+k} \) is a stable prim-
\(\eta_r \) map” can be weakened as “\(f: N^m \rightarrow \mathbb{R}^{m+k} \) is a stable prim-\(\Sigma^r \) map”; so
Theorem 2 can actually be considered as a theorem on removing \(\Sigma^r \) singularities.

References

1. V. P. Golubjatnikov, Bordism rings with split normal bundles II. (in Russian), Sibirskij
2. R. Rimányi, A. Szücs, Pontrjagin-Thom-type Construction for Maps with Singularities, to
appear in 'Topology'.
3. C. T. C. Wall, Lectures on \(C^\infty \)-Stability and Classification, in: Proc. of Liverpool Singularities

ELTE, DEPT. OF ANALYSIS, MÚZEUM KRT. 6–8, BUDAPEST, HUNGARY 1088
E-mail address: rimanyi@cs.elte.hu

ELTE, DEPT. OF ANALYSIS, MÚZEUM KRT. 6–8, BUDAPEST, HUNGARY 1088
E-mail address: szucsandras@ludens.elte.hu